
Molecular Medicine REPORTS  19:  4569-4578,  2019

Abstract. Previous studies suggest that granulocyte 
colony‑stimulating factor (G‑CSF) can promote bone marrow 
derived progenitor cells to mediate cardiovascular repair, 
potentially reversing mechanical dysfunction in chronic 
ischaemic heart disease and post myocardial infarction. Two 
models were used in the present study both using a surgical 
ameroid constrictor to induce arterial stenosis. The first 
model used the carotid artery of rabbits. They were divided 
into high fat diet (inducing atherosclerosis) or normal fat diet 
(control) groups. Each was subdivided into surgical exposure 
group without constrictor, ameroid constrictor receiving 
normal saline or receiving G‑CSF 15 µg/kg/day. Endothelial 
markers of endothelial nitric oxide synthase and endothelin 
1 were increased by the use of ameroid constrictor in both 
atherosclerotic and non‑atherosclerotic mice, however were 
not further altered by G‑CSF. Scanning electron microscopy 
indicated that ameroid constrictor application altered endo-
thelial morphology from an oval shape to a round shape and 
this was more prominent in the atherosclerotic compared with 
the non‑atherosclerotic group. G‑CSF injection increased the 
number of endothelial cells in all groups. The second model 
used the left coronary artery of pigs. They were equally divided 
into following groups, receiving normal saline (control), 
G‑CSF 2.5 µg/kg/day (low dose), 5 µg/kg/day (medium dose) 
and 10 µg/kg/day (high dose) for 5 days. G‑CSF at a low or 
high dose worsened intimal hyperplasia however at a medium 

dose improved it. In conclusion, G‑CSF had no effect in a 
rabbit carotid artery model of atherosclerosis. Its effects on the 
porcine heart were dose‑dependent; arterial disease worsened 
at a low or high dose, but improved at a medium dose.

Introduction

Stem cell‑based therapy has been demonstrated as a good option 
for cardiac repair following myocardial infarction (MI). Previous 
clinical trials have demonstrated efficacy using a traumatic 
method of bone marrow aspiration, culture of the bone marrow 
stem cells and intracoronary infusion of this end‑product (1). 
Another less invasive option is to use granulocyte colony‑stim-
ulating factor (G‑CSF) to mobilize bone marrow‑derived 
progenitor cells to undertake tissue repair (2). The advantage 
of this technique is that it is less traumatic, requiring only 
subcutaneous injections. However, the results on its therapeutic 
efficacy have thus far been conflicting. In the FIRSTLINE‑AMI 
study, subcutaneous injection of G‑CSF shortly after successful 
primary percutaneous coronary intervention (PCI) in patients 
suffering from acute ST elevation MI was demonstrated to 
mobilize mononuclear blood stem cells (3). This resulted in 
enhanced resting wall thickening of the infarcted myocardium, 
improvement of wall motions and systolic function without 
apparent re‑stenosis. Further studies have demonstrated a good 
safety profile without reports of adverse effects (2,4,5). However, 
the REVIVAL‑2 study demonstrated that delayed application of 
G‑CSF 5 days after successful PCI did not significantly reduce 
infarct size or improve left ventricular function (6). Furthermore, 
usage of G‑CSF in acute MI may be a double‑edged sword, 
due to the fact that it may paradoxically reduce the migratory 
capacity of bone marrow‑derived progenitor cells into the 
ischaemic myocardium and thus there is a need to optimize 
the cytokine profile with other agents to ensure their successful 
migration (7).

Animal studies have proven useful in the study of the 
properties of G‑CSF. A previous study used a porcine model 
of ischaemic heart disease to demonstrate improvement in 
cardiac contractile function in chronic myocardial ischaemia 
after G‑CSF administration (8). Whilst its efficacy in reversing 
mechanical dysfunction in the heart has been observed, the 
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potential benefits in chronic obliterative arterial disease remain 
to be fully investigated. Thus, the present study aimed to inves-
tigate the effects of G‑CSF in a novel rabbit model of chronic 
obliterative arterial disease, which was generated by clamping 
the carotid artery using a surgical ameroid constrictor. These 
results were compared with those of an established porcine 
model of ischamic heart disease generated by clamping of the 
left coronary artery also using this constrictor.

Materials and methods

Animal model 1. A novel rabbit model of chronic obliterative arte-
rial disease was produced by clamping the right carotid artery 
using an ameroid constrictor. The current study was approved 
by the Animal Welfare Ethics Committee of the Tongji Hospital 
of Tongji University. A total of 36 New Zealand rabbits were 
used (male, six months old male weight 2‑3 kg; SPF grade Ivl; 
Experimental Animal Centre, Tongji Hospital). The animals 
were housed at 22±1˚C and 50‑60% relative humidity with a 
12‑h light/dark cycle. They were divided into 2 groups, with one 
group being fed a high fat diet for two months to induce athero-
sclerosis (AS), whereas the other group was fed a normal fat 
diet, acting as the control group (CON). Each group was further 
subdivided into three groups: Sham group (carotid arteries surgi-
cally exposed but no ameroid constrictors were applied; SHAM), 
ameroid constrictor group receiving hypodermic saline (0.5 ml 
daily for 5 days; NS) and ameroid constrictor group receiving 
G‑CSF (15 µg.kg‑1 daily; Shanghai 3D Biotechnology Co., Ltd.). 
The 6 groups were therefore: AS‑SHAM, AS‑NS, AS‑G‑CSF; 
CON‑SHAM, CON‑NS and CON‑G‑CSF.

Ultrasound studies of the carotid arteries. The following 
parameters were measured using Doppler ultrasound Vevo770 
Imaging system (VisualSonics, Inc., Toronto, ON, Canada) at 
four different time points (prior to surgery and 3, 5 or 7 weeks 
after surgery): Peak systolic flow velocity, resistance index 
and the end‑diastolic velocity. Stenosis rate was calculated 
by (difference in diameters between left and right carotid 
arteries)/(left carotid artery).

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). RNA was extracted and purified from 
the proximal portion of the right carotid artery using TRIzol 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA). Quantification was achieved using a spectropho-
tometer. A total of 2 µg RNA was used as a template for 
a RT‑qPCR with random hexamers (Toyobo Life Science, 
Osaka, Japan) as primers. Then, 10 µl cDNA was purified 
with an additional ethanol washing step. Levels of mRNA 
were quantified by RT‑qPCR using a Rotor‑Gene 2000 
machine (Corbett Research, Mortlake, Australia). The results 
were presented as gene copy numbers relative to GAPDH. 
The primers were used as follows: Endothelin 1 (ET‑1), 
upstream, 5'‑CTC​TCT​GCT​GTT​GGT​GGC​TTT‑3' and down-
stream 5'‑TGG​GTT​TTC​CGC​TCC​TGT‑3'; endothelial nitric 
oxide synthase (eNOS), upstream 5'‑AGG​CCT​CCT​GTG​
AGA​CTT​TC‑3' and downstream 5'‑AAG​GAG​TCG​AGG​
ACT​GGA​TG‑3'; GAPDH, upstream 5'‑CCA​CTT​TGT​GAA​
GCT​CAT​TTC​CT‑3' and downstream 5'‑TCG​TCC​TCC​TCT​
GGT​GCT​CT‑3'.

Scanning electron microscopy. The appearance of the 
endothelium of the rabbit carotid arteries close to the site of 
ameroid constrictor application was studied using a scanning 
electron microscope (HITACHI‑S520; Hitachi, Tokyo, Japan).

Animal model 2. A well‑established porcine model of chronic 
ischemic heart disease was also used in the present study, 
which involved clamping the left coronary artery using an 
ameroid constrictor. A total of 24 pigs (male, 1 year old, weight 
~40 kg; Beijing University of Agriculture, China) The animals 
were housed in a cage with straw at 22±1˚C and 50‑60% rela-
tive humidity with a 12‑h light/dark cycle and water and food 
ad libitum. They were equally divided into four groups, receiving 
normal saline 0.5 ml (control), G‑CSF 2.5 µg.kg‑1.day‑1 (low dose), 
5 µg.kg‑1.day‑1 (medium dose) and 10 µg.kg‑1.day‑1 (high dose) for 
5 days. G‑CSF was diluted using normal saline.

Histology and immunohistochemistry. In the porcine model, 
the proximal portion of occluded coronary arteries were 
obtained four weeks after the operation, which allowed effects 
of G‑CSF on histology to be determined. Hematoxylin and 
eosin (H&E) staining was used to examine angiogenesis and 

Figure 1. Pulse‑wave Doppler ultrasound flow (A) before, (B) 3 weeks and 
(C) 5 weeks following ameroid constrictor placement around right common 
carotid artery. Pre‑surgery, the peak blood flow velocity of right common 
carotid artery) was evident, however, the peak flow velocity was markedly 
reduced at 3 weeks after the operation, and was not observed at 5 weeks.
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quantified using a Leica Qwin V3 imaging system (Leica 
Microsystems GmbH, Wetzlar, Germany). Mallory stain was 
used to study collagen content. Immunohistochemical staining 
were used to examine vascular endothelial growth factor 
(VEGF) and tumor necrosis factor (TNF)‑α, which reflected 
angiogenesis and inflammation, respectively.

Statistical analysis. All data were presented as mean ± stan-
dard error. Fisher's exact test was used as appropriate using 
SPSS (version 11.5; SPSS, Inc., Chicago, IL, USA). P<0.05 was 
considered to indicate a statistically significant difference.

Results

Carotid artery in rabbit model
Ultrasound assessment of the occluded right carotid artery. 
Ultrasound was used for assessing the functional status of the 
right carotid artery of rabbit hearts. Firstly, B‑mode ultraso-
nography was used to determine real‑time information on 
the lumen and vessel wall (9,10). Secondly, Doppler imaging 
was used to determine flow parameters (Fig. 1). Three weeks 
after the operation, the right carotid artery developed stenosis 
(Table I). Five weeks later, total occlusion was observed in all 
groups at different rates (Table II).

Assessment of endothelial function using RT‑qPCR. RNA 
was extracted from the proximal portion of the right carotid 
arteries in the different groups (Fig. 2). Expression indices of 

endothelial nitric oxide synthase (eNOS) in the AS‑SHAM 
and CON‑SHAM groups were 0.85±0.11 and 0.91±0.12, 
respectively. They were increased to 2±0.206 and 1.89±0.33 
for the AS‑NS and CON‑NS groups. However, these values 
were not significantly different from the values in the pres-
ence of G‑CSF (2.14±0.30 and 1.94±0.32 for AS‑G‑CSF and 
CON‑G‑CSF). The expression levels of ET‑1 were 1.3±0.17 
and 1.5±0.25 (AS‑SHAM and CON‑SHAM), 0.65±0.08 and 
0.67±0.09 (AS‑NS and CON‑NS) and 0.57±0.05 and 0.59±0.05 
(AS‑G‑CSF and CON‑G‑CSF). There were no significant 
difference between the groups treated with normal saline 
compared with those treated with G‑CSF.

Assessment of endothelial morphology using scanning elec‑
tron microscopy. The morphology of endothelial cells of the 
proximal carotid artery were assessed using scanning elec-
tron microscopy (Fig. 3). In the AS‑SHAM and CON‑SHAM 
groups, endothelial cells took on an oval shape, which was 
due to linear blood flow within the artery. When compared 
with the CON‑SHAM group, the AS‑SHAM group, the 
endarterium developed a rougher morphology with a smaller 
number of endothelial cells, and had a more shrunken image 
with tiny lipid droplets. With application of the ameroid 
constrictor, this morphology was changed to one of round-
ness due to the turbulent flow distal to the site of occlusion. 
Such a change was more prominent in the AS‑SHAM 
than CON‑SHAM group. The number of endothelial cells 
increased after G‑CSF injections.

Table I. Doppler flow parameters after 3 weeks.

Sample	 Group	A S‑SHAM	A S‑NS	A S‑G‑CSF	CON‑ SHAM	CON‑N S	CON‑ G‑CSF

Opposite	D  (cm)	 2.01±0.13	 2.00±0.095	 2.0±0.09	 1.82±0.16	 1.91±0.11	 1.76±0.05
	 Vmax (cm/s)	 34.11±3.21	 42.65±2.08	 44.23±2.80	 42.70±3.66	 45.52±4.95	 43.47±4.24
	ED V (cm/s)	 11.25±1.34	 17.48±1.27	 13.47±1.10	 18.99±2.23	 19.13±2.50	 14.34±1.37
	RI	  0.67±0.18	 0.59±0.20	 0.78±0.17a	 0.55±0.26	 0.58±0.25	 0.66±0.03b

Proximal	D  (cm)	 1.80±0.11	 1.53±0.12	 1.33±0.14	 1.81±0.12	 1.81±0.14	 1.64±0.23
	 Vmax (cm/s)	 33.63±3.57	 28.31±3.89	 25.28±7.02	 45.00±6.76	 54.32±5.44c	 33.75±9.85b

	ED V (cm/s)	 12.44±1.80	 11.6±1.89	 9.89±2.91	 19.00±3.47	 19.44±1.77d	 12.28±3.69
	RI	  0.62±0.21	 0.64±0.05	 0.66±0.05	 0.57±0.17	 0.81±0.05d	 0.75±0.06
	 Stenosis rate (%)	 0	 33.24±0.06	 49.51±0.13	 0	 8.55±0.04d	 42.13±0.10a

aP<0.01 and bP<0.05 G‑CSF vs. control; cP<0.01 and dP<0.05, VS between atherosclerosis or none. D, diameter; Vmax, maximum velocity; 
EDV, end diastolic velocity; RI, resistance index; AS atherosclerosis; NS, ameroid constrictor group receiving saline; G‑CSF, granulocyte 
colony‑stimulating factor; CON, control.

Table II. Frequency of complete obliteration among the groups after 5 and 7 weeks.

Group	A S‑SHAM	A S‑NS	A S‑G‑CSF	CON‑ SHAM	CON‑N S	CON‑ G‑CSF

Week 5	 0	 2	 5a	 0	 1	 2
Week 7	 0	 4a	 6b	 0	 3	 5a

aP<0.05 and bP<0.01 vs. sham operation group. AS, atherosclerosis; NS, ameroid constrictor group receiving saline; G‑CSF, granulocyte 
colony‑stimulating factor; CON, control.
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Left coronary artery in swine model
Histological studies to determine effects of varying dosages 
of G‑CSF. Four weeks after the operation, histological 
studies exhibited intimal proliferation together with eccen-
tric narrowing in the left coronary arteries (Fig. 4). H&E 
staining indicated varying degrees of intimal hyperplasia in 
the different groups. Intimal hyperplasia was more severe 

in the low and high dose G‑CSF groups compared with the 
control group, whereas it was less severe in the medium dose 
group compared with the control (Fig. 5). The areas of tunica 
intima and vessel lumen were analyzed using Leica Qwin Plus 
Graphic Processing System, which allowed proliferation area 
to be calculated (Fig. 6).

Mallory's trichrome staining of the proximal coronary 
artery indicated significantly smaller amounts of collagen in 
the medium and high dose groups compared with the control 
group. However, there was no significant difference between 
the low dose and control group (Fig. 7).

Effects on VEGF and TNF‑a. In order to examine the role 
of angiogenesis and inflammation, immunohistochemistry 
was used to determine the expression of VEGF and TNF‑α. 
G‑CSF exerted a dose‑dependent effect on VEGF and 
TNF‑ α, increasing them both at increasing concentrations 
(Fig. 8).

Discussion

G‑CSF has exhibited some efficacy in reversing mechanical 
dysfunction in chronic ischaemic heart disease and following 
MI. A previous studies demonstrated its safety in humans, 
however results regarding its therapeutic effects remain 
conflicting  (10). A previous study failed to demonstrate 
improvement in ventricular function post MI using G‑CSF 

Figure 4. The proximal endangium near the constrictor (hematoxylin and 
eosin stain; magnification, x40).

Figure 3. Endothelial cells under scanning electron microscopy. AS, athero-
sclerosis; NS, ameroid constrictor group receiving saline; Con, control; 
G‑CSF, granulocyte colony‑stimulating factor.

Figure 2. G‑CSF administration did not result in a significant difference in 
eNOS and ET‑1 gene expression. The proximal carotid near the constrictor 
or the same site was harvested for reverse transcription‑quantitative poly-
merase chain reaction analysis from the rabbits for all groups studied. In 
addition, no changes after high fat diet administration were observed (n=6 
per group). G‑CSF, granulocyte colony‑stimulating factor; eNOS, endothelial 
nitric oxide synthase; ET‑1, endothelin 1; AS, atherosclerosis; NS, ameroid 
constrictor group receiving saline; Con, control.
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Figure 5. Intimal hyperplasia in different G‑CSF treatment groups. (A) Control group (NS 0.5 ml/kg/day), (B) the low dosage group (G‑CSF 2.5 mg/kg/day), 
(C) medium dosage group (G‑CSF 5 mg/kg/day) and (D) high dosage group (G‑CSF 10 mg/kg/day) (hematoxylin and eosin stain; magnification, x40). G‑CSF, 
granulocyte colony‑stimulating factor; NS, ameroid constrictor group receiving saline; Con, control.

Figure 6. Local endarterium of the proximal artery near the constrictor. (A) Control group (NS 0.5 ml/kg/day), (B) the low dosage group (G‑CSF 2.5 mg/kg/day), 
(C) medium dosage group (G‑CSF 5 mg/kg/day) and (D) high dosage group (G‑CSF 10 mg/kg/day); hematoxylin and eosin stain; magnification, x40; NS, 
ameroid constrictor group receiving saline; G‑CSF, granulocyte colony‑stimulating factor; Con, control.
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when compared with the control group (11), in contrast to other 
studies in which improved left ventricular systolic function was 
observed (4,5). However, G‑CSF was demonstrated to reduce 
the migratory capacity of bone marrow‑derived progenitor 
cells into the ischaemic myocardium (7). In addition, patients 
suffering from coronary artery disease responded to G‑CSF 
by exhibiting increased numbers of endothelial progenitor 
cells (EPCs) and higher expression of the chemokine receptor 
CXCR4, which directed EPCs to ischaemic tissue  (12). 
However, increased mobilization did not equate to reversal of 
damage, no significant improvement in wall motion, perfu-
sion or exercise duration after G‑CSF use was observed (13). 
However, intra‑coronary infusion of G‑CSF did mobilize 

peripheral blood stem cells and improved ejection fraction 
in patients with acute MI although not in those with chronic 
(≥6±1.2 months) MI (14).

The mechanism of action of G‑CSF remains to be fully 
elucidated. Different animal models have been useful for model-
ling the molecular mechanisms of human diseases ADDIN 
EN.CITE (15‑35), resulting in translational insights (36‑41). 
Mice and rats have been used because of their amenability to 
genetic modification, as demonstrated by the study of ion channel 
mutations on cardiovascular physiology (42‑44). The effects of 
increased oxidative stress on endothelial function have been 
studied in diabetic mice and spontaneously hypertensive rats, 
modelling human cardio‑metabolic disorders (45‑57). Larger 

Figure 7. The pathology of different dosage groups. (A) Control group (NS 0.5 ml/kg/day), (B) the low dosage group (G‑CSF 2.5 mg/kg/day), (C) medium dosage 
group (G‑CSF 5 mg/kg/day) and (D) high dosage group (G‑CSF 10 mg/kg/day); (A‑C) hematoxylin and eosin and (D) Mallory's trichrome staining; magnification, 
x400. Quantification is presented in (E). NS, ameroid constrictor group receiving saline; G‑CSF, granulocyte colony‑stimulating factor; Con, control.
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animals such as guinea pigs and pigs have haemodynamic 
parameters more similar to humans, and are therefore useful 
for studying flow properties, however it remains a challenge to 
study using methods involving large machines, such as cardiac 
magnetic resonance imaging (34,35). In a rat model, inhibition 
of neointimal formation and increased re‑endothelialisation 
of injured arteries has been observed, potentially via a direct 
effect on the heart and the arteries (58). In the current study, two 
animal models were employed by applying ameroid surgical 
constrictors to the right carotid artery of rabbits or to the left 
coronary artery of pigs.

In the rabbit model, a high fat diet led to the development 
of atherosclerosis, a chronic inflammatory disease  (59). 
The number of endothelial cells increased after G‑CSF 
injection at a dose of 15 µg/kg/day as demonstrated using 
scanning electron microscopy. However, there was no 
change in endothelial function assessed using RT‑qPCR for 
the endothelial markers endothelial nitric oxide synthase 
and ET‑1. Whether or not G‑CSF is protective in athero-
sclerosis remains controversial. At a dose of 10 µg/kg/day, 
G‑CSF has been demonstrated to worsen atherosclerosis in 
apolipoprotein E‑deficient mice (60), however by contrast, 
at a high dose of 100 µg/kg/day, it prevented progression 
of atherosclerosis in heritable hyperlipidemic rabbits and 
following vascular injury induced by angioplasty balloon 
in rabbits (61). In an iliac artery injury model of rabbits, 
G‑CSF at a dose of 70 µg/day mobilized vascular progenitor 
cells, which induced neointimal overgrowth at the stented 
vessels and enhanced endothelial healing was observed 
when drug‑eluting stent was used when compared with a 
bare metal stent (62). In a rat model, G‑CSF increased the 
number of mononuclear cells in the circulation, increased 

endothelial adhesion markers and re‑endothelialization of 
the denuded vessels, which resulted in parallel reductions 
in inflammation in the vessel wall (63).

The present study in porcine hearts observed increasing 
intimal hyperplasia after low (2.5  µg/kg/day) or high 
(10 µg/kg/day) doses of G‑CSF. Furthermore, the mobiliza-
tion of bone marrow‑derived progenitor cells using G‑CSF 
resulted in increased endothelial expressions of VEGF and 
TNF‑α, markers of angiogenesis and inflammation, respec-
tively, as assessed using immunohistochemistry and western 
blot analysis. G‑CSF has pleotropic effects, and is capable of 
inducing hyperplasia, angiogenesis and inflammation (62). 
Whether it is beneficial or harmful depends on the relative 
contributions to the above processes. In the present study, 
intimal hyperplasia was increased in chronic obliterative 
arterial disease, in contrast to observations in humans where 
G‑CSF was demonstrated to be effective in acute as opposed 
to chronic (≥6±1.2 months ± 1.2) MI (14). Other beneficial 
effects of G‑CSF have been reported in rats, where a neuro-
protective role was demonstrated in transient middle cerebral 
artery occlusion (64). However, G‑CSF can be ineffective or 
potentially harmful. For example, experiments in a swine 
model of ischaemia‑reperfusion injury indicated that G‑CSF 
accelerated angiogenesis, reduced fibrosis however did not 
improve either ejection fraction or end‑diastolic volume (65). 
Furthermore, intramyocardial VEGF gene transfer followed 
by bone marrow stem cell mobilization using G‑CSF was safe 
however did not significantly improve myocardial perfusion 
as assessed by single photon emission computerized tomog-
raphy (66). G‑CSF aggravated in‑stent re‑stensosis, which was 
partly dependent on VEGF and STAT‑3, although this may be 
reduced by using a sirolimus drug‑eluting stent (67).

Figure 8. VEGF in the (A) low dosage group (G‑CSF 2.5 mg/kg/day), (B) medium dosage group (G‑CSF 5 mg/kg/day) and (C) high dosage group (G‑CSF 
10 mg/kg/day). TNF‑α in the (D) low dosage group (G‑CSF 2.5 mg/kg/day), (E) medium dosage group (G‑CSF 5 mg/kg/day) and (F) high dosage group (G‑CSF 
10 mg/kg/day). Immunohistochemistry images, magnification x1,000). VEGF, vascular endothelial growth factor; G‑CSF, granulocyte colony‑stimulating 
factor; TNF‑α, tumor necrosis factor α; Con, control.
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In conclusion, the present study identified that: i) G‑CSF 
did not alter endothelial function in the carotid artery of a 
rabbit model of atherosclerosis; ii) its effects on chronic isch-
aemic heart disease in pigs are dose‑dependent, worsening 
intimal hyperplasia when used at a low or high dose, however 
improving it at a medium dose. Therefore, its therapeutic role 
warrants further attention.
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