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Abstract. The aim of the present study was to identify poten-
tial key genes associated with the progression and prognosis 
of colorectal cancer (CRC). Differentially expressed genes 
(DEGs) between CRC and normal samples were screened 
by integrated analysis of gene expression profile datasets, 
including the Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis was conducted to identify the biological role of DEGs. 
In addition, a protein‑protein interaction network and survival 
analysis were used to identify the key genes. The profiles of 
GSE9348, GSE22598 and GSE113513 were downloaded from 
the GEO database. A total of 405 common DEGs were identi-
fied, including 236 down‑ and 169 upregulated. GO analysis 
revealed that the downregulated DEGs were mainly enriched 
in ‘detoxification of copper ion’ [biological process, (BP)], 
‘oxidoreductase activity, acting on CH‑OH group of donors, 
NAD or NADP as acceptor’ [molecular function, (MF)] and 
‘brush border’ [cellular component, (CC)]. Upregulated DEGs 
were mainly involved in ‘nuclear division’ (BP), ‘snoRNA 
binding’ (MF) and ‘nucleolar part’ (CC). KEGG pathway 
analysis revealed that DEGs were mainly involved in ‘mineral 

absorption’, ‘nitrogen metabolism’, ‘cell cycle’ and ‘caffeine 
metabolism’. A PPI network was constructed with 268 
nodes and 1,027 edges. The top one module was selected, 
and it was revealed that module‑related genes were mainly 
enriched in the GO terms ‘sister chromatid segregation’ (BP), 
‘chemokine activity’ (MF), and ‘condensed chromosome 
(CC)’. The KEGG pathway was mainly enriched in ‘cell cycle’, 
‘progesterone‑mediated oocyte maturation’, ‘chemokine 
signaling pathway’, ‘IL‑17 signaling pathway’, ‘legionellosis’, 
and ‘rheumatoid arthritis’. DNA topoisomerase II‑α (TOP2A), 
mitotic arrest deficient 2 like 1 (MAD2L1), cyclin B1 
(CCNB1), checkpoint kinase 1 (CHEK1), cell division cycle 
6 (CDC6) and ubiquitin conjugating enzyme E2 C (UBE2C) 
were indicated as hub genes. Furthermore, survival analysis 
revealed that TOP2A, MAD2L1, CDC6 and CHEK1 may 
serve as prognostic biomarkers in CRC. The present study 
provided insights into the molecular mechanism of CRC that 
may be useful in further investigations.

Introduction

Colorectal cancer (CRC) is a global burden ranking third in 
terms of incidence and second in terms of mortality, with 
>1.8 million new CRC cases and 881,000 estimated deaths in 
2018 (1). The main reason for the poor 5‑year overall survival 
in CRC is late detection, when the opportunity for treatment 
has passed. Despite progress in novel therapies, early detec-
tion remains a challenge (2). A variety of tests are available 
for screening and detecting CRC; all, however, have their 
disadvantages (3‑5). It is therefore urgent to identify novel 
diagnostic and prognostic biomarkers for CRC.

In recent years, high‑quality microarray and high‑​
throughput sequencing have been effective in detecting the 
development and progression of CRC, and even in screening 
biomarkers for CRC diagnosis, therapy and prognosis.

A number of gene profiles can be obtained from public 
databases such as Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA), both of which can expand our 
understanding of cancer. Limitations and inconsistent results 
may exist, due to different microarray platforms and small 
sample sizes, but integrated bioinformatics methods may 
overcome these limitations.
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Several recent studies have identified certain key genes and 
pathways in CRC using bioinformatics analysis (6,7). Based on 
these articles, updated datasets were selected and a gene clas-
sification method (clusterProfiler package in R) was used for 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis; the prognostic role 
of hub genes was then ascertained using the TCGA dataset. 
In the present study, integrated analysis was first performed 
to identify the common DEGs from multiple microarrays 
(GSE113513, GSE9348 and GSE22598) and TCGA CRC 
RNA‑seq data. Next, GO and KEGG enrichment analysis was 
conducted to identify the potential biological role of DEGs. 
A protein‑protein interaction (PPI) network created based on 
the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING; version 10.5; http://string‑db.org/) database, and the 
significant modules and hub genes were then selected from the 
network. The prognostic roles of hub genes were analyzed 
using TCGA.

Materials and methods

Gene expression profile data. The raw microarray data of 
CRC [GSE9348  (8), GSE22598  (9), GSE113513 (unpub-
lished, 2018)] were downloaded from the GEO database (10) 
(Table  I). All datasets fulfilled the following criteria: 
i) Human CRC tissue samples were used for the profiles; 
ii) normal samples were matched to the tumor tissues, when 
data could not be matched, matching was based on patient 
information, such as age and sex; and iii) The sample size per 
dataset was >10. The level 3 RNA sequencing data of CRC 
and normal samples as well as the CRC clinical information 
were downloaded from the Genomic Data Commons (GDC) 
which were retrieved from TCGA (https://tcga‑data.nci.nih.
gov/tcga/) database.

Data pre‑processing and DEG identification. CEL files from 
three Affymetrix microarrays were downloaded from GEO, 
and pre‑processed using the Affy package (version 1.60.0; 
https://bioconductor.org/packages/release/bioc/html/affy.
html) in R software (version 3.4.3; http://www.r‑project.
org/). The Robust Multi‑array Average (RMA) method (11) 
was used for the pre‑processing, which included background 
correcting, normalizing and calculating expression. The 
latest annotation files were downloaded for re‑annotation. 
The Limma package (version 3.34.8)  (12) in R software 
was subsequently used to screen DEGs between CRC 
and matched normal tissues in the microarray. The RNA 
sequencing data were obtained from TCGA and Ensembl 
Release 93 (http://jul2018.archive.ensembl.org/index.html) 
files were used for annotation and all the data processing and 
normalization were finished using the Perl (version 5.28.2; 
https://www.perl.org/) and R scripts. The edgeR package 
(version 3.24.3) (13) was used for DEG screening and the 
trimmed mean of M‑values normalization method in edgeR 
was used to normalize the raw data. Notably, |log2FC|>1, 
P<0.05 and adjusted P<0.05 were considered the cut‑off 
criteria. Intersect function was used to identify the common 
DEGs, and a Venn diagram was created using Venny 
(version 2.1) (14). All common DEGs in these datasets were 
selected for further study.

GO and KEGG pathway analyses. To elucidate the potential 
gene functional annotation and pathway enrichment associ-
ated with the common DEGs. GO (15,16) and KEGG (17‑19) 
analyses were performed using the clusterProfiler (version 
3.10.1) package (20). The enrichplot and DOSE (21) packages 
were used to supply enrichment result visualization to help 
interpretation. P<0.05 and adjusted P<0.05 were set as the 
threshold values.

PPI network construction and module selection. The online 
STRING database was used to identify potential interaction 
among the common DEGs, and a confidence score of ≥0.4 was 
set as the threshold. Cytoscape (version 3.6.1) (22) was used 
to visualize the PPI network of common DEGs. The MCODE 
plug‑in  (23) was used to search sub‑networks of the PPI 
network and the default parameters (Degree cutoff ≥10, node 
score cutoff ≥0.4, K‑core ≥4, and max depth=100.) were set in 
the functional interface of Cytoscape software. GO and KEGG 
enrichment analyses of cluster modules were performed using 
ClueGO plug‑in (24) with default parameters. The Cytohubba 
plug‑in (25) was used to explore hub genes, and the top ten 
were generated using Maximal Clique Centrality (MCC), 
closeness and degree methods. The intersect function was 
used to identify the common hub genes.

Survival analysis of hub genes. In order to identify the 
potential prognostic role of hub genes, Kaplan‑Meier analysis 
was performed based on the expression and clinical data of 
TCGA, and Perl was used to merge data. Hub genes were 
divided into two strata based on expression level and median 
value. The survival (version 2.44‑1.1; https://cran.r‑project.
org/web/packages/survival/index.html) and survminer 
package (version 0.4.3; https://cran.r‑project.org/web/pack-
ages/survminer/index.html) in R were used.

Results

Identification of DEGs in GEO and TCGA. Following 
pre‑processing of the raw data, DEGs were identified by R 
package. In total, 931 DEGs (543 down‑ and 388 upregulated 
genes), 1,420 DEGs (759 down‑ and 661 upregulated genes), 
1,324 DEGs (659 down‑ and 665 upregulated genes) and 
12,237 DEGs (3,776 down‑ and 8,461 upregulated genes) 
were screened from the GSE113513, GSE9348, GSE22598 
and TCGA datasets, respectively. Heatmaps of DEGs are 
presented in Fig. S1, and volcano plots in Fig. S2. The intersect 
function revealed 405 common DEGs, including 236 down‑ 
and 169 upregulated DEGs from four independent datasets 
(Fig. 1). The top 20 down‑ and upregulated DEGs from the 
four datasets are listed in Table II.

GO and KEGG enrichment analysis. To explore the potential 
biological function of common DEGs, GO and KEGG pathways 
enrichment analyses were conducted using the ClusterProfiler 
package. In the present study, downregulated DEGs were 
mainly enriched in ‘detoxification of copper ion’ (BP), ‘oxido-
reductase activity, acting on CH‑OH group of donors, NAD or 
NADP as acceptor’ (MF) and ‘brush border’ (CC) respectively. 
Upregulated DEGs were mainly involved in ‘nuclear division’ 
(BP), ‘snoRNA binding’ (MF) and ‘nucleolar part’ (CC).’The 
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GO distribution of down‑ and upregulated DEGs is presented in 
Fig. 2A and B and details of the top 15 GO terms in Table III.

According to KEGG enrichment analysis, four signifi-
cant pathways of common DEGs were identified, including: 
‘Mineral absorption’, ‘nitrogen metabolism’, ‘cell cycle’ and 
‘caffeine metabolism’ (Fig. 2C). The significant genes in these 
pathways are presented in Fig. 2D.

PPI network and module selection. The PPI network of 
DEGs was constructed with 268 nodes and 1,027 edges 
(Fig. 3A). The Degree, MCC and Closeness methods were 
performed to calculate the top 10 ranking hub genes. The 
results revealed 6 genes identified as hub genes, including 
DNA topoisomerase II‑α (TOP2A), mitotic arrest deficient 2 
like 1 (MAD2L1), cyclin B1 (CCNB1), checkpoint kinase 1 
(CHEK1), cell division cycle 6 (CDC6), ubiquitin conjugating 
enzyme E2 C (UBE2C) (Fig. 3B). MCODE was used to iden-
tify the significant cluster modules in the PPI network and the 
top module was selected (Fig. 3C). Following GO annotation 
screening, the module (44 nodes and 462 edges) was revealed 
to be associated with ‘sister chromatid segregation’ (BP), 
‘chemokine activity’ (MF), ‘condensed chromosome (CC)’ 
(Table IV) and KEGG pathway enrichment analysis revealed 
that the top module was mainly enriched in ‘cell cycle’, 

‘progesterone‑mediated oocyte maturation’, ‘chemokine 
signaling pathway’, ‘IL‑17 signaling pathway’, ‘legionellosis’ 
and ‘rheumatoid arthritis’; related information were repre-
sent in Table V.

Survival analysis. The prognostic role of hub genes was 
analyzed using Kaplan‑Meier method based on the TCGA 
data. Among these hub genes, a low expression of CDC6, 
CHEK1, MAD2L1 and TOP2A was associated with poor 
prognosis in CRC patients (Fig. 4).

Discussion

In the present study, three GEOs and TCGA data were inte-
grated, and non‑paired GEO data were manually matched to 
increase accuracy and stabilization. In total, 236 down‑ and 
169 upregulated DEGs were identified. The common down-
regulated DEGs were mostly enriched in ‘detoxification of 
copper ion’ (BP), ‘oxidoreductase activity, acting on CH‑OH 
group of donors, NAD or NADP as acceptor’ (MF) and 
‘brush border’ (CC), and the upregulated DEGs were mainly 
associated with ‘nuclear division’ (BP), ‘snoRNA binding’ 
(MF) and ‘nucleolar part’ (CC). Moreover, KEGG enrich-
ment analysis identified that the common DEGs were largely 

Figure 1. Intersected analysis was used for the identification of 405 simultaneously changed DEGs from four datasets (GSE113513, GSE9348, GSE22598 and 
TCGA). (A) A total of 236 downregulated and (B) 169 upregulated overlapping DEGs was identified. Different colored regions represent different datasets, and 
the intersective area denotes the simultaneously changed DEGs. DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas.

Table I. Information on the datasets included in the current study.

			N   o. of samples
Dataset	R eference	 Platform	 (normal/tumor)

GSE9348	 Hong et al, 2010 (8)	 [HG‑U133_Plus_2] Affymetrix Human	 12/12
		  Genome U133 Plus 2.0 Array
GSE22598	O kazaki et al, 2011 (9)	 [HG‑U133_Plus_2] Affymetrix Human	 17/17
		  Genome U133 Plus 2.0 Array
GSE113513	 Peng et al, 2018 (unpublished)	 [PrimeView] Affymetrix Human	 14/14
		  Gene Expression Array
TCGA_CRC	 The Cancer Genome Atlas (TCGA) data portal	 IlluminaHiseq (Illumina, San Diego, CA)	 51/647
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involved in ‘mineral absorption’, ‘nitrogen metabolism’, 
‘cell cycle’ and ‘caffeine metabolism’. Investigating these 
significant pathways may promote the understanding of CRC 
development.

Minerals are one of the five fundamental groups of 
nutrients; regular mineral absorption plays a vital role in 

sustaining life. Deficiency and insufficiency of minerals may 
be associated with and increase the risk of cancer; for example, 
efficient absorption of vitamin D may prevent CRC (26). The 
cell cycle is controlled by various mechanisms, which ensure 
correct cell division; loss of normal cell cycle control is a 
hallmark of cancer (27). An increasing number of studies 

Table II. Top 20 down‑ and upregulated overlapping DEGs in GSE113513, GSE9348, GSE22598 and TCGA were screened by 
intersected analysis.

Genes	 GSE113513	 GSE9348	 GSE22598	 TCGA	R egulation

AQP8	 ‑4.00 	 ‑6.74 	 ‑2.75 	 ‑6.87 	 Down
CLCA4	‑ 2.30 	‑ 7.61 	‑ 4.91 	‑ 5.35 	D own
GUCA2B	 ‑4.82 	 ‑5.08 	 ‑3.37 	 ‑6.06 	 Down
MS4A12	‑ 3.68 	‑ 6.04 	‑ 3.54 	‑ 5.36 	D own
GUCA2A	‑ 4.10 	‑ 5.00 	‑ 3.72 	‑ 5.11 	D own
CA2	‑ 3.68 	‑ 5.32 	‑ 3.76 	‑ 4.81 	D own
ABCG2	 ‑2.39 	 ‑6.03 	 ‑3.93 	 ‑4.68 	 Down
CLDN8	‑ 3.69 	‑ 4.40 	‑ 3.65 	‑ 5.07 	D own
GCG	‑ 4.57 	‑ 3.92 	‑ 4.15 	‑ 4.13 	D own
ZG16	‑ 3.18 	‑ 4.70 	‑ 4.45 	‑ 4.44 	D own
PKIB	 ‑3.21 	 ‑4.99 	 ‑3.85 	 ‑3.95 	 Down
CA4	‑ 3.39 	‑ 4.54 	‑ 3.07 	‑ 4.76 	D own
BEST4	 ‑3.50 	 ‑2.72 	 ‑3.66 	 ‑5.85 	 Down
CA1	‑ 3.33 	‑ 3.20 	‑ 1.94 	‑ 6.51 	D own
MT1M	‑ 3.29 	‑ 3.90 	‑ 3.35 	‑ 4.30 	D own
CD177	‑ 2.84 	‑ 4.29 	‑ 2.35 	‑ 5.22 	D own
HSD17B2	 ‑2.63 	 ‑5.14 	 ‑3.04 	 ‑3.39 	 Down
INSL5	‑ 3.31 	‑ 2.03 	‑ 3.00 	‑ 5.82 	D own
ADH1C	‑ 3.26 	‑ 3.50 	‑ 3.10 	‑ 4.01 	D own
CLCA1	‑ 3.45 	‑ 3.77 	‑ 3.62 	‑ 2.54 	D own
FOXQ1	 4.47 	 5.16 	 5.55 	 6.47 	 Up
KRT23	 3.69 	 4.25 	 4.28 	 7.37 	U p
LY6G6D	 3.50 	 4.09 	 3.63 	 5.42 	U p
MMP7	 3.15 	 3.11 	 2.38 	 7.03 	U p
CDH3	 2.77 	 2.31 	 2.76 	 5.77 	U p
MMP3	 2.91 	 2.94 	 2.77 	 4.83 	U p
CST1	 1.25 	 2.42 	 1.00 	 8.33 	U p
CRNDE	 3.17 	 2.36 	 2.73 	 4.60 	U p
DPEP1	 2.97 	 3.06 	 4.14 	 2.61 	U p
MMP1	 2.46 	 2.59 	 3.14 	 4.56 	U p
EPHX4	 3.01 	 2.32 	 2.95 	 4.43 	 Up
CTHRC1	 1.21 	 4.47 	 3.15 	 3.78 	U p
CLDN1	 2.18 	 2.81 	 2.74 	 4.84 	U p
CEL	 1.56 	 2.53 	 2.37 	 6.10 	U p
CLDN2	 1.54 	 2.57 	 2.75 	 5.57 	U p
SLC35D3	 1.79 	 2.97 	 3.24 	 4.35 	U p
COL11A1	 1.59 	 2.49 	 1.93 	 6.33 	U p
CXCL3	 3.22 	 3.60 	 2.34 	 2.92 	 Up
SLCO1B3	 1.43 	 1.64 	 2.55 	 6.44 	 Up
CKMT2	 3.33 	 2.55 	 2.68 	 3.46 	U p

Each column represents a dataset and each row a gene. The values in the table represent the log2FC in the datasets. DEGs, differentially 
expressed genes; TCGA, The Cancer Genome Atlas; FC, fold change.
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has revealed that targeting the deregulation of the cell cycle 
in cancer is a potential therapeutic strategy (28). Therefore, 
investigating the cell cycle pathway may promote the under-
standing of carcinogenic mechanisms and insights into CRC 
treatment options. Nitrogen is an essential component of life 
that is involved in processes of both proteins and nucleic 
acids. Aberrant expression of nitrogen species could affect 
the risk of cancer (29). Certain studies have reported that 
caffeine could decrease the risk of CRC (30), inhibit colon 
cancer cell proliferation (31,32). Metabolic profiling revealed 
that caffeine metabolism differed significantly between 
colorectal adenoma polyps and CRC patients which may 
influence CRC development and outcome (33). Investigating 
these significant pathways may elucidate the mechanism of 
CRC progression.

Recently, certain important biomarkers, including CCL19, 
CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, NMU, 
PYY and SST, were identified using integrated bioinfor-
matics analysis. Furthermore, a prognostic gene signature 
consisting of 9 genes was also identified (34). In the present 
study, data from three GEO datasets (GSE22598, GSE113513 
and GSE9348) and TCGA were combined for screening 
stable DEGs, then different calculation methods and intersect 
function analysis were used, and potential biomarkers were 
revealed that had not been previously screened out. A PPI 
network was constructed with DEGs, and then 6 hub genes 
(TOP2A, MAD2L1, CCNB1, CHEK1, CDC6 and UBE2C) 
were identified. Following survival analysis based on the 
TCGA data, the low expression of CDC6, CHEK1, MAD2L1 
and TOP2A was revealed to be associated with poor prognosis. 

Figure 2. GO and KEGG enrichment analysis of the overlapping DEGs. (A and B) Top significantly enriched GO terms of down‑ and upregulated DEGs, including 
BP, CC and MF. The x‑axis represents the number of DEGs involved in GO terms, and the y‑axis the significantly enriched GO terms. (C) KEGG pathway 
enrichment analysis of overlapping DEGs. The x‑axis indicates the number of DEGs involved in the significant KEGG pathway, and the y‑axis the terms of the 
significant KEGG pathway. (D) DEGs associated with the significant KEGG pathway. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEGs, differentially expressed genes. (a) Oxidoreductase activity, acting on the CH‑OH group of donors, NAD or NADP as acceptor; (b) oxidoreductase activity, 
acting on CH‑OH group of donors; (c) steroid dehydrogenase activity, acting on the CH‑OH group of donors, NAD or NADP as acceptor; (d) oxidoreductase 
activity, acting on the CH‑NH2 group of donors, oxygen as acceptor; (e) regulation of mitotic cell cycle phase transition; (f) condensed chromosome, centromeric 
region; (g) condensed nuclear chromosome, centromeric region; (h) chromosome, centromeric region; (i) cyclin‑dependent protein serine/threonine kinase 
regulator activity; (j) transcription factor activity, RNA polymerase II proximal promoter sequence‑specific DNA binding.
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Table III. GO analysis of down‑ and upregulated overlapping DEGs associated with CRC.

Expression	 Terms	ID	D  escription	 q‑value	 Genes

Upregulated	 BP	 GO:0000280	 Nuclear division	 4.33x10‑7	 RRS1/CKS2/TRIP13/CCND1/FIGNL1/TPX2/
					     ANLN/UBE2C/CHEK1/NUF2/RAD54B/
					DL     GAP5/CDC6/MAD2L1/TOP2A/TTK/
					     CCNB1/ASPM/BUB1B/AURKA
	 BP	 GO:0048285	 Organelle fission	 1.16x10‑6	 RRS1/CKS2/TRIP13/CCND1/FIGNL1/TPX2/
					     ANLN/UBE2C/CHEK1/NUF2/RAD54B/
					DL     GAP5/CDC6/MAD2L1/TOP2A/TTK/
					     CCNB1/ASPM/BUB1B/AURKA
	 BP	 GO:0140014	 Mitotic nuclear division	 6.51x10‑6	 RRS1/TRIP13/CCND1/TPX2/ANLN/
					     UBE2C/CHEK1/NUF2/DLGAP5/CDC6/
					     MAD2L1/TTK/CCNB1/BUB1B/AURKA
	 BP	 GO:0007088	 Regulation of mitotic	 1.18x10‑5	 TRIP13/CCND1/ANLN/UBE2C/CHEK1/
			   nuclear division		  DLGAP5/CDC6/MAD2L1/TTK/CCNB1/
					     BUB1B/AURKA
	 BP	 GO:0000075	 Cell cycle checkpoint	 1.18x10‑5	 TRIP13/CCND1/ARID3A/CHEK1/CDC6/
					     MAD2L1/TOP2A/TTK/CCNB1/SOX4/
					     BUB1B/AURKA/PROX1
	CC	  GO:0044452	N ucleolar part	 4.66x10‑5	 TAF1D/DKC1/UTP4/WDR43/NOP58/RRS1/
					     RPP40/NUFIP1/ORC6/POLR1D/E2F5
	CC	  GO:0000793	C ondensed chromosome	 4.66x10‑5	 RRS1/SKA3/CHEK1/NUF2/CENPA/
					     MAD2L1/TOP2A/CCNB1/SPC25/ERCC6L/
					     BUB1B/AURKA
	CC	  GO:0000779	C ondensed chromosome, 	 5.94x10‑5	 SKA3/NUF2/CENPA/MAD2L1/CCNB1/
			   centromeric region		  SPC25/ERCC6L/BUB1B/AURKA
	CC	  GO:0000780	C ondensed nuclear	 1.13x10‑4	 NUF2/CENPA/CCNB1/BUB1B/AURKA
			C   hromosome, 
			   centromeric region
	CC	  GO:0000776	 Kinetochore	 1.13x10‑4	 SKA3/NUF2/CENPA/MAD2L1/TTK/
					     CCNB1/SPC25/ERCC6L/BUB1B
	 MF	 GO:0030515	 snoRNA binding	 2.99x10‑3	 DKC1/NOP58/DDX21/NUFIP1
	 MF	 GO:0009982	 Pseudouridine synthase	 3.70x10‑3	 PUS1/PUS7/DKC1
			   activity
	 MF	 GO:0035173	 Histone kinase activity	 7.05x10‑3	 CHEK1/CCNB1/AURKA
	 MF	 GO:0001664	 G protein‑coupled	 8.09x10‑3	 CXCL3/RNF43/HOMER1/NMU/CXCL8/
			   receptor binding		  ZNRF3/CXCL1/CTHRC1/CXCL5
	 MF	 GO:0140098	 Catalytic activity, acting	 1.15x10‑2	 NOB1/PUS1/EXOSC5/NOP2/RPP40/
			   on RNA		  DDX21/RNASEH2A/POLR1D/RAD54B/
					A     ZGP1
Downregulated	 BP	 GO:0010273	 Detoxification of	 1.22x10‑5	 MT1M/MT1X/MT1E/MT1H/MT1F/MT1G
			   copper ion
	 BP	 GO:1990169	 Stress response to	 1.22x10‑5	 MT1M/MT1X/MT1E/MT1H/MT1F/MT1G
			   copper ion
	 BP	 GO:0061687	 Detoxification of	 1.22x10‑5	 MT1M/MT1X/MT1E/MT1H/MT1F/MT1G
			   inorganic compound
	 BP	 GO:0071280	 Cellular response to	 1.22x10‑5	 MT1M/MT1X/MT1E/MT1H/MT1F/MT1G/
			   copper ion		AOC  1
	 BP	 GO:0097501	 Stress response to	 1.35x10‑5	 MT1M/MT1X/MT1E/MT1H/MT1F/MT1G
			   metal ion
	 CC	 GO:0005903	 Brush border	 6.96x10‑5	CD HR5/TRPM6/SCIN/CDHR2/CA4/LIMA1/
					     CYBRD1/MYO1A/SLC26A3/SI
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TOP2A was an important nuclear enzyme involved in DNA 
transcription and replication. Aberrant TOP2A expression has 

been identified in several types of cancer, such as CRC, breast 
carcinomas, gastric cancer and bladder carcinomas (35‑38). In 

Figure 3. PPI network and hub clustering modules. (A) PPI networks of the overlapping DEGs. (B) Hub genes were screened from the PPI network using 
the Closeness, Degree and MCC methods. (C) The top module was selected from the PPI network. Red circles indicate upregulated genes and green circles 
downregulated genes. PPI, protein‑protein interaction; DEGs, differentially expressed genes.

Table III. Continued.

Expression	 Terms	ID	D  escription	 q‑value	 Genes

	CC	  GO:0045177	A pical part of cell	 3.15x10‑4	 ABCG2/CA2/RAB27A/CDHR5/PTPRH/
					     TRPM6/AQP8/CDHR2/CA4/SCNN1B/
					     CLCA4/CEACAM1/FABP1/CEACAM7/
					     MYO1A/SLC26A3/SI
	 CC	 GO:0031526	 Brush border membrane	 3.15x10‑4	CD HR5/TRPM6/CDHR2/CA4/LIMA1/
					     CYBRD1/SLC26A3
	CC	  GO:0005902	 Microvillus	 6.78x10‑4	CA 2/CDHR5/PTPRH/CDHR2/CEACAM1/
					CLCA     1/AOC3/MYO1A
	CC	  GO:0098862	C luster of actin‑based	 8.31x10‑4	CD HR5/TRPM6/SCIN/CDHR2/CA4/LIMA1/
			   cell projections		  CYBRD1/MYO1A/SLC26A3/SI
	 MF	 GO:0016616	 Oxidoreductase activity, 	 6.48x10‑5	 UGDH/ADH1B/HPGD/LDHD/ADH1C/
			   acting on the CH‑OH		  DHRS11/DHRS9/HSD17B2/AKR1B10/
			   group of donors, NAD		  HSD11B2/BMP2
			   or NADP as acceptor
	 MF	 GO:0016614	 Oxidoreductase activity, 	 1.09x10‑4	 UGDH/ADH1B/HPGD/LDHD/ADH1C/
			   acting on CH‑OH group		  DHRS11/DHRS9/HSD17B2/AKR1B10/
			   of donors		  HSD11B2/BMP2
	 MF	 GO:0004089	 Carbonate dehydratase	 1.26x10‑4	CA 7/CA2/CA12/CA1/CA4
			   activity
	 MF	 GO:0048038	 Quinone binding	 4.90x10‑3	 ETFDH/TP53I3/AOC3/AOC1
	 MF	 GO:0033764	 Steroid dehydrogenase	 1.52x10‑2	 DHRS11/DHRS9/HSD17B2/HSD11B2
			   activity, acting on the
			C   H‑OH group of donors,
			NAD    or NADP as acceptor

Adjusted P<0.05 was considered to be significant. DEGs, differentially expressed genes; CRC, colorectal cancer; q‑value, adjusted P‑value; 
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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addition, the high expression of TOP2A was revealed to be 
correlated with a worse survival in breast cancer, small‑cell 
lung cancer and malignant melanoma, indicating that TOP2A 
can serve as a prognostic biomarker (39‑41). TOP2A was also 
revealed to be associated with advanced CRC and chemo-
therapeutic resistance via the inhibition of apoptosis  (35). 
Zhou et al (42) revealed that TOP2A involvement in T‑cell 
factor transcription may transmit a mechanism of multidrug 
resistance to TOP2A inhibitors, which can be an effective 
treatment option for CRC. Therefore, further investigation is 
required to elucidate the mechanism of TOP2A in the develop-
ment, progression and treatment of CRC. CDC6 is essential for 
the initiation of DNA replication and contains ATP‑binding 
and hydrolytic activities, which are required for the formation 
of the pre‑replicative complex (43,44). It is also involved in 

the cell cycle by localizing to the centrosomes during the S 
and G2 phases (45). It has been reported that CDC6 affects 
proliferation during the early differentiation stages (46), and 
that the overexpression of CDC6 in tumors could signify that 
it may be an oncogenic target. CHEK1 is a serine/threonine 
kinase involved in delaying cell cycle progression; it is also 
required for the activation of DNA repair in response to 
the presence of DNA damage or unreplicated DNA  (47). 
MAD2L1 (also termed MAD2) plays an important role in 
maintaining the spindle checkpoint function. MAD2L1 was 
revealed to be correlated with disease outcome in patients with 
breast cancer (48), and an increased MAD2L1 expression in 
neuroblastoma cells to be associated with poor prognosis (49).

The PPI network module analysis revealed that the devel-
opment of CRC was mainly associated with the cell cycle 

Table IV. GO analysis of selected module‑associated DEGs.

ID	 GO Terms	O ntology	 q‑value	 Genes

GO:0000819	 Sister chromatid segregation	 BP	 5.54x10‑13	 BUB1B/CCNB1/CDC6/CENPA/DLGAP5/
				    ERCC6L/MAD2L1/NUF2/SPC25/TOP2A/
				    TRIP13/TTK/UBE2C
GO:0007088	 Regulation of mitotic nuclear	 BP	 8.77x10‑12	 ANLN/AURKA/BUB1B/CCNB1/CDC6/
	 division			C   HEK1/DLGAP5/MAD2L1/TRIP13/TTK/
				    UBE2C
GO:0098813	 Nuclear chromosome	 BP	 1.24x10‑11	 BUB1B/CCNB1/CDC6/CENPA/DLGAP5/
	 segregation			   ERCC6L/MAD2L1/NUF2/SPC25/TOP2A/
				    TRIP13/TTK/UBE2C
GO:0051304	 Chromosome separation	 BP	 1.37x10‑11	 BUB1B/CCNB1/CDC6/DLGAP5/MAD2L1/
				    TOP2A/TRIP13/TTK/UBE2C
GO:0030071	 Regulation of mitotic	 BP	 1.46x10‑11	 BUB1B/CCNB1/CDC6/DLGAP5/MAD2L1/
	 metaphase/anaphase			   TRIP13/TTK/UBE2C
	 transition
GO:0000793	C ondensed chromosome	CC	  2.53x10‑10	 AURKA/BUB1B/CCNB1/CENPA/CHEK1/
				    ERCC6L/MAD2L1/NUF2/SKA3/SPC25/
				    TOP2A
GO:0000779	C ondensed chromosome/	CC	  5.40x10‑10	 AURKA/BUB1B/CCNB1/CENPA/ERCC6L/
	 centromeric region			   MAD2L1/NUF2/SKA3/SPC25
GO:0000775	C hromosome/centromeric	CC	  1.59x10‑9	 AURKA/BUB1B/CCNB1/CENPA/ERCC6L/
	 region			   MAD2L1/NUF2/SKA3/SPC25/TTK
GO:0000776	 Kinetochore	CC	  1.80x10‑9	 BUB1B/CCNB1/CENPA/ERCC6L/MAD2L1/
				    NUF2/SKA3/SPC25/TTK
GO:0000777	C ondensed chromosome	CC	  8.17x10‑9	 BUB1B/CCNB1/CENPA/ERCC6L/MAD2L1/
	 kinetochore			   NUF2/SKA3/SPC25
GO:0008009	 Chemokine activity	 MF	 1.41x10‑9	 CCL19/CCL28/CXCL1/CXCL12/CXCL3/
				    CXCL5/CXCL8
GO:0042379	 Chemokine receptor binding	 MF	 8.09x10‑9	 CCL19/CCL28/CXCL1/CXCL12/CXCL3/
				    CXCL5/CXCL8
GO:0045236	 CXCR chemokine receptor	 MF	 1.46x10‑8	 CXCL1/CXCL12/CXCL3/CXCL5/CXCL8
	 binding
GO:0035173	 Histone kinase activity	 MF	 1.99x10‑4	 AURKA/CCNB1/CHEK1

Adjusted P<0.05 was considered as significanct. DEGs, differentially expressed genes; CRC, colorectal cancer; q‑value, adjusted P‑value; 
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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Table V. KEGG pathway analysis of selected module‑associated DEGs.

KEGG	C ount	 q‑value	 Genes

Cell cycle	 6	 1.88x10‑5	 BUB1B/CCNB1/CDC6/CHEK1/MAD2L1/TTK
Progesterone‑mediated oocyte maturation	 4	 7.64x10‑4	 AURKA/CCNB1/GNAI1/MAD2L1
Chemokine signaling pathway	 9	 4.69x10‑8	 CCL19/CCL28/CXCL1/CXCL12/CXCL3/CXCL5/
			   CXCL8/GNAI1/GNG4
IL‑17 signaling pathway	 4	 9.02x10‑4	 CXCL1/CXCL3/CXCL5/CXCL8
Legionellosis	 3	 9.37x10‑4	 CXCL1/CXCL3/CXCL8
Rheumatoid arthritis	 4	 1.06x10‑3	 CXCL1/CXCL12/CXCL5/CXCL8

DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4. Survival analysis showing the correlation between the expression of hub genes and overall survival in CRC patients. (A) CDC6, (B) CHEK1, 
(C) MAD2L1 and (D) TOP2A. Red lines represent high and green lines low expression genes. Dashed lines represent CI. The x‑axis shows the survival time of 
CRC patients and the y‑axis the survival probability. CRC, colorectal cancer; CDC6, Cell Division Cycle 6; CHEK1, Checkpoint Kinase 1; MAD2L1, Mitotic 
Arrest Deficient 2 Like 1; TOP2A, Topoisomerase II Alpha; CI, confidence interval.
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pathway. It has been reported that cell cycle signaling path-
ways play a vital role in controlling normal progression, and 
regulating cell proliferation and apoptosis; an uncontrolled cell 
cycle may result in cancer (27). Therefore, cell cycle regulation 
is a useful way of interfering with the development of CRC.

Recent studies have indicated that mRNAs, miRNAs and 
lncRNAs play a crucial role in a variety of biological processes 
associated with human diseases (50,51). Chen et al (52‑55), 
have constructed powerful computational models to predict 
potential associations between miRNAs/lncRNAs and 
human diseases, providing a reliable and powerful tool 
for disease‑association prediction. With the application of 
computational models, more stable and effective biomarkers 
(miRNAs/lncRNAs) would be revealed, and the pathogenesis 
of CRC would be explained at different molecular levels.

The present results provided useful information for early 
diagnosis and prevention, and supplied an effective therapeutic 
target for CRC. However, the study has certain limitations: 
i) By mixing all cancer types together, the focused insights in 
genetic characteristics of different subtypes of tumors may not 
be revealed, therefore, a stratification analysis of major clinical 
information should be performed; ii) more databases should be 
used for validation of the DEGs in future research; iii) in the 
present study, all tumor samples were included for the evalu-
ation of the prognositic role of hub genes, however, it would 
be better to exclude CRC without matching normal controls, 
which would reduce the difference arising from different 
clinical information, and iv) intersect function analysis of GEO 
and TCGA was performed to screen DEGs, however, among 
these data sets, GSE22598 included colon cancer treated with 
chemotherapy which may affect the results, therefore, sample 
information should be more focused in future research. In 
addition, biological experiments are required to confirm these 
results. In conclusion, in the present study DEGs were identi-
fied by integrated bioinformatics analysis, in order to explore 
the role of DEGs in the progression and prognosis of CRC. 
Consequently, 405 DEGs were screened out, and hub genes 
CDC6, CHEK1, MAD2L1 and TOP2A were revealed to be 
promising prognostic biomarkers among CRC patients.
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