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Abstract. neuropeptide B (nPB) regulates food intake, 
body weight and energy homeostasis by interacting with 
nPBW1/nPBW2 in humans and nPBW1 in rodents. nPB and 
nPBW1 are widely expressed in the central nervous system 
and peripheral tissues including pancreatic islets. although 
previous studies have demonstrated a prominent role for nPB 
and nPBW1 in controlling glucose and energy homeostasis, 
it remains unknown as to whether nPB modulates pancreatic 
β-cell functions. Therefore, the aim of the present study was to 
investigate the effects of nPB on insulin expression and secre-
tion in vitro. Furthermore, the role of nPB in the modulation of 
inS-1e cell growth, viability and death was examined. Gene 
expression was assessed by reverse transcription-quantitative 
Pcr. cell proliferation and viability were determined by 
Brdu or MTT tests, respectively. apoptotic cell death was 
evaluated by relative quantification histone‑complexed DNA 

fragments (mono-and oligonucleosomes). insulin secretion 
was studied using an eliSa test. Protein phosphorylation was 
assessed by western blot analysis. nPB and nPBW1 mrna 
was expressed in inS-1e cells and rat pancreatic islets. in 
inS-1e cells, nPB enhanced insulin 1 mrna expression via 
an erK1/2-dependent mechanism. Furthermore, nPB stimu-
lated insulin secretion from inS-1e cells and rat pancreatic 
islets. By contrast, nPB failed to affect inS-1e cell growth or 
death. We conclude that nPB may regulate insulin secretion 
and expression in inS-1e cells and insulin secretion in rat 
pancreatic islets.

Introduction

neuropeptide B is a 29 amino acid peptide with a 
c-6-brominated tryptophan residue at the n terminus (1,2). its 
biological activities are mediated by activation of two GPcr 
receptors, termed nPBW1 (GPr7) and nPBW2 (GPr8). Both 
types of receptors are expressed in humans, whereas rodents 
only express nPBW1 (3). nPB and its receptors are predomi-
nantly expressed in the central nervous system (3). in the 
brain, nPB is implicated in controlling a variety of functions, 
including modulation of the neuroendocrine axis, pain, appetite 
or circadian rhythm (4-7). However, nPB and its receptor are 
also present in peripheral tissues such as thyroid and adrenal 
glands, gonads and endocrine pancreas (8). There is growing 
evidence that nPB as well as nPBW1 play prominent roles in 
controlling energy homeostasis. animal studies have shown 
that mice lacking nPBW1 (nPBW1-/-) develop mild adult onset 
obesity, and have lower energy expenditure and higher blood 
glucose levels (9). Furthermore, increased body weight has been 
reported in mice lacking nPB (nPB-/-mice) (10). We found that 
nPB and its receptor are present in rat adipocytes (11) where 
nPB stimulates lipolysis and suppresses leptin expression, and 
secretion (11). others have reported that nPB serum level is 
upregulated in humans who suffer from anorexia nervosa (12), 
while it is reduced in type 1 diabetic patients (13). overall, these 
results collectively indicate that the nPB/nPBW1 system is 
involved in controlling body weight and energy homeostasis 
and its alternation may contribute to obesity.

energy homeostasis and metabolism are modulated 
by insulin which is released from pancreatic beta cells in a 
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glucose-dependent fashion (14). The loss and dysfunction of 
pancreatic beta cell function are hallmarks of type 1 and type 2 
diabetes (15,16). By contrast, non-diabetic obese individuals 
display increased beta cell mass (15). although the contribu-
tion of nPB/nPBW1 to modulation of energy homeostasis and 
body weight regulation is well-documented in the literature 
[reviewed in (4,17)], the role of nPB in controlling pancreatic 
beta cell functions-insulin expression and secretion as well 
as beta cell replication-is unknown. Furthermore, nPBW1 
signaling in pancreatic beta cells is poorly understood. Thus, 
in the present study we assessed the effects of nPB on insulin 
expression and secretion as well as cell proliferation in 
insulin-producing inS-1e cells [beta cell surrogate (18)] and 
rat pancreatic islets.

Materials and methods

Reagents. (des-Br)-neuropeptide B-29 was purchased from 
Phoenix Pharmaceuticals (Burlingame, ca, uSa). cell culture 
media and supplements were from Biowest (nuaillé, France). 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide (MTT) was from calbiochem (Merck, darmstadt, 
Germany). The Brdu cell Proliferation kit and cell 
death detection eliSa PluS kit were from roche 
diagnostic. Phospho-erK1/2 (cat. no. 9101S) and erK1/2 
(cat. no. 9102S) antibodies and HrP-linked anti-rabbit anti-
body (cat. no. 7074S) were from cell Signaling Technology 
(danvers, Ma, uSa). GaPdH antibody was from 
Sigma-aldrich (St. louis, Mo, uSa). other reagents were 
purchased from Sigma-aldrich, unless otherwise stated.

Cell culture. rat insulin-producing inS-1e cells were kindly 
provided by Professor Pierre Maechler (Médical universitaire, 
Genève, Switzerland). cells were cultured in rPMi-1640 
medium supplemented with 10% FBS, 2 mmol/l glutamine, 
10 mmol/l HePeS buffer, 1 mmol/l sodium pyruvate, 
50 µmol/l beta-mercaptoethanol and 100 ku/l penicillin, 
100 mg/l streptomycin.

Isolation of pancreatic islets. Male Wistar rats (body weight 
300‑350 g) were from Department of Toxicology (Poznań 
University of Medical Sciences, Poznań, Poland). Animals 
were sacrificed by decapitation and then the abdominal 
cavity was opened and the pancreas was filled out by 10 ml 
of Hanks' buffer containing (in mmol/l): 137 nacl, 5.37 Kcl, 
4.17 naHco3, 1.26 cacl2, 0.84 MgSo4, 0.44 KH2HPo4, and 
0.34 na2HPo4, pH 7.4) supplemented in 1 Wünsch units/ml 
of liberase dl [0.02% (w/v) collagenase; Roche Diagnostic, 
Germany]. The filled pancreas was immediately cut and 
placed in a Falcon tube containing 3 ml of Hanks' buffer with 
Liberase DL. Samples were digested in a water bath (37˚C) 
for 15 min. This enzymatic process was terminated by the 
addition of 90 ml 10% FcS in Hanks' buffer. Pancreatic islets 
were washed several times in Hanks' buffer until the islet 
preparation was clear. The washing procedure was based on 
mixing the sample and allowing sedimentation of islets for 
3 min. Then, Hanks' buffer with debris was aspirated and 
sedimented islets were retained. Finally, islets were picked by 
pipette and transferred to rPMi-1650 medium supplemented 
with 1% BSa. Then, islets were placed into an incubator for 

regeneration. after 3 h, the islets were ready for use in all the 
described experiments.

Reverse transcription‑quantitative (RT‑q) PCR. Total rna 
was isolated using extrazol (dna Gdansk, Gdansk, Poland). 
one microgram of total rna was reverse transcribed to 
cdna using FireScript rT cdna Synthesis Mix (Solis 
Biodyne, Tartu, estonia). a multiplex rT-qPcr reaction was 
performed using a QuantStudio 12K Flex (Thermo Fisher 
Scientific, Waltham, Ma, uSa). Primers and TaqMan 
probes were from life Technologies (carlsbad, ca, uSa). 
Primers with their applied Biosystems assay ids are as 
follows: Npbw1, Rn01772104_s1; Npb, Rn00596187_g1; Ins1, 
Rn02121433_g1; Ins2, Rn01774648_g1; Gck, rn00561265_
m1; Glut2, Rn00563565_m1; Hnf4α, Rn04339144_m1; 
Mafa, Rn00845206_s1; Pdx1, Rn00755591_m1; Pgc1α, 
Rn00580241_m1; Hprt1, rn01527840_m1. Gene expression 
was evaluated by the 2‑∆∆Cq method; Hprt1 was used as the 
endogenous control.

Western blot analysis. The Western blot procedure was 
performed as previously described (19). Briefly, total protein 
was isolated using riPa buffer containing 50 mmol/l Tris-Hcl 
(pH 8.0), 150 mmol/l nacl, 1.0% nP-40, 0.5% sodium deoxy-
cholate, 0.1% SdS and a protease inhibitor cocktail (roche 
diagnostics). Proteins separated by SdS-PaGe gel electro-
phoresis were transferred into a nitrocellulose membrane and 
non-specific binding was blocked using 5% bovine serum 
albumin in Tris Buffered Saline containing Tween-20 (TBST) 
for 1 h at room temperature (rT). Thereafter, the membrane 
was incubated overnight with primary anti-phosphorylated 
erK1/2 rabbit polyclonal antibody diluted to 1:1,000 at 4˚C. 
after washing in TBST, the membrane was incubated with 
anti-rabbit secondary antibody diluted to 1:5,000 for 1 h at 
rT. Signals were visualized by enhanced chemilumines-
cence (ecl kit, Pierce Biotechnology, rockford, il, uSa). 
Membranes were further stripped and reprobed for total 
erK1/2 and as a loading control GaPdH.

Insulin secretion. inS-1e cells were seeded into 24-well 
plates (1.5x105 cells/well) and cultured for 48 h. Following 
1 h preincubation in glucose-free Krebs-ringer-HePeS 
buffer (KrHB) containing (units: mmo/l) 136 nacl, 4.7 Kcl, 
1 cacl2, 1.2 MgSo4, 1.2 KH2Po2, 2 naHco3, 10 HePeS 
(pH 7.4) and 0.1% free fatty acid BSa, cells were washed with 
KrHB and exposed to 2.8 mmol/l or 16.8 mmol/l glucose in 
KrHB with or without 100 nmol/l nPB for 60 min. doses of 
nPB were chosen based on previous in vitro studies (11,20). 
next, the medium was collected and centrifuged at 250 x g 
for 5 min. insulin content was determined in the superna-
tants using a High range rat insulin eliSa kit (eia-3985, 
drG instruments GmbH, Germany, Marburg). data were 
normalized to protein concentrations determined by a Bca 
Protein Assay kit (Thermo Scientific, Waltham, MA, USA).

In the case of pancreatic islets, groups of five rat pancreatic 
islets of similar size were incubated in KrHB containing 
0.1% free fatty acid BSa with or without 100 nmol/l nPB and 
2.8 or 16.7 mmol/l glucose for 60 min. insulin concentration 
in the incubation medium was measured as described above 
for inS-1e cells.
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Viability and cell proliferation. inS-1e cells were seeded 
into a 96-well plate (4x104 cells/well) and cultured for 48 h. 
after overnight preincubation in serum-free medium, cells 
were incubated in serum-free medium supplemented with 
0.1% free fatty acid BSa and 1, 10 or 100 nmol/l nPB for 
24 or 48 h. Cell viability was determined by an MTT assay; 
cell proliferation was studied using a cell Proliferation 
eliSa Brdu kit (roche diagnostics) according to the manu-
facturer's procedure.

Cell death. inS-1e cells (1.5x105 cells/well) or rat pancreatic 
islets (8 islets/well) were cultured in 24-well plates and treated 
with or without nPB (100 nmol/l) for 48 h. cell death was 
measured by a cell death detection eliSa PluS kit (roche 
diagnostics), according to the manufacturer's protocol.

Statistical analysis. data are presented as the mean ± stan-
dard error of the mean. Statistical analysis was performed 
using GraphPad Prism version 8.0 (GraphPad Software, inc.), 
and either a Student's t-test or one-way analysis of variance 
followed by the Bonferroni post hoc test. each experiment was 
repeated independently at least two times. P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

Npbw1 and Npb mRNA are expressed in INS‑1E cells and 
rat pancreatic islets. Npbw1 and Npb mrna were expressed 
in the hypothalamus (positive control) (4), inS-1e cells and 
isolated rat pancreatic islets. The highest level of Npbw1 
mrna expression was observed in rat pancreatic islets 
(Fig. 1a), while Npb mrna expression levels in the hypo-
thalamus and pancreatic islets were comparable (Fig. 1B). 
expression of npb mrna in inS-1e cells was lower than in 
pancreatic islets (Fig. 1B, P<0.05).

NPB stimulates insulin expression and secretion in INS‑1E cells. 
nPB at 100 nmol/l increased Ins1 mrna expression (in inS-1e 
cells after 24 h (Fig. 2B, P<0.05). in contrast, nPB at all tested 
doses (1, 10 and 100 nmol/l) failed to induce Ins2 mrna 
expression in inS-1e cells after 24 h (Fig. 2B). Furthermore, 
all nPB doses failed to affect Ins1 and Ins2 mrna expression 
assessed in cells incubated for 3 or 48 h (Fig. 2a and c).

in addition, cells treated with 100 nmol/l nPB had 
increased expression of Mafa and Glut2 mrna (Fig. 2d, 
P<0.05). in contrast, nPB had no effects on mrna levels of 
all other tested genes (Fig. 2d). Since 100 nmol/l nPB was the 
most efficient dose at increasing insulin mRNA expression, we 
evaluated the effect of this nPB dose on insulin exocytosis 
in inS-1e cells. nPB increased insulin release at 2.8 and 
16.7 mmol/l glucose (Fig. 2e, P<0.01 and P<0.05). overall, 
these data showed that nPB enhanced insulin mrna expres-
sion and secretion in inS-1e cells.

NPB stimulates Ins1 mRNA expression via ERK1/2‑dependent 
mechanism. erK1/2 modulates insulin mrna expression in 
pancreatic beta cells (21). Therefore, we studied the effects of 
nPB on erK1/2 phosphorylation. nPB (100 nmol/l) stimu-
lated erK1/2 phosphorylation in inS-1e cells after 5 min 
(Fig. 3a, P<0.05).

To study whether erK1/2 mediates the effects of nPB on 
Ins1 mrna levels, we utilized MeK1/2-dependent erK1/2 
phosphorylation blocker u0126 (22). in the presence of u0126 
(10 µmol/l), nPB failed to increase Ins1 mrna expression 
(Fig. 3B). These results show that nPB stimulates Ins1 mrna 
expression via erK1/2.

NPB fails to modulate INS‑1E growth and viability of INS‑1E 
cells. as shown in Fig. 4, nPB at all tested doses (1, 10 and 
100 nmol/l) failed to influence INS‑1E cell viability (Fig. 4A 
and c) or proliferation (Fig. 4B and d) after 24 or 48 h. 
Furthermore, nPB (100 nmol/l) had no effects on inS-1e cell 
death assessed after 48 h (Fig. 4e). These results show that 
nPB is not involved in controlling inS-1e cell proliferation 
and viability.

NPB stimulates insulin secretion but not expression in isolated 
pancreatic islets. To confirm our findings, we studied the 
effects of nPB on Ins1, Ins2 mrna expression, insulin secre-
tion and cell death in isolated pancreatic islets. We found that 
nPB (100 nmol/l) had no effects on insulin mrna expression 
in isolated pancreatic islets after 24 h (Fig. 5a). in contrast, 
nPB (100 nmol/l) enhanced insulin secretion from pancreatic 
islets at 2.8 and 16.7 mmol/l glucose (Fig. 5B, P<0.01 and 
P<0.05). on the other hand, 100 nmol/l nPB did not affect cell 
death in isolated pancreatic islets (Fig. 5c).

Figure 1. Npbw1 and Npb expression in rat pancreatic islets and inS-1e cells. (a) reverse transcription-quantitative Pcr detection of Npbw1 in the hypo-
thalamus (positive control), rat pancreatic islets and inS-1e β-cells. (B) Npb mrna expression in the hypothalamus, rat pancreatic islets and inS-1e β-cells. 
results are presented as the mean ± standard error of the mean (n=6). *P<0.05 and **P<0.01, as indicated. nPB, neuropeptide B.
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Discussion

in the present study, we report that nPB modulates insulin 
secretion and expression in inS-1e cells. Furthermore, we 
demonstrate that nPB stimulates insulin secretion in isolated 
rat pancreatic islets without affecting insulin mrna expres-
sion and beta cell death.

First of all, we found that Npb and its receptor Npbw1 
mrna are expressed in inS-1e cells and isolated rat 
pancreatic islets. The presence of nPBW1 and its ligand in 
insulin-producing cells is in line with previous data demon-
strating that nPB and Npbw1 mrna are expressed in rat 
pancreatic islets (8). The presence of nPB in pancreatic 
islets suggests that this peptide may modulate endocrine cells 

Figure 2. effects of nPB on insulin expression and secretion in inS-1e cells. The expression of Ins1 and Ins2 in cells exposed to nPB (1, 10 and 100 nmol/l) 
for (a) 3, (B) 24 and (c) 72 h. (d) expression of Gck, Glut2, Hnf4α, Mafa, Pdx1 and Pgc1α in inS-1e cells exposed to 100 nmol/l nPB for 24 h. *P<0.05 vs. 
0 nmol/l nPB. (e) insulin secretion evaluated in cells treated with or without 100 nmol/l nPB in the presence of 2.8 or 16.7 mmol/l glucose for 60 min. results 
are presented as the mean ± standard error of the mean (n=5-6). *P<0.05 and **P<0.01, as indicated. nPB, neuropeptide B.
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functions via a paracrine mechanism. However, since our data 
are restricted to mrna expression alone, further studies are 
needed to confirm the presence of NPB on a protein level. 
nevertheless, when discussing the role of the nPB/nPW 
system in pancreatic islets it is worth noticing that there is 
evidence indicating that another ligand of nPBW1 receptor 
nPW peptide has been detected with beta cells in rat pancre-
atic islet (23).

expression and secretion of insulin from pancreatic beta 
cells are modulated by a variety of nutritional factors, among 
which glucose plays the essential role (24). However, there is 
emerging evidence that numerous appetite-controlling peptides 
significantly contribute to these processes as well (25‑27). 
Therefore, we studied the influence of NPB on insulin mRNA 
expression. We found that nPB increased Ins1 but not Ins2 
mrna expression in inS-1e cells exposed to nPB for 24 h. 
notably, these effects were not detected in cells exposed to 
nPB for 3 or 48 h, which clearly indicates that the effects of 
nPB are strictly time-dependent. it cannot be excluded that 
the lack of an effect on Ins1 mrna expression in long-time 

incubations with nPB was due to the receptor desensitization 
which can be caused by prolonged exposition of GPcr to their 
ligands (28).

To explore the mechanism by which nPB increases Ins1 
mrna expression we assessed its effect on the expres-
sion of genes involved in insulin mrna expression and 
beta cell metabolism: Gck, Glu2, Hnf4α, Mafa, Pdx1, 
Pgc1α (14,24,29,30). We found that nPB enhanced Mafa 
and Glut2 mrna expression only in inS-1e cell. Previous 
data showed that in pancreatic beta cells the transcrip-
tion factor Mafa stimulates insulin mrna expression in a 
glucose-dependent manner (31). Since nPB also stimulated 
the expression of the main glucose transporter Glut2 in 
rodent beta cells (32), the intracellular glucose content may 
increase which, in turn, may lead to stimulation of Mafa, 
with concomitant upregulation of insulin mrna expression. 
Previous data have demonstrated that binding of Mafa to the 
glucose-responsive a2c1 element of the insulin gene promoter 
depends on erK1/2 activation (33). intracellular cascades 
downstream of nPBW1 are poorly characterized. However, 
it has been found that nPB stimulates adrenocortical carci-
noma-derived nci-H295 cells growth via erK1/2-dependent 
mechanism (34). Thus, we examined the effects of nPB on 
erK1/2 phosphorylation. our data show that nPB stimulates 
erK1/2 phosphorylation in inS-1e cells. Furthermore, we 
found that the MeK1/2-dependent erK1/2 phosphorylation 
blocker u0126 (22) completely blunted the effects of nPB 
on Ins1 mrna expression. overall, these results suggest that 
erK1/2 activation is required to induce Ins1 mrna expres-
sion in response to nPB treatment.

an open question is why nPB stimulates Ins1 mrna 
expression alone. notably, there is evidence suggesting the 
independent regulation of Ins1 and Ins2 mrna expres-
sion (35). For example, a mouse study showed that Ins1 
but not Ins2 mrna expression is altered by glucose (36). 
Furthermore, different transcriptional regulation of Ins1 and 
Ins2 mrna expression was also reported. For example, mice 
lacking the neurod transcription factor had reduced Ins1 but 
not Ins2 mrna expression (37). Moreover, it was shown that 
Mafa knockout (Ko) mice had suppressed Ins1 but not Ins2 
mrna expression comparing with wild type animals (38). 
Thus, nPB may stimulate expression and/or activity of tran-
scription factors (e.g., Mafa) which are predominantly involved 
in controlling Ins1 but not Ins2 mrna expression.

in addition, our study demonstrates that nPB stimulates 
insulin secretion from inS-1e cells. These effects were 
observed at low (2.8 mmol/l) as well as at high (16.7 mol/l) 
glucose concentrations. These results are comparable with 
previous studies indicating that activation of the nPBW1 
receptor leads to increased insulin secretion in rat islets (23). 
dezaki et al (23) reported that nPW stimulates insulin release 
from pancreatic islets; however, this effect was detected 
at 8.3 mM glucose only and not at 2.8 mM. in this respect, 
nPB has a higher potency at activating nPBW1 receptor as 
compared to nPW (39). Thus, this may partially explain the 
ability of nPB to enhance glucose release even at low glucose 
concentrations.

our study lacks an exploration of the mechanism by which 
nPB triggers insulin exocytosis in beta cells. However, studies 
on nPW have shown that this peptide stimulates intracellular 

Figure 3. effects of nPB on erK1/2 phosphorylation in inS-1e cells. 
(a) erK1/2 phosphorylation in inS-1e exposed to 100 nmol/l nPB for the 
indicated time points. *P<0.05 vs. 0 min. (B) expression of Ins1 mrna in 
cells treated with or without nPB (100 nmol/l) alone or in the presence of 
u0126 (10 µmol/l) for 24 h. results are presented as the mean ± standard 
error of the mean (n=5-6). *P<0.05, as indicated. NPB, neuropeptide B; p‑, 
phosphorylated.
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calcium influx in rat beta cells via voltage‑gated L‑type chan-
nels (23). Since both nPW and nPB interact with the same 
type of receptor (nPBW1) (39), this strongly suggests that 
nPB may increase insulin secretion by activating the same 
type of calcium channels.

Type 1 and type 2 diabetes are characterized by a loss of 
beta cells (40). Identification of new molecular targets able to 
protect beta cells from death and promote their replication is 
of clinical importance (41). Therefore, we assessed the effects 
of nPB on inS-1e cell growth and death. However, we found 
that nPB did not influence inS-1e cell growth, viability 
or death. The role of nPB receptor signaling in controlling 
mitogenesis and cell death is poorly characterized so far. nPB 
suppresses proliferation of rat calvaria osteoblast-like cells 

in vitro (42). on the other hand, nPB potentiates growth of 
rat adrenocortical cells (43). overall, these results suggest 
that the effects of NPB on cell proliferation are cell‑specific. 
nevertheless, it should be kept in mind that in our study we 
used INS‑1E insulinoma cells; therefore, the potential influ-
ence of nPB on primary beta cell replication remains to be 
studied in the future.

Finally, to study the relevance of our findings in more 
physiological settings, we tested whether nPB is involved 
in insulin expression, secretion and cell death in isolated rat 
pancreatic islets. We found that nPB increased insulin secre-
tion without affecting insulin mrna expression or cell death. 
Therefore, nPB may be a physiological modulator of insulin 
exocytosis alone. However, it must be noticed that our study is 

Figure 4. effects of nPB on the viability, proliferation and cell death of inS-1e cells. cell viability and proliferation measured by formazan production and 
Brdu incorporation, respectively, in cells exposed to nPB (1, 10 or 100 nmol/l) for (a and B) 24 or (c and d) 48 h. (e) cell death was evaluated after 48 h 
incubation with 100 nmol/l NPB. Results are presented as the mean ± standard error of the mean (n=6‑8). NPB, neuropeptide B; OD, optical density; BrdU, 
5-bromo-2'-deoxyuridine.
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limited to static incubation of pancreatic islets. Furthermore, 
pancreatic islets release other endocrine factors in addition to 
insulin (44), which in turn may affect insulin mrna expres-
sion. For example, it has been shown that somatostatin which 
is produced in pancreatic delta cells is able to suppress tran-
scription of the insulin gene (45). in addition, established beta 
cell lines display different ion channel expressions, glucose 
sensitivity and numerous aspects of cellular physiology that 
may differ from those of native beta cells (46,47). Therefore, 
our results derived from beta cell lines need to be interpreted 
cautiously. Experiments utilizing purified primary beta cells 

and/or in vivo experiments should answer the questions about 
the role of nPB in primary beta cell physiology.

in conclusion, we found that nPB stimulates insulin 
mrna expression via an erK1/2-dependent mechanism. 
Furthermore, we demonstrated that nPB stimulates insulin 
secretion in inS-1e cells and isolated rat pancreatic islets.
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