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Abstract. The aim of the present study was to evaluate the 
long‑term effect of copper nanoparticles (CuNPs) on cyto-
chrome P450 (CYP450) enzymes in the rat brain. Rats were 
repeatedly gavaged with different forms of copper sources 
for 28 days, and the levels of oxidative stress and CYP450 
mRNA and protein expression in the rat brain were subse-
quently analyzed. The results demonstrated that a high dose 
of CuNPs (200 mg/kg) induced severe oxidative stress in the 
rat brain along with a decrease in the levels of total superoxide 
dismutase and glutathione, and an increase in hydroxyl radi-
cals and malondialdehyde. A medium dose of CuNPs reduced 
CYP450 2C11 and CYP450 3A1 protein expression in the rat 
brain, whereas high doses of CuNPs resulted in decreased 
expression of most CYP450 enzyme proteins, and inhibition 
of pregnane X receptor and constitutive androstane receptor 
expression. The results suggested that CuNPs may inhibit 
CYP450 enzyme expression by increasing the levels of oxida-
tive stress and decreasing the expression of nuclear receptors 
in the rat brain, which affects the metabolism of drugs and 
endogenous hormones in the brain.

Introduction

With the rapid development and widespread application of 
nanomaterials, the health impact of nanomaterial exposure has 

attracted increasing attention. Copper nanoparticles (CuNPs) 
have a number of desirable properties, including a large 
surface area, ductility, and excellent optical, electrical, 
catalytic and antimicrobial properties. Therefore, they have 
been widely used in lithium ion batteries (1), lubricant oil, 
ceramics  (2), polymers/plastics, inks, metallics, coatings, 
osteoporosis treatment drugs, drug delivery, intrauterine 
contraceptive devices, and additives to livestock and poultry 
feed (3‑6). However, numerous studies have indicated that the 
gastrointestinal system, liver and kidney are sensitive targets 
of copper toxicity following oral exposure beyond the range of 
biological tolerance (7). The symptoms of copper poisoning 
are drowsiness and anorexia in the early stages, followed by 
disruption of the epithelial lining of the liver, gastrointestinal 
distress, hepatocellular necrosis, hemolysis, jaundice and 
kidney damage (8,9).

Cytochrome P450 (CYP450) enzymes metabolize a 
number of exogenous and endogenous compounds, such as 
antidepressants, opiates, steroids, arachidonic acid, dopamine 
and serotonin (10‑12). These enzymes are abundant in the 
brain, liver and other organs (10‑15). Brain CYP450 content 
is low compared with that in the liver (0.5‑2%), which makes 
it unlikely to affect systemic drug and peripheral metabolite 
levels  (12). However, local brain levels of centrally acting 
compounds and the resulting therapeutic effects may be regu-
lated by brain CYP450‑mediated metabolism independently 
of peripheral metabolism and systemic drug levels. Variable 
brain CYP450 activity has substantial potential impact; effects 
have been demonstrated on behavior, neurotoxicity and drug 
response (16,17). The expression of a specific CYP450 enzyme 
within an organ can increase or decrease substantially in 
response to certain inducers and inhibitors (18,19). A number 
of CYP450 enzymes have tissue‑ and cell type‑specific expres-
sion levels and regulators, and brain tissue expresses a unique 
set of these enzymes (20). For instance, CYP450 2D (CYP2D) 
has been identified in the liver and brain, and is involved in the 
metabolism of numerous centrally acting drugs, but is essen-
tially uninducible in the liver. Brain CYP2D, however, can be 
induced by nicotine and clozapine (21,22).

Most studies of CuNPs explore their hepatotoxicity and 
nephrotoxicity (23,24); whether CuNPs affect the expression 
of brain CYP450 enzymes remains unknown. The present 
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study investigated the effect of CuNPs on CYP450 enzymes in 
the rat brain by measuring the protein and gene expression of 
CYP450 isoenzymes in brain tissue. To identify the changes of 
CYP450s in the neurotoxicity of CuNPs, the effects of CuNPs 
on the levels of oxidative stress and nuclear receptors in the rat 
brain were investigated.

Materials and methods

Materials. The tested CuNPs (cat.  no. H1605061), copper 
microparticles (cat.  no. A 1711069) and copper ions 
(CuCl2·2H2O, cat. no. F1620012) were obtained from Aladdin 
Industrial Co., Ltd. The sizes of the CuNPs and copper 
microparticles were 80 nm and 1 µm, respectively. Western 
blotting and SDS‑PAGE preparation kits were purchased 
from Chengdu Baihe Technology Co., Ltd. Other molecular 
biology reagents were purchased from Bio‑Rad Laboratories, 
Inc. Antibodies were purchased from Abcam. All analytical 
commercial kits were purchased from Nanjing Jiancheng 
Bioengineering Institute.

Particle characterization. The sizes of the CuNPs and copper 
microparticles were confirmed using a Phenom ProX scanning 
electron microscope (Phenom Scientific Instruments Co., Ltd.). 
The CuNPs were dispersed in purified water, shaken and soni-
cated in an ice bath to avoid aggregation. The distribution of 
particle sizes in the suspension was characterized by dynamic 
light scattering studies performed using a Zetasizer Nano ZS 
(Malvern Panalytical, Ltd.) immediately following sonication.

Animals and treatments. A total of 60 specific pathogen‑free 
(SPF) male rats (100‑120 g, 6 weeks old) were purchased 
from Chengdu Dossy Biological Technology Co., Ltd. Male 
rats were chosen as the subjects of the study due to differ-
ences in the expression of CYP450 between female and male 
rats  (25,26). Rats were housed in plastic cages under SPF 
conditions at 25±2˚C and 70±10% relative humidity, under a 
12‑h light/dark cycle. Water and food were provided ad libitum. 
Copper particles were suspended in 1% hydroxypropyl meth-
ylcellulose (HPMC) solution (w/v) (Shanghai Ryon Biological 
Technology Co., Ltd.) every day prior to use. Following 
7 days of acclimatization, rats were randomly divided into 
a control group, which was administered with 1% HPMC, 
and five test groups that were administered with different 
concentrations of copper by gavage for 28 days: i) 200 mg/kg 
1 µm copper; ii) 200 mg/kg CuCl2·2H2O (Cu2+); iii) 50 mg/kg 
CuNPs (low dose); iv) 100 mg/kg CuNPs (medium dose); 
v) 200 mg/kg CuNPs (high dose) (n=10 per group). The study 
was approved by Sichuan Agricultural University (Chengdu, 
China), and the protocols for animal care and treatment were 
in accordance with their guidelines for animal experiments 
(approval no. 20170314). All possible efforts were made to 
relieve unnecessary suffering of the experimental animals.

Sample collection. On day 28 of the experiment, following 
an overnight fast, the rats were anesthetized by gas anesthesia 
with diethyl ether at the rate of 0.2  l/min. Anesthesia was 
confirmed by righting reflex, and the animals were rapidly 
taken out of the anesthesia machine and sacrificed by cervical 
dislocation. Brain tissues were snap‑frozen and stored at ‑80˚C 

for oxidative stress and reverse transcription‑quantitative poly-
merase chain reaction (RT‑qPCR) analyses.

Brain microsomes were used to analyze the protein expres-
sion of the nuclear receptors pregnane X receptor (PXR) and 
constitutive androstane receptor (CAR) and CYP450 enzymes, 
which were prepared by differential centrifugation as previ-
ously described (27). The tissue was homogenized in a 0.05 mM 
Tris/KCl buffer (pH 7.4; Boster Biological Technology), centri-
fuged at 10,000 x g at 4˚C for 30 min, and the supernatant was 
centrifuged at 105,000 x g at 4˚C for 60 min. Subsequently, 
the brain protein settlement was re‑suspended with 0.05 mM 
Tris/KCl buffer (pH 7.4) and stored at ‑80˚C until western blot 
analyses were performed. The protein content in the brain 
microsomes was determined using the Bicinchoninic Acid 
Protein Assay kit (Beyotime Biological Technology Co., Ltd.) 
with the Thermo Scientific™ Multiskan™ GO Microplate 
reader (Thermo Fisher Scientific, Inc.).

Oxidative stress. The levels of total superoxide dismutase 
(T‑SOD), glutathione (GSH), hydroxyl radicals (·OH) and 
malondialdehyde (MDA) in the rat brain were determined to 
evaluate oxidative stress and damage. This was performed 
using commercial assay kits from Nanjing Jiancheng 
Bioengineering Institute, which were: Total Superoxide 
Dismutase  (T‑SOD) assay kit (Hydroxylamine method); 
Malondialdehyde (MDA) assay kit (TBA method); Reduced 
glutathione (GSH) assay kit (Spectrophotometric method); and 
Hydroxyl Free Radical assay kit. All assays were performed 
according to the manufacturer's instructions.

Gene expression. The expression levels of CYP450 1A2, 2D22, 
2E1 and 3A11 in the brain were analyzed using RT‑qPCR as 
previously described (28). Total RNA was extracted using an 
OMGA total RNA kit II (Omega Bio‑Tek, Inc.) and cDNA 
was synthesized using PrimeScript™ RT reagent kit with 
gDNA Eraser (Takara Bio, Inc.). The qPCR was performed 
using iQ SYBR® Premix Ex Taq™ II  (Tli RN aseH  Plus; 
cat. no. RR820A; Takara Bio, Inc.). The qPCR was performed 
under the following conditions: 45 cycles, each involving 
5 sec of denaturation at 95˚C, and 40 sec of amplification at 
60˚C. The housekeeping gene GAPDH was used as an internal 
control. All primers were designed with Primer premier 
v 5.0 software (Premier Biosoft International) and commer-
cially produced (BGI Tech Solutions Co., Ltd.; Table I) based 
on the target gene. Melting curves and PCR efficiency were 
used as standard quality criteria for each qPCR run. The 
target gene mRNA expression was normalized to GAPDH 
expression, and were analyzed using the 2‑ΔΔCq method (29).

Western blot analysis. The protein levels of CYP450 1A1, 
CYP450 2C11, CYP450 2D6, CYP450 3A1, CAR and PXR in 
the brain microsome of rats were estimated using western blot 
analysis as previously described (30,31). Microsomal proteins 
(10 µg) were separated by 10% SDS‑PAGE and transferred 
to PVDF membranes (Pall Corporation). The membranes 
were blocked with skimmed milk (Beijing Solarbio Science 
& Technology Co., Ltd.) and incubated for 12 h at 4˚C with 
primary antibodies against CYP450 1A1 (cat. no. ab22717; 
1:1,000; Abcam), CYP450 2C11 (cat. no.  ab3571; 1:1,000; 
Abcam), CYP450  2D6 (cat.  no.  73867S; 1:1,000; Cell 



Molecular Medicine REPORTS  20:  771-778,  2019 773

Signaling Technology, Inc.), CYP450 3A1 (cat. no. ab22724; 
1:1,500; Abcam), PXR (cat. no. ab118336; 1:500; Abcam), 
CAR (cat.  no.  ab62590; 1:1,500; Abcam), and β‑actin 
(cat.  no.  bs‑0061R; 1:10,000; Beijing Biosynthesis 
Biotechnology Co., Ltd.). Following incubation with primary 
antibody, the blots were incubated with a horseradish 
peroxidase‑labeled secondary antibody for 1  h at room 
temperature (cat. no. bs‑0295G; 1:10,000; Beijing Biosynthesis 
Biotechnology Co., Ltd.). β‑actin was used as an internal 
loading control. The bands were visualized using enhanced 
chemiluminescence (ECL Western Blotting Substrate; Beijing 
Solarbio Science & Technology Co., Ltd.) and densitometric 
analysis was performed using ImageJ software version 1.48u 
(National Institutes of Health).

Statistical analysis. The assays were performed in triplicate. 
All data were expressed as the mean ± standard deviation. 
Statistical analysis was performed by one‑way ANOVA in 
SPSS version 19.0 (IBM Corp.), and the least significant differ-
ence test was used following comparison of the mean values 
with the control group. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Physiochemical characterization of CuNPs and copper 
microparticles. Physiochemical characteristics of CuNPs and 
copper microparticles were evaluated using scanning electron 
microscopy and a laser particle size analyzer (Fig. 1). CuNPs 
and copper microparticles exhibited spherical morphology 
(Fig.  1A and  B), and the size distribution is presented in 
Fig. 1C and D. The most common sizes of the CuNPs and 

copper microparticles were 80 nm (average size: 82.5±33.4 nm) 
and 1 µm (average size: 987.4±436.7 nm), respectively.

Oxidative stress. The levels of oxidative stress markers in the rat 
brains were determined using commercial assay kits (Fig. 2). 
The levels of T‑SOD were significantly decreased compared 
with those of the control following all treatments, with the 
exception of Cu2+. GSH content was decreased significantly in 
the 1 µm, Cu2+ and high‑dose CuNPs groups compared with 
that in the control group. The levels of ·OH were increased in 
the 1 µm, Cu2+ and high‑dose CuNPs groups compared with 
that in the control group. The level of MDA was increased in 
the Cu2+ and high‑dose CuNPs groups compared with that in 
the control.

mRNA expression of nuclear receptors and CYP450s. 
RT‑qPCR was performed to determine the mRNA expression 
levels of different CYP450s (Fig. 3). CYP450 1A1 mRNA 
expression levels were significantly decreased in the 1 µm and 
Cu2+ groups and significantly increased in the low‑dose CuNPs 
group compared with that in the control group. The mRNA 
expression levels of CYP 2C11 were significantly decreased 
in rats treated with high‑dose CuNPs compared with that in 
the control. The mRNA expression levels of CYP450 2D6 
were significantly decreased in the Cu2+ group, but signifi-
cantly increased in the low‑ and medium‑dose CuNPs groups 
compared with that in the control group. The mRNA expres-
sion levels of CYP450 3A1 were increased in the 1 µm, Cu2+ 

and low‑dose groups, but significantly suppressed in the 
high‑dose CuNPs group compared with that in the control. 
The mRNA expression levels of CAR were reduced in the 
low and medium CuNPs groups, and significantly reduced 
in the high CuNPs groups, whereas PXR mRNA expression 
levels of were reduced significantly in the medium and high 
dose CuNPs groups, and significantly increased in the 1 µm, 
Cu2+ and low‑dose CuNPs groups compared with that in the 
control group.

Protein expression of nuclear receptors and CYP450 enzymes. 
Western blot analysis was performed to determine the protein 
expression levels of CYP450 enzymes (Fig. 4). Protein expres-
sion levels of CYP450 1A1 were decreased significantly in the 
high‑dose CuNPs group compared with that in the control. 
The levels of CYP450 2C11 were significantly decreased in the 
medium‑ and high‑dose CuNPs groups, but increased in the 
1 µm group compared with that in the control group. The 
protein expression levels of CYP450 2D6 were suppressed in 
the medium‑ and high‑dose CuNPs groups compared with that 
in the control. The activity of CYP450 3A1 was suppressed in 
all treatment groups compared with that in the control group. 
The CAR protein expression levels did not change under any 
treatment, whereas the protein levels of PXR were decreased 
in the Cu2+, and the low‑, medium‑ and high‑dose CuNPs 
groups compared with that in the control.

Discussion

Brain CYP450 is expressed in glial cells in the barrier 
regions and in neurons throughout the brain, and certain 
endogenous compounds, as well as central nervous system 

Table I. Reverse transcription‑quantitative polymerase chain 
reaction primers.

Target	 Primer sequence (5'‑3')

CYP450 1A1	 F:	GGGAGGTTACTGGTTCTGG
	R :	ATGAGGCTGTCTGTGATGTC
CYP450 2C11	 F:	AATCCGCAGTCTGAGTTTACCC
	R :	GGTTTCTGCCAATTACACGTTCT
CYP450 2D6	 F:	AGCTTCAACACCGCTATGGT
	R :	CAGCAGTGTCCTCTCCATGA
CYP450 3A1	 F:	TGCCATCACGGACACAGA
	R :	ATCTCTTCCACTCCTCATCCTTAG
CAR	 F:	CCACGGGCTATCATTTCCAT
	R :	CCCAGCAAACGGACAGATG
PXR	 F:	TGGACAAACTCTCCGTTCTAAGG
	R :	GATTTTAATGCAACATCAAAGAA
	GC T
GAPDH	 F:	GATGGTGAAGGTCGGTGTG
	R :	ATGAAGGGGTCGTTGATGG

CYP450, cytochrome  P450 enzyme; CAR, constitutive receptor; 
PXR, pregnane X receptor.
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Figure 1. Physiochemical characterization of CuNPs and copper microparticles. (A and B) The scanning electron microscopy results demonstrated that the 
CuNPs were aggregated spherical particles (image magnification: A, x100,000; B, x30,000). Mean sizes of the particles were (C) 82.5±33.4 nm in the 80 nm 
group and (D) 987.4±436.7 in the 1 µm group, as determined by a laser particle size analyzer. CuNPs, copper nanoparticles.

Figure 2. Effects of CuNPs on brain T‑SOD, GSH, ·OH and MDA levels in the brain. T‑SOD levels were significantly decreased by CuNPs and 1 µm. GSH 
content was decreased significantly in the 1 µm, Cu2+ and high‑dose CuNPs groups. The ·OH levels were increased in the 1 µm, Cu2+ and high‑dose CuNPs 
groups. MDA was increased in the Cu2+ and high‑dose CuNPs groups. *P<0.05 and **P<0.01 vs. control. CuNPs, copper nanoparticles; GSH, glutathione; 
MDA, malondialdehyde; ·OH, hydroxyl radicals; T‑SOD, total superoxide dismutase.
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drugs, are metabolized by CYP450s in the brain (32). The 
function of brain CYP450 and the associated changes may 
be important for the development of drugs that act and are 
metabolized locally in the brain, as well as therapeutics 
that directly target brain CYPs (33). CuNPs not only cause 
lesions and blood‑brain barrier breakdown where copper 
accumulates, but also affect neurotransmitter levels in 
the brain; it is not clear whether these changes depend on 
CYP450s (34).

The underlying molecular mechanism of brain CYP450 
regulation remains poorly understood, but a large body of 
data has demonstrated that CYP450 expression can be regu-
lated by oxidative stress via the activation of nuclear receptor 
signaling pathways  (35‑37). Oxidative stress is a state of 
redox disequilibrium, which occurs when reactive oxygen 
species (ROS) production exceeds the antioxidant defense 
capacity of a cell (38). Previous studies have suggested that 
exposure to CuNPs leads to oxidative stress, as indicated 
by elevated ROS levels and decreased antioxidant enzyme 
activity (39,40). ROS, including superoxide anions, hydrogen 
peroxide and hydroxyl radicals, exhibit higher reactivity than 
molecular oxygen  (41). Exposure to CuNPs increases the 
production of ROS, which may result in damage to nuclear 
DNA and alterations of proteins, lipids and carbohydrates 
when present at a high level (42,43). In the present study, the 
levels of antioxidants (T‑SOD and GSH) were decreased, 
whereas the levels of lipid peroxidation products (·OH and 
MDA) were increased upon exposure of the rat brain to 
CuNPs, when compared with results in untreated rats. Cu2+ 
and high‑dose CuNPs induced severe oxidative stress. These 

results suggested that CuNPs may induce redox disequilib-
rium and exert negative effects on CYP450 in the rat brain.

Br ian CYP450s regulate cel lu la r  mechanisms 
transcriptionally, post‑transcriptionally and post‑transla-
tionally (44‑47). Brain CYP450s are sensitive to xenobiotic 
inducers, which may differ from the induction of liver CYPs. 
The regulation of brain CYP450s is highly dependent on the 
isoform and inducer of CYP (19). CuNPs are small (1‑ to 
100‑nm) particles that can cross the blood‑brain barrier 
and damage the brain (48). The results of the present study 
demonstrated that the mRNA expression levels of CYP450s 
and nuclear receptors were increased or suppressed by 
different copper treatments compared with the control 
group, but CYP450 protein expression levels were decreased 
in the CuNP‑treated groups compared with that in the 
control. The expression of CYP450 3A1 and PXR exhibited 
similarly trends following treatment with different levels 
of copper nano‑particles, which is in line with a previous 
study that posited that PXR is a regulator of CYP450 3A 
enzymes (49). CAR and PXR are thought to be activated 
in response to exogenous stimuli, and are involved in 
CYP450 regulation (49‑51). The results of the present study 
indicate that oxidative stress may suppress the expression 
of PXR expression through CuNPs. Therefore, the toxicity 
of CuNPs may decrease the expression of CYP450 in the 
brain, and their main target is CYP450 3A1. The mRNA 
expression level of CYP450s were either unchanged or 
reduced following a high dose of CuNPs, but overall higher 
doses were shown to reduce the protein level of CYP450s. 
Although an increase in mRNA expression was observed 

Figure 3. mRNA expression levels of CYP450 1A1, 2C11, 2D6, 3A1, CAR and PXR in the rat brain. Different sources of copper had a different impact on the 
mRNA expression of brain CYP450s. A high dose of CuNPs decreased the expression levels of CAR, PXR, CYP450 2C11 and CYP450 3A1. A low‑dose of CuNPs 
increased the expression of CYP 450 enzymes (except for CYP450 2C11) and PXR. *P<0.05 and **P<0.01 vs. control. CYP450, cytochrome P450; CAR, consti-
tutive receptor; PXR, pregnane X receptor; CuNPs, copper nanoparticles; Low, low‑dose CuNPs; Medium, medium‑dose CuNPs; High, high‑dose CuNPs.
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for both CYP450  2D6 and CYP450  3A1, the western 
blotting analyses showed a reduction in protein levels 
following CuNP treatment in a seemingly dose dependent 
manner. This demonstrated that CuNPs may affect CYP450 
enzymes differently depending on whether they act at the 
post‑transcriptional and/or post‑translational levels.

CYP450 enzymes of the brain serve an important role 
in maintaining brain homeostasis, therefore it is of interest 
to continue researching the role of CYP450s in the metabo-
lism of endogenous neurochemicals, some of which have 
already been described (52,53). The results of the present 
study provide evidence that CuNPs may have an impact on 
rat brain CYP450 enzymes, and unnecessary neurotoxicity 

and nervous system disorders should be avoided in practical 
applications.

In conclusion, the present study demonstrates that CuNPs 
may have an impact on brain CYP450 enzymes through ROS 
accumulation. The understanding of the roles of CuNPs in 
the regulation of brain CYP450s may be useful for better 
prediction, prevention and treatment of the toxicity of copper 
therapeutics in the brain.
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