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mRNA regulation network in rats with middle cerebral
artery occlusion based on RNA sequencing
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Abstract. Long non-coding RNAs (IncRNAs) have been
proven to be critical gene regulators of development and
disease. The main aim of the present study was to elucidate
the IncRNA-mRNA regulation network in ischemic stroke
induced by middle cerebral artery occlusion (MCAO) using
RNA sequencing (RNA-seq) in rats. IncRNA expression
profiles were screened in brain tissues to identify a number
of differentially expressed IncRNAs (DELs) and genes
(DEGs) by RNA-seq. Reverse transcription-quantitative poly-
merase chain reaction was performed to further confirm the
IncRNA expression data. Furthermore, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were used to mine mRNA functions, and
a IncRNA-mRNA network was constructed. Additionally,
cis- and trans-regulatory gene analyses of DELs were
predicted. A total of 134 DELSs (fold change >2, false discovery
rate <0.05) and 1,006 DEGs (fold change >2 and P<0.05) were
identified. Eighteen IncRNAs were predicted to regulate heme
oxygenase 1, mitotic checkpoint serine/threonine kinase B,
chemokine ligand 2 and DNA Topoisomerase Ila, amongst
other genes. These genes are all associated with a cellular
response to inorganic substances, alkaloids, estradiol, reactive
oxygen species, metal ions, oxidative stress, and are associ-
ated with metabolic pathways, chemokine signaling pathways,
malaria, Parkinson's disease, the cell cycle and other GO and
KEGG pathway enrichments. The present study identifies
novel DELs and an IncRNA-mRNA regulatory network that
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may allow for an improved understanding of the molecular
mechanism of ischemic stroke induced by MCAO.

Introduction

Stroke, universally acknowledged as a cerebrovascular acci-
dent, may result in lasting brain damage, long-term disability
or even mortality (1,2). A multitude of biological processes
are implicated in ischemic stroke, including oxygen depri-
vation, neuronal necrosis and an intense inflammatory
response (3,4). MicroRNAs (miRNAs), long non-coding
RNAs (IncRNAs) and even circular RNAs (circRNAs)
contribute to RNA-mediated networks (5-8) that regulate
notable cellular events through a variety of complicated
mechanisms (9,10). These networks have been implicated
in ischemic stroke in previous studies (5-10); however, there
remain gaps in current knowledge in this regard, and novel
ncRNAs need be mined in order to provide a better under-
standing of the precise molecular mechanisms involved in
ischemic stroke.

IncRNAs have been proven to be critical gene regulators of
development and disease (11-13). IncRNAs may also perform
functions through competitively binding to miRNAs known as
competitive endogenous RNAs (14). Washietl ez al (15) system-
atically analyzed the conservatism of human IncRNA and
other six mammalian IncRNA and identified that ~54% human
IncRNA loci may be mapped to that of a rat. A previous study
has demonstrated that significantly differentially expressed
IncRNAs (DELs) may contribute to the stabilization of mRNA
expressions in stroke (7). Stroke-induced IncRNAs may also
interact with chromatin-modifying proteins and modulate genes
associated with ischemic brain damage (16,17). Furthermore,
IncRNA BC088414 was revealed to be involved with
apoptosis-associated genes following hypoxic-ischemic brain
damage (8). Similarly, another study suggested that IncRNA
C2datl may modulate calcium/calmodulin-dependent protein
kinase II expression to promote neuronal survival following
cerebral ischemia (10). Although a host of IncRNAs have
been identified by massive parallel sequencing, to date, little
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is known on functional RNA molecules and RNA-mediated
regulation networks in ischemic stroke.

The main aim of the present study is to elucidate the
IncRNA-mRNA regulation networks in ischemic stroke
induced by middle cerebral artery occlusion (MCAO) using
RNA sequencing (RNA-seq) in rats.

Materials and methods

MCAO model and tissue preparation. A focal cerebral
ischemia model induced by MCAO, prepared as previously
described (18), was prepared using 20 7-week-old male
Sprague-Dawley rats of a specific pathogen-free grade
(weighing 200420 g), purchased from the experimental animal
center of Anhui Medical University (Anhui, China). The study
protocol was ethically approved by the Committee on the
Ethics of Animal Experiments of Anhui University of Chinese
Medicine (approval no. 2012AH-036-03). In brief, the animals
were fasted overnight but allowed ad libitum access to water.
They were then anesthetized with chloral hydrate (350 mg/kg,
intraperitoneal injection). A 4-0 silicon-coated monofilament
nylon suture with a round tip was inserted through an arteri-
ectomy in the common carotid artery just below the carotid
bifurcation and then advanced into the internal carotid artery
~18 mm distal to the carotid bifurcation until a mild resistance
was felt. Following 2 h of MCAO, the filament was removed to
allow reperfusion. As a control, control-operated rats under-
went identical surgery but did not have the suture inserted.
Four days subsequent to MCAO, the left hemispheres were
collected and immediately frozen in liquid nitrogen.

RNA-seq. RNA-seq was performed by Ao-Ji Bio-Tech
(Shanghai, China). Briefly, total RNA was extracted using an
RNeasy Mini kit (Qiagen GmbH, Hilden, Germany), according
to the manufacturer's protocol. The RNA quality control was
performed using Nanodrop 2000 and Agilent 2100, and mainly
depended on the concentration, purity and integrity of the
RNA. Ribosomal RNA was removed from total RNA using
Ribo-Zero rRNA removal beads (Illumina, Inc., San Diego,
CA, USA). Libraries were constructed according to the
standard TruSeq protocol (19). Purified cDNA libraries were
prepared for cluster generation and sequencing on an [llumina
HiSeq 2500 (Illumina, Inc.) according to the manufacturer's
protocol. Subsequently, data analyses were performed in silico.

IncRNA annotation. Quality control of the RNA-Seq reads was
conducted using FastQC (v0.11.3) (The Babraham Institute,
Cambridge, UK). Reads were trimmed using the software
seqtk (github.com/lh3/seqtk) for known Illumina TruSeq
adapter sequences, poor reads and ribosome RNA reads.
Trimmed reads were aligned to the rat genome (Rn6) using
Hisat2 (version 2.0.4) (20). Transcripts were assembled using
Stringtie (v1.3.0) (20,21). Transcripts constructed from Stringtie
were compiled together by gffcompare (v0.9.8) (20,21).
Transcripts detected in at least five samples (half of the
total number) were considered to be bona fide transcripts.
Transcripts, with the exception of those with just one exon
and shorter than 200 base pairs, were further analyzed for the
identification of IncRNAs. Transcripts with class codes ‘i, ‘u,
and ‘x,” were considered to be potential novel long transcripts.
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Pfam (22), Coding Potential Calculator (CPC) (23) and
Coding-Non-Coding Index (CNCI) (24) were used to estimate
the coding potential of each novel transcript. Transcripts with a
Pfam score <0, CNCI <0 and CPC non-significant were consid-
ered to lack coding potential. Transcripts were compared with
annotation databases, including NONCODE (v4) (http:/www.
noncode.org) and Ensembl (25). The matched transcripts were
considered to be known IncRNAs, and others were considered
to be novel IncRNAs. All IncRNAs were quantified using
Stringtie. According to the positional association between
IncRNA and mRNA in the genome, IncRNA may be classified
into six types: Bidirectional, exonic_antisense, exonic_sense,
intergenic, intronic_antisense and intronic_sense (26).

The IncRNA-mRNA coexpression network. Initially, the DELs
and differentially expressed genes (DEGs) were analyzed
using EdgeR (27). For DEGs, log2l [fold change (FC)] I>1
and P<0.05 were used as the cutoff values. Meanwhile,
log2! (FC) I>1 and false discovery rate (FDR) <0.05 were used
as the threshold for DELs. Hierarchical clustering of DELs
was performed based on mean signals using a Euclidean
distance function. In addition, a volcano plot was generated.
The Pearson's correlation coefficient (PCC) between IncRNAs
and mRNAs was calculated (cutoff value, PCC>0.9, P<0.05)
and the IncRNA-mRNA regulatory network was structured
using Cytoscape 2.8.3 (28).

Prediction of target genes and enrichment analysis. cis- or
trans-acting algorithms were used to predict the potential
targets of IncRNAs. The first algorithm predicted potential
target genes of cis-acting IncRNAs that were physically
located within 10 kb upstream or 20 kb downstream of
IncRNAs using liftOver genome browser (genome.ucsc.
edu/cgi-bin/hgLiftOver). The second algorithm predicted
potential target genes of trans-acting IncRNAs based on the
IncRNA-mRNA complementary sequences, and predicted
IncRNA-mRNA duplex energy. First, BLASTN (29) was
performed to detect potential target mRNA sequences
with >95% identity and E value <1x107 (https:/blast.ncbi.nlm.
nih.gov/Blast.cgi). Then, RNAplex (30) was used to calculate
the complementary energy between IncRNAs and their poten-
tial frans-regulated target genes with RNAplex-10-°. Gene
Ontology (GO) (31) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (32) enrichment analyses of the identified
potential target genes were performed using the Database for
Annotation, Visualization and Integrated Discovery (33); and
P<0.05 was considered to indicate a statistically significant
difference.

Reverse transcription-quantitative polymerase chain reaction
(RT-gPCR). Total RNA was extracted from left hemisphere
samples using TRIzol® reagent (Invitrogen; Thermo Fisher
Scientific, Inc., Waltham, MA, USA) and reverse-transcribed
using a Thermo Fisher Scientific RevertAid First Strand cDNA
Synthesis kit (cat. no. K1622; Thermo Fisher Scientific, Inc.)
according to the manufacturer's protocol at 42°C for 60 min.
To further confirm the expression data from RNA-seq, a
cutoff value (FC>2, P<0.05) was randomly selected for gPCR
verification. The expression levels of six randomly DELs
(NONRATTO027551.2, MSTRG.1836.1, MSTRG.4344.10,
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Table I. Primer sequences.
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Polymerase chain reaction product

Gene Sequence length (base pairs)
GAPDH F: 5-CCTGGTATGACAACGAATTTG-3' 131

R: 5'-CAGTGAGGGTCTCTCTCTTCC-3'
NONRATTO027551.2 F: 5'- GGACCTGGAAGGTGAACAGG-3' 118

R: 5'-TGAATGGGTGACCAACAGGG-3'
MSTRG.1836.1 F: 5'-CCATTGTCCTTCCATCCCCC-3' 85

R: 5-CCACCCTACCAAACTTCCCC-3'
MSTRG .4344.10 F: 5'-GACTTAGGCACAGTGGGTGG-3' 119

R: 5'-ATGGCAGAGAGCGAATGGAG-3'
MSTRG.7720.11 F: 5-TCCCTAGAGCAGTCCTCACC-3' 97

R: 5'- ATCTCGGGTTCGCCTTTTGT-3'
NONRATTO005132.2 F: 5'-CCTGACTATGGCACGTCCTC-3' 152

R: 5-CTGAGTCCAGTGTGCCTGTT-3'
MSTRG.20633.3 F: 5'-CTTTCACTCCGAGAACCCCC-3' 117

R: 5'-GCAAGCAGGTTGGTTCCTTG-3'
F, forward; R, reverse.
Table II. Results of the RNA sequencing.
Sample ID Raw reads Clean reads Clean ratio (%) rRNA trimmed Mapped reads Mapped ratio
MCAO 1 155190870 147282901 94.90 147214274 131290423 0.824026529
MCAO 2 144450130 136930064 94.79 136768708 120311195 0.812346697
MCAO 3 151411986 142862439 94.35 142724911 125540743 0.804354762
Control 1 169303916 160544960 94.83 160466568 142289885 0.819832697
Control 2 136533930 129672892 94 .97 129609605 116072061 0.828973282
Control 3 124878376 118432971 94 .84 118349299 105506286 0.821661742

MCAO, middle cerebral artery occlusion.

MSTRG.7720.11, NONRATTO005132.2 and MSTRG.20633.3)
were assayed using a SYBRGreen flurophore (Applied
Biosystems; Thermo Fisher Scientific, Inc.) using the PikoReal
real-time PCR system (Thermo Fisher Scientific, Inc.) under
the following conditions: Initial denaturation at 95°C for
30 sec, followed by 40 cycles at 95°C for 30 sec and 60°C for
30 sec, and a final extension step at 4°C for 20 min. FC was
determined using the 2224 method (34). GAPDH mRNA
was used as an internal control. The primers used are listed
in Table I.

Statistical analysis. The comparisons between the MCAO
group and the control group were determined using a Student's
t-test for the RT-qPCR results by SPSS 22.0 statistical soft-
ware (IBM Corp., Armonk, NY, USA). P<0.05 was considered
to indicate a statistically significant difference. The PCC
between IncRNAs and mRNAs was calculated using the
Hmisc package in R based on the expression determined
using RNA-seq (PCC>0.9, P<0.05). The correlation analysis

between the RT-qPCR results and RNA-seq results was calcu-
lated in Excel 2013 (Microsoft Corporation, Redmond, WA,
USA) with the function of CORR.

Results

IncRNA-sequencing data analysis. The present study charac-
terized the IncRNA landscape and expression by performing
deep RNA-seq experiments on three control and three MCAO
tissue samples. Subsequent to the seqtk quality assessment of
sequencing, >33 million total original reads for each sample
were obtained, and the proportion of bases with quality values
>20 was >94%. These results indicated that the quality of the
sequencing results was acceptable (Table II). Subsequent to
filtering out the adaptor sequence and low quality reads, the
percentage of clean reads within the raw reads accounted for
94% of the total sequences in two groups. Hisat2 software was
used to map the obtained clean reads to the Rattus norvegicus
reference genome. As presented in Table II, ~97% of the
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Figure 1. Class type and chromosome distribution of IncRNAs identified in the control and MCAO group. (A) Venn diagram of IncRNA in the control
and MCAO groups. (B) According to the positional association between IncRNA and mRNA in the genome, IncRNAs may be classified into six types:
Bidirectional, exonic antisense, exonic sense, intergenic, intronic antisense and intronic sense. (C) Number of IncRNAs on each chromosome in the MCAO
and control groups. MCAO, Middle cerebral artery occlusion; IncRNA, long noncoding RNA.

trimmed reads were mapped onto the reference genome. In
total, 24,304 IncRNAs were screened from six samples, and
there were 23,255 shared IncRNAs detected in the MCAO
and control groups (Fig. 1A). The majority of the identified
IncRNAs were transcribed from protein-coding exons; others
were from introns and intergenic regions (Fig. 1B). In addition,
the present study analyzed the distribution of the identified
IncRNAs on the rat chromosomes; 24,304 IncRNA transcripts
were identified in all chromosomes, and chromosome 1
included the most IncRNAs (Fig. 1C).

Identification of DEGs and DELs. EdgeR was used to filter
DEGs and DELs and differentiate their expression between
the control and MCAO groups. A total of 1,007 DEGs
(IFCI>2, P<0.05) were identified, including 785 upregulated
genes and 222 downregulated genes. Similarly, as presented
in Fig. 2, 134 DELs (IFCI>2, FDR<0.05) were identified in

the MCAO group (Fig. 2A and B), including 77 upregu-
lated and 57 downregulated DELs (Fig. 2C and D). In the
present study, it was revealed that the FC values of certain
DELs were equal to positive infinity and negative infinity,
meaning that these IncRNAs are switched-on or off with
MCAO. Essentially, positive or negative infinity indi-
cates zero expression of the IncRNA in normal or MCAO
groups. It was speculated that this may be associated with
the abundance of IncRNAs and the sensitivity to RNA-seq.
The top five upregulated DELs were NONRATTO027551.2,
MSTRG.1836.1, MSTRG.4344.10, NONRATT028102.2 and
MSTRG.31500.2; the top five downregulated DELs were
MSTRG.7720.11, NONRATT005132.2, MSTRG.20633.3,
NONRATT020232.2 and MSTRG.1836.3.

IncRNA-mRNA network. The cutoff correlation r-values
(IPCCI>0.9) and P-values (P<0.05) were selected to structure
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Figure 2. RNA-seq data on the differentially expressed IncRNAs between the model and control groups. (A) Hierarchical cluster of DELs between the MCAO
and control groups. The color code in each heat map is linear, with green indicating the least and red indicating the greatest differentiation. The mean signals of
the altered IncRNAs in each of the two groups were clustered using a Euclidean distance function. The IncRNAs with the most similar expression patterns were
placed next to each other (n=3 per group). (B) A volcano plot of the RNA-seq FC and P-value of MCAO group compared with the control group. Blue and red
points stand for DELs. Gray points represent IncRNAs which are not differentially expressed. (C) Upregulated and (D) downregulated DELSs as exhibited in the
red and blue boxes, respectively, represent the results. MCAO, Middle cerebral artery occlusion; IncRNA, long noncoding RNA; RNA-seq, RNA sequencing;

FC, fold change; DEL, differentially expressed IncRNAs.

a IncRNA-mRNA co-expression network between DEGs
and DELs. As Fig. 3 presents, 46 DEGs, 104 DELs and
664 edges were filtered out using Cytoscape to construct
the co-expression network. The co-expression-associated
top 30 GO terms and pathway terms enrichment analyses
presented in Figs. 4 and 5 suggest that these DELs were
associated with the cellular response to inorganic substances,
alkaloids, estradiols, reactive oxygen species, metal ions and
oxidative stress. In particular, the heme oxygenase 1 (HO-1)
gene participates in many of these functions. A multitude of
pathways were implicated, including metabolic pathways,
chemokine signaling pathways, malaria, Parkinson's disease
and the cell cycle. Notably, the BUBI mitotic checkpoint
serine/threonine kinase B (BUB1B) and C-C motif chemo-
kine ligand 2 (CCL2) genes were associated with the cell
cycle.

Regulatory analysis of DELs. A total of 91 cis-regulatory
genes of 94 DELs, including 55 upregulated IncRNAs in
the MCAO group were identified; 14 of the 91 cis-regu-
latory genes exhibited differential expression. A total
of 13 of the DEL/cis-regulatory gene pairs had positive
correlations as follows: NONRATTO021925.2 (Rho GDP
dissociation inhibitor ), NONRATTO004791.2 (G protein
subunit y transducing 2), NONRATTO015286.2 (peri-
ostin), MSTRG.30235.10 (LRR binding FLII interacting
protein 1), NONRATTO015403.2 (IQ motif containing
GTPase activating protein 3), NONRATT008267.2 (kinesin
family member 14), NONRATT009960.2 (non-SMC
condensin I complex subunit G), NONRATTO011312.2 (retinol
binding protein 3), NONRATTO005985.2 (DNA topoisom-
erase 1la), NONRATT016680.2 (ENSRNOGO00000053081),
NONRATTO013960.2 (galaninreceptor 1), NONRATT016022.2
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Figure 3. An IncRNA-gene-network based on Pearson's correlation coefficient. Pink nodes indicate the upregulated mRNAs or IncRNAs, and green nodes
indicate the downregulated mRNAs or IncRNAs. IncRNA, long noncoding RNA.

(CART prepropeptide) and NONRATT024616.2 (6 like
non-canonical Notch ligand 1) (Table III). Additionally,
90 trans-regulatory genes of IncRNAs were filtered by
BLASTN and RNAplex, with a negative correlation identified
between ENSRNOTO00000092040 and Ccl9 (Table IV).

Validation of expression of DELs by RT-qPCR. From the
data in Fig. 6, NONRATTO027551.2, MSTRG.1836.1 and
MSTRG.4344.10 were identified to be significantly upregu-
lated in the MCAO group compared with the control (P<0.05),
consistent with the RNA-seq data, while MSTRG.7720.11,

NONRATTO005132.2 and MSTRG.20633.3 were significantly
downregulated in the MCAO group compared with the control
(P<0.01), also consistent with the RNA-seq data. These results,
revealing that the RNA-seq results were consistent with the
RT-qPCR results, verified that the RNA-seq results were
reliable (Fig. 6).

Discussion

A host of IncRNAs have been indicated to be involved in
ischemic stroke by microarray or RNA-seq studies (35,36).
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Figure 4. Top 30 significant enrichment of GO terms in the long noncoding RNA-mRNA network. GO, gene ontology; ERK, extracellular regulated kinase.
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W RNA-seq W gPCR

R?=0.9338

MSTRG.4344.10 MSTRG.7720.11 NONRATT005132.2 MSTRG.20633.3

Figure 6. Validation of IncRNA RNA-seq data by RT-qPCR. Fold changes represent the comparison of the MCAO group with the control group. Blue bars indi-
cate the fold change were detected with RNA-seq. “P<0.01 vs. the control group. The orange bars indicate the fold change detected using RT-qPCR. *P<0.05
and %P<0.01 vs. the control group. Comparison of the results obtained from RT-qPCR and RNA-seq revealed satisfactory consistency (R?=0.9338). MCAO,
Middle cerebral artery occlusion; IncRNA, long noncoding RNA; RNA-seq, RNA sequencing; RT-qPCR, reverse transcription-quantitative polymerase chain

reaction.

Metastasis associated lung adenocarcinoma transcript 1
was identified to have a function in ischemic stroke through
inhibiting endothelial cell death and inflammation (36,37).
Additionally, the upregulation of H19 imprinted maternally
expressed transcript may induce apoptosis and necrosis in
cerebral ischemic reperfusion injury (38-40). In the present
study, a total of 77 upregulated and 57 downregulated DELs
(IFCI>2, P<0.05) were identified through reliable RNA-seq and
validated using RT-qPCR in an ischemic stroke group induced
by MCAO compared with a control group.

HO-1-mediated neurogenesis has been demonstrated to
be enhanced in ischemic stroke in mice (41). HO-1 has been
revealed to promote angiogenesis following cerebral isch-
emic reperfusion injury in rats (42). GO enrichment analysis
suggested that HO-1 was associated with responses to alka-
loids, cellular responses to oxidative stress and responses to
reactive oxygen species. BUB1B has been reported to promote
tumor proliferation in glioblastoma (43,44). Similarly, BUB1B
has been implicated in tumor growth and the progression
of prostate cancer (45), and overexpressed BUBIB has been
demonstrated to be involved in lung adenocarcinoma in
humans (46). The KEGG enrichment analysis in the present
study indicated that BUB1B was associated with the cell
cycle. It has previously been reported that upregulated CCL2
is associated with protection from stroke induced by hypoxic
preconditioning (47), and the knockdown of CCL2 was used to
successfully reverse the drug resistance of tumor cells in gastric
cancer (48). In the KEGG enrichment analysis performed
in the present study, CCL2 was additionally associated with
the cell cycle. Furthermore, based on the data presented
in Fig. 3, HO-1, BUBIB and CCL2 may be regulated by a
number of novel IncRNAs, including NONRATT008267.2,
NONRATTO015286.2, NONRATT004791.2, MSTRG.15067.2,
NONRATTO003289.2, NONRATT004566.2, NONRATT
005985.2, NONRATT008198.2, NONRATT028439.2,
NONRATTO026753.2, NONRATT027268.2, MSTR
G.15418.3, NONRATTO016680.2, NONRATTO015403.2,

MSTRG.29693.5, NONRATT009960.2, MSTRG.27670.3
and NONRATTO000377.2. A previous study has suggested
that the knockdown of DNA topoisomerase Ila (Top2a) may
suppress proliferation and invasion of colon cancer cells (49);
based on the present regulatory analysis of DELs, Top2a, as a
cis-regulatory gene of NONRATT005985.2, may have a vital
function in ischemic stroke. Overall, the analyzed data provide
novel DELs and an IncRNA-mRNA regulatory network that
may provide a better understanding of ischemic stroke induced
by MCAO.
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