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Abstract. Fibrosis is characterized by excessive extracellular 
matrix (ECM) deposition, and is the pathological outcome of 
tissue injury in a number of disorders. Accumulation of the 
ECM may disrupt the structure and function of native tissues 
and organs, including the lungs, heart, liver and skin, resulting 
in significant morbidity and mortality. On this basis, multiple 
lines of evidence have focused on the molecular pathways 
and cellular mechanisms involved in fibrosis, which has led 
to the development of novel antifibrotic therapies. CD248 is 
one of several proteins identified to be localized to the stromal 
compartment in cancers and fibroproliferative disease, and 
may serve a key role in myofibroblast generation and accumu-
lation. Numerous studies have supported the contribution of 
CD248 to tumour growth and fibrosis, stimulating interest in 
this molecule as a therapeutic target. In addition, it has been 
revealed that CD248 may be involved in pathological angiogen-
esis. The present review describes the current understanding 
of the structure and function of CD248 during angiogenesis 
and fibrosis, supporting the hypothesis that blocking CD248 
signalling may prevent both myofibroblast generation and 
microvascular alterations during tissue fibrosis.
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1. Introduction

Fibrosis is defined by the overgrowth, hardening and/or 
scarring of various tissues, and is responsible for the exces-
sive deposition of extracellular matrix (ECM) proteins, 
including collagen (Col), fibronectin (FN) and hyaluronan, 
in the surrounding tissues  (1,2). Fibrosis affects a number 
of different organ systems and is the hallmark of fibropro-
liferative diseases (FPDs) such as systemic sclerosis (SSc), 
liver cirrhosis, kidney fibrosis and interstitial lung disease (2). 
Given that various diseases are associated with the same 
fibrotic changes in different organ systems, the involvement 
of common pathogenic pathways may be speculated  (3). 
Furthermore, it is well documented that fibrosis may cause 
progressive organ dysfunction and lead to significant morbidity 
and mortality  (2‑6), highlighting the requirement for new 
therapeutic targets. However in the past decade, the results of 
several promising early‑phase studies of anti‑fibrotic therapies 
have not been confirmed in large randomised clinical trials, in 
terms of both expected efficacy and unexpected side‑effects; 
this has revealed a knowledge gap, particularly in the field of 
immune‑associated tissue fibrosis (3). 

The key pathogenic mediator in FPDs is the myofibro-
blast  (7‑12), which is responsible for ECM synthesis and 
remodelling. Notably, myofibroblasts may originate from 
different cellular sources; endothelial cells (ECs) and pericytes 
originate from the microvasculature and epithelium of organs 
such as the lung, and may lose their tissue‑specific markers and 
trans‑differentiate into myofibroblasts (2,13). The process of 
trans‑differentiation is believed to be initiated by transforming 
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growth factor‑β (TGFβ), and the recruitment of ECs into injured 
tissue may be ECM protein‑dependent (14‑16). In addition, a 
strong correlation has been revealed between microvascular 
dysregulation and fibrosis (2); in fact, abnormal microvascu-
lature structure is a characteristic of FPDs that is associated 
with endothelial swelling, necrosis, pericyte detachment and 
thickening of the vascular basement membrane (17‑19). 

CD248 (also known as endosialin and TEM‑1) is considered 
to be a specific marker of fibrosis. It is localized to fibroblasts 
and pericytes in FPDs and cancer, serving a pivotal role in 
tissue remodelling and repair (20,21). Given its high expres-
sion level in different types of tumours, numerous studies have 
evaluated its role in angiogenesis despite the hypothesis that 
CD248, by interaction with the ECM, may enhance the inva-
siveness of cancer cells (22‑24). The role of CD248 has also 
been investigated in FPDs; a number of in vitro studies have 
illustrated the interplay between CD248 and several profi-
brotic molecules, including TGFβ, platelet‑derived growth 
factor subunit B (PDGF‑BB) and ECM proteins, which were 
the basis for further in vivo investigations of fibrosis (25‑28). 
Additionally, CD248 was over‑expressed in the lungs of 
patients with pulmonary (29) and hepatic fibrosis (30,31); in 
this context, the genetic loss of CD248 significantly reduced 
both microvascular rarefaction and fibrosis via the modulation 
of pericyte and stromal cell function in experimental models 
of kidney (32) and hepatic fibrosis (30,31,33). Therefore, it 
has been suggested that CD248 over‑expression may serve an 
important role in fibrosis, and that it may be considered as a 
possible therapeutic target (21,32‑34).

In the present review, current understanding of the struc-
ture and function of CD248 has been described, and the role 
of CD248‑associated pathological angiogenesis assessed. 
Additionally, the role of CD248 in the pathogenesis of FPDs 
has been highlighted, indicating that CD248 inhibition may 
potentially modulate both microvascular alterations and 
myofibroblast generation during tissue fibrosis.

2. CD248 structure

CD248 is a heavily glycosylated, single‑pass transmembrane 
protein that was initially identified as an overexpressed cell 
surface marker in the cancer vasculature (35,36). It has subse-
quently been revealed that CD248 is expressed by pericytes 
and not by the underlying ECs (37). CD248 is regarded as a 
mesenchymal marker involved in the regulation of cellular 
proliferation (33,37), and is expressed on mesenchymal stem 
cells (MSCs), fibroblasts, pericytes, smooth muscle cells and 
osteoblasts  (21,26,38). The 2,274 bp human CD248 gene 
does not contain introns and is localized to the long arm of 
chromosome 11 (11q13); it has a 2,274 bp‑long open reading 
frame which encodes a 757 amino acid type I transmembrane 
protein (39). CD248 is also a C‑type lectin‑like protein with 
a signal leader peptide, 5 globular extracellular domains 
consisting of a C‑lectin domain, one domain similar to the 
Sushi/ccp/scr pattern and three EGF repeats, followed by 
a mucin‑like region, a transmembrane segment and a short 
cytoplasmic tail  (40). Its extracellular N‑terminal domain 
(360 amino acids in length) shares structural and sequence 
homology with thrombomodulin (CD141) and C1qRp 
(CD93) proteins (39,41,42). The cytoplasmic tail of CD248 

contains a putative PSD‑95/Discs‑large/ZO‑1 (PDZ) binding 
domain (42,43), which is involved in protein‑protein interac-
tions and acts as an adaptor molecule, holding receptor and 
signalling molecule in large protein complexes (40). Notably, 
the cytoplasmatic domain of CD248 is highly conserved 
among different vertebrate species (Fig. 1). Structural homolo-
gies to receptor proteins suggest that CD248 may be a cell 
surface receptor  (44), and previous molecular and cellular 
studies have demonstrated that CD248 selectively binds the 
ECM proteins FN, ColI and ColIV; in fact, engineered cells 
expressing CD248 exhibit enhanced adhesion to FN and 
migration through an FN‑enriched cancer matrix (40), which 
are suppressed by anti‑CD248 antibodies (44). FN, ColI and 
IV bind to the ectodomain of CD248, promoting cell attach-
ment and migration during cancer invasion by stimulating the 
release of active matrix metalloproteinase (MMP)‑9 (40,42). 
Furthermore, CD248 may bind the endothelial‑specific ECM 
protein multimerin‑2 (MMRN2)  (45), which is typically 
deposited along blood vessels and serves anti‑(46‑48) and 
pro‑(49) angiogenic roles, depending on the specific step of 
vessel development involved. Moreover, CD248‑MMRN2 
complexes may bind to CD93 expressed on the surface of ECs, 
where MMRN2 acts as an ‘extracellular glue’ between ECs 
and pericytes/fibroblasts.

3. Physiologic role of CD248

A primary feature of CD248 is its temporal pattern of expres-
sion during development, which is high in the embryo and 
progressively diminished postnatally (40). In line with this, 
CD248 may be functionally involved not only pathologically, 
but also in physiological angiogenesis (50). In the embryonic 
mouse, CD248 is predominantly expressed on stromal fibro-
blasts and cells of the developing vasculature (51‑53). It is also 
expressed to greater degree on fibroblasts closely associated 
with epithelial structures, such as those adjacent to immature 
alveoli in the embryonic lung and the dermal condensate of 
developing skin  (51). Furthermore, it has been shown that 
gene knockout (KO) mice may develop with a lack of CD248 
expression altogether (23), thus CD248 may be redundant in 
certain physiological mechanisms. Rupp et al (52) showed that, 
at embryonic stage E10.0, CD248 was expressed in the ECs of 
the dorsal aorta. During stages E10.5 and E12.0, a prominent 
CD248+ perineural vascular plexus may develop in the head 
region, and angiogenic sprouts may be generated from the 
perineural plexus to invade the proliferating neuroectoderm. 
At stage E12.0, the vascular network is significantly devel-
oped throughout entire embryo; during stages E13.5‑E14.5, 
CD248 may be expressed in clusters of mesenchymal cells in 
the head region and in the developing genitourinary system. 
Furthermore, CD248 expression is observed in the lung and 
salivary glands, where CD248+ fibroblast‑like cells have 
been reported at the epithelial‑mesenchymal interface. By 
late‑gestation, clusters of CD248+ mesenchymal cells are 
present in the mucosa of the gastric cavity, in the dermis and 
in the area separating the skeletal muscle fibres (41,52,53). In 
healthy adult mice, CD248 is undetectable in all blood vessel 
types of the organs and tissues examined, with the excep-
tion of scattered stromal fibroblasts of the uterus and ovary, 
specialized cells of the kidney glomeruli and bone marrow 



Molecular Medicine REPORTS  20:  1488-1498,  20191490

fibroblasts (41,52) (Table I). This may reflect the dynamic 
remodelling of the uterus during this period, which closely 
resembles that in embryonic tissues (52‑54).

4. CD248 molecular function

As aforementioned, CD248 is involved in the fibro‑prolifer-
ative process by modulating the PDGF‑BB (24) and TGFβ 
pathways, and promoting alpha smooth muscle actin (αSMA) 
expression  (25,27). On this basis, CD248 may induce the 
proliferation of both pericytes and fibroblasts following tissue 
injury, resulting in myofibroblast accumulation. CD248 could 
potentially alter PDGF‑BB signalling, acting downstream of 
its receptor (PDGFR) to induce the proliferation of pericytes 
following fibrotic tissue damage. Furthermore, a high expres-
sion level of CD248 may induce TGFβ signalling. Recent 
studies have highlighted the importance of the TGFβ‑CD248 
signalling pathway as a potential therapeutic target for cancer 
and FPDs such as SSc. These studies revealed that the expres-
sion of CD248 by non‑cancerous cells of mesenchymal origin 
was downregulated at both the transcriptional and protein level. 
On the contrary, in a pathological setting characterized by 
higher CD248 expression levels, TGFβ failed to downregulate 
the expression level of CD248 (25,28). Suresh Babu et al (28) 
speculated that CD248 may be one of the TGFβ‑effector 
molecules that undergoes context‑dependent switching (55‑58). 
Moreover, it has been reported that the increased expression of 
CD248 may upregulate the expression of various other genes, 
including IL6, CCL2, TGFβ1 and TGFβR1 (22,59), which 
may stimulate αSMA and ColI‑associated myofibroblast 
generation. In addition, TGFβ was unable to induce αSMA 
expression in CD248‑silenced pericytes (25,27).

Conflicting results have been reported concerning the 
expression of different smooth muscle‑associated genes during 
fibroblast proliferation and activation. Transcript expression 
levels of transgelin were shown to be elevated in fibroblasts 
derived from mice lacking the cytoplasmatic domain of 

CD248 (40). In addition, CD248 knock‑out did not affect the 
in vitro expression of αSMA in normal human lung fibro-
blasts (29). Furthermore, in a model of renal fibrosis, no increase 
in αSMA expression level was observed in CD248‑deficient 
mice (32), and in an experimental model of liver fibrosis, the 
total hepatic mRNA levels of Col and αSMA were reduced in 
CD248‑deficient, compared with wild‑type (WT) mice (33). 
These discrepancies may be partially explained by the use of 
different experimental models, and the reported differences in 
cell manipulation.

As far as its angiogenic role is concerned, CD248 may 
promote the interaction between ECs, pericytes and fibro-
blasts via MMRN2. In fact, EC‑expressed CD93 may bind 
to MMRN2 present in the ECM, which in turn binds CD248 
expressed by fibroblasts or vasculature‑associated pericytes. 
CD93 also serves a pivotal role in endothelial migration and 
tube formation; CD93‑deficient mice displayed defects in 
angiogenesis (60) and the CD93‑binding fragment of MMRN2 
exhibited anti‑angiogenic effects, presumably by disrupting 
its normal function (47). In this context, pericyte‑expressed 
CD248 may promote EC apoptosis via MMRN2. 
Simonavicius et al (61) speculated that CD248 was able to 
bind to the vascular basement membrane, directly disrupting 
EC adhesion to the matrix. Alternatively, matrix‑bound 
CD248 may impair cross‑talk between endothelial integrins 
and vascular endothelial growth factor receptor 2 (VEGFR2), 
resulting in the attenuation of vascular endothelial growth 
factor (VEGF) signalling and subsequent EC apoptosis. These 
findings are summarized in Fig. 2.

5. CD248 and cancer angiogenesis

The Analysis of CD248 expression in 250 clinical specimens 
(158 carcinomas and 92 sarcomas), revealed that 19 out of the 
20 cancer subtypes in question had CD248‑positive speci-
mens (62). Regarding its expression pattern in cancer tissues, 
where the formation and reorganisation of blood vessels 

Figure 1. Schematic of the structure of CD248 and the amino acid sequence of the cytoplasmic domain. (A) The human CD248 protein comprises a signal‑leader 
peptide (blue triangle), 5 globular extracellular domains [a C‑lectin domain (red), a Sushi domain (yellow) and 3 EGF repeats (green)], a mucin‑like region 
(yellow), a transmembrane segment (grey) and a short cytoplasmic tail (brown); the cytoplasmic tail contains a PDZ binding domain. (B) Sequence of the 
human CD248 protein reported in the National Centre for Biotechnology Information database, compared with that of Mus Musculus, Rattus norvegicus and 
Canis lupus dingo. Amino acid differences between sequences are indicated in yellow. EGF, epidermal growth factor; PDZ, PSD‑95/Discs‑large/ZO‑1.
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occurs at a high rate, CD248 has been proposed to be a poten-
tial target of antiangiogenic cancer therapy (21,22,61). In vitro, 
Brett et al (63) demonstrated that the CD248+ subpopulation 
within the lipoaspirate stromal vascular fraction (SVF) showed 
an increased expression of angiogenic genes. The authors 
speculated that CD248+ pro‑angiogenic cells obtained from 
SVF could represent a suitable strategy in wound healing by 
promoting increased vessel growth in the wound. In line with 
this, CD248‑deficient mice displayed a specific defect in the 
early stage of angiogenesis during muscle remodelling (64). 
Facciponte et al (65) developed a DNA vaccine that expressed 
full‑length mouse Tem1 cDNA fused to a TT adjuvant; 
immunization with the Tem1‑TT vaccine reduced tumour 
vasculature compared with the control vaccine, as determined 
by microvasculature density, functional imaging (ultrasound 
imaging of blood perfusion and blood flux) and haematocrit 
levels. However, conflicting results have been reported; 
Nanda  et  al  (23) illustrated that abdominally‑implanted 
cancers proliferated significantly more slowly in CD248‑KO 
mice than in their WT counterparts, but that the number of 
small blood vessels was increased in the KO mice. Similarly, 
murine brain tumours from the CD248‑KO animals possessed 
~40% more vessels than tumours extracted from WT mice (41). 
The authors speculated that CD248 served a critical role in 
determining cancer progression, and that the increase in small 
blood vessels observed in the stroma of CD248‑KO mice may 
represent the pro‑angiogenic response to an abnormal micro-
environment (23,28,66,67). Furthermore, CD248 is expressed 
predominantly on cells which line the blood vessels, but is also 
detectable in fibroblast‑like stromal cells (23); the authors did 
not elucidate whether the effects of CD248 disruption were 
due its absence in blood vessels or fibroblast‑like stromal cells. 
It is possible to speculate that the effects of CD248 expres-
sion on cancer progression may also be associated with its 
absence in the fibroblastic stroma. The interaction between 

the stroma and cancer cells may induce the expression of 
ECM proteins, MMPs and growth factors (68), thus facili-
tating invasiveness by stimulating the growth of irregular and 
tortuous new vessels (69‑71). Viski et al (24) revealed that in 
3 different preclinical models, upregulated CD248 expression 
levels may have promoted cancer cell intravasation into the 
circulation, facilitating interactions with perivascular cells 
and promoting transmigration across the endothelium. In this 
study, impaired cancer cell intravasation in CD248‑KO mice 
was not associated with vascular alterations, suggesting that 
CD248 inhibition in cancer has minimal impact on vascular 
integrity. Concurrently, treatment of syngeneic cancer‑bearing 
human‑CD248 knock‑in mice with the anti‑human endosialin 
antibody MORAb‑004 did not lead to a reduction in vessel 
number or destabilization of the vasculature, but significantly 
impaired cancer cell proliferation following subcutaneous or 
intravenous inoculation (24,27).

Another consideration is to clarify the phase of angiogen-
esis that CD248 is associated with. Physiological angiogenesis 
is initiated in response to the local production of pro‑angio-
genic factors (particularly VEGF‑A), which promotes vascular 
sprout formation by the induction and migration of leading 
tip cells, and by stimulating the proliferation of neighbouring 
stalk cells. After sprouting, the initial vascular plexus is 
extensively remodelled. A pivotal feature of this remodel-
ling is the pruning of unwanted capillaries through selective 
branch regression (61). CD248 may serve a primary role in 
vascular pruning, promoting vessel regression and apoptosis 
of redundant ECs  (61). The capillary regression resulting 
from the apoptosis of ECs marks the end of vessel plasticity 
and reflects the quiescent, mature state of the new vascular 
network (61,72). In pathological conditions in which CD248 is 
overexpressed, it is possible that the remodelling and pruning 
of new vessels may be increased, promoting the formation of 
irregular, tortuous and leaky blood vessels. Of note, retarding 

Table I. Murin CD248 expression pattern from pre‑natal stage (E) until adult stage.

	 Pre‑natal
Author, year	 stage (E)	E xpression pattern	 (Refs.)

Rupp et al, 2006	E 10.0 	CD 248 expression could be observed in the endothelial cells 	 (52)
		  of the dorsal aorta.	
Valdez et al, 2012	E 10.5‑E12.0	CD 248 expression could be observed in the perineural vascular	 (41)
		  plexus and in the angiogenic sprouts, invading the proliferating
		  neuroectoderm
Valdez et al, 2012; 	 E13.5‑E14.5	 CD248 could be expressed in clusters of mesenchymal cells, in 	 (41,52,53)
Rupp et al, 2006; 		  the head region, in the genitourinary system, in the lungs and 
MacFadyen et al, 2007		  in the salivary gland. By late‑gestation, CD248 could be expressed
		  in the mucosa of the gastric cavity, in the dermis and in the area
		  separating skeletal muscle fibres
Valdez et al, 2012; 	 Adult	 CD248 was undetectable in all the blood vessels of the organs and	 (41,52)
Rupp et al, 2006		  tissues examined, except for scattered stromal fibroblasts of the
		  uterus and ovary, specialized cells of the kidney glomeruli and
		  bone marrow fibroblast

Where E refers to the number of days post‑conception. 
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CD248 function may prevent vasculature remodelling during 
cancer (72), resulting in more stable vessels. This would be 
advantageous in the treatment of cancer, allowing efficient 
delivery of therapeutics and increasing the responsiveness to 
VEGF inhibition (61,71). Furthermore, during FPDs character-
ized by microvascular alteration, blocking CD248 may prevent 
endothelial damage, inhibiting vessel remodelling towards 
myofibroblasts generation (32). In addition, hypoxia (a primary 
promoter of angiogenesis) regulates CD248 gene transcription 
via the HIF‑2 transcription factor (73). It is possible to specu-
late that in fibrotic tissues with impaired angiogenesis, hypoxia 
may further stimulate CD248 over‑expression, resulting in 
the exacerbation of microvascular damage from excessive 
CD248‑mediated pruning (61,74,75).

6. CD248 and microvascular damage

Although CD248 has been proposed as a potential target of 
antiangiogenic cancer therapy, blocking CD248 did not lead 
to a reduction in vessel number, though did prevent cancer 
stromal cell interaction with vessels  (23,24). Notably, in 
pathological fibrosis, CD248 inhibition may even reverse 
microvascular damage  (30‑33). In fact, it has been shown 
that CD248+ pericytes may promote EC apoptosis, resulting 
in the attenuation of VEGF signalling  (61). In a previous 
study (61), the authors investigated the potential mechanism 
by which CD248+ pericytes promote vessel regression, via 
the generation of a soluble CD248‑Fc construct cultured with 
ECs; ECs exhibited attenuated VEGF‑mediated signalling 
with reduced VEGFR2 Tyr1175 and ERK1/2 phosphoryla-
tion. Furthermore, flow cytometric analysis highlighted an 

increase in apoptotic ECs compared with cells cultured with a 
control Fc construct, suggesting a potential role for CD248. In 
another experimental model, HeLa cells were transfected with 
the phCMV1‑CD248 plasmid; as a consequence, the genes 
involved in cell‑cell communication, adhesion and motility 
(Ang‑2, Angiopoietin‑like 3 and 4, IL‑1β, EGF, TGF‑β 
receptor, Ephrin‑A3, Neuropilin 1) were upregulated, while 
VEGF‑A expression levels were significantly decreased (22). 

Using an animal model of renal fibrosis, following unilat-
eral ureteral obstruction (UUO)‑associated kidney injury, 
Smith et al (32) showed that the genetic deletion of CD248 
protected mice from microvascular rarefaction. Prior to UUO 
injury, there was no difference in the size of the vessel area 
between WT and KO mice. However, following kidney injury 
in WT mice, there was an initial increase in vessel density 3 
days post‑injury, followed by progressive vascular regression 
up to 14 days post‑injury. These results suggested an early 
phase of reparative angiogenesis followed by vascular regres-
sion (microvascular rarefaction). Conversely, CD248‑KO mice 
did not exhibit an early phase of reparative angiogenesis, and 
the kidneys of these animals were protected from vessels loss 
in response to UUO injury (32). 

Despite the fact that the exact mechanism by which 
CD248‑expressing cells contribute to microvascular rarefaction is 
not fully elucidated, CD248 may bind the ECM proteins FN, ColI, 
ColIV, and MMRN2 (26,46) in fibrotic tissues. Furthermore, the 
absence of CD248 may reduce the interaction between pericytes, 
ECM proteins and stromal fibroblasts, preventing migration from 
the vasculature into the tissue stroma, and subsequent myofibro-
blast generation. In turn, this would result in reduced stromal 
fibrosis and microvascular rarefaction (32). 

Figure 2. Hypothetical model of CD248 functions. CD248 expressed by fibroblasts or vasculature‑associated pericytes may bind MMRN2, which may in 
turn bind CD93 expressed by ECs. This presents a scenario where MMRN2 may allow for the connection between ECs and pericytes during vessel formation 
and maturation. In a pathological setting in which it's expression levels may be increased, CD248 may exacerbate vessel pruning, resulting in increased EC 
apoptosis, preventing VEGF‑A pathway activation and inhibiting pericyte‑EC interactions. In perivascular cells and fibroblasts, the upregulation of CD248 
may also promote the expression of genes stimulating the TGFβ pathway, leading to αSMA expression and Col release into tissues, resulting in ECM accumula-
tion and fibrosis. Furthermore, CD248 may establish a hypothetical interaction with PDGFR which may be responsible for cellular proliferation. MMRN2, 
endothelial‑specific ECM protein multimerin‑2; ECM, extracellular matrix; EC, endothelial cells; VEGF‑A, vascular endothelial growth factor‑A; TGFβ, 
transforming growth factor‑β; αSMA, α‑smooth muscle actin; PDGFR, platelet‑derived growth factor receptor; PDGF‑BB, platelet‑derived growth factor 
subunit B; TGFR, transforming growth factor‑β receptor.
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Previously, Khan  et  al  (46) demonstrated that ECs 
expressing CD93 may bind MMRN2 in the ECM, which in 
turn is bound by CD248 expressed by fibroblasts or vascu-
lature‑associated pericytes. CD248 binds MMRN2 in the 
133‑486 region, whereas CD93 binds in the 530‑624 region. 
Binding both CD93 and CD248, MMRN2 may promote 
the interaction between pericytes, ECs and ECM protein, 
potentially retarding angiogenic sprouting by sequestering 
VEGF‑A and disrupting the VEGF/VEGFR2 signalling 
axis  (46,48,49,76). On the contrary, Khan  et  al  (46) and 
Zanivan et al (77), described MMRN2 as a pro‑angiogenic 
molecule, though these conflicting roles may be associated 
with different experimental conditions.

7. CD248 and fibrosis

FPDs are able to cause significant morbidity and mortality 
in affected patients (1,2,78), thus the development of novel 
therapies are still required (79‑81). For this reason, gaining a 
greater understanding of the origin and differentiation path-
ways of myofibroblasts in vivo is a priority. In this context, 
recent studies (82‑87) have suggested a role for mesenchymal 
perivascular cells (88); these cells have held various names 
including mural cells and pericytes, and several of their func-
tions remain largely unknown. Dulauroy et al (89) used genetic 
studies in mice to map the fate of neural crest cell‑derived 
embryonic mesenchymal cells that expressed A disintegrin and 
metalloprotease isoform 12 (ADAM12). It was observed that 
fetal ADAM12+ cells contributed to the generation of perivas-
cular cells in adult skeletal muscle. In fact, a subset of these 
cells derived from the ADAM12+ lineage expressed pericyte 
markers and lined the capillaries. Following fibrotic injury, the 
reactivation of ADAM12+ cells stimulated ontogenetic signal-
ling to restore vascular integrity. ADAM12+ cells were shown 
to be significantly increased in the perivascular skin cells of 
SSc, a model of chronic FPDs, suggesting that myofibroblasts 
may originate from perivascular cells  (83). Therefore, the 
investigation of novel targets involved in pericyte‑to‑myofi-
broblast transition may reveal therapeutic possibilities for 
FDPs. It has also been shown that CD248+ perivascular cells 
may serve a role in myofibroblast generation. In fact, CD248 
expression is required for TGFβ‑induced αSMA expression on 
normal human pericytes, in addition to that on the perivascular 
MSCs of patients with SSc (25,27). Furthermore, in injured 
fibrotic kidney tissue exhibits increased CD248 expression 
within a CD248+/αSMA+ subpopulation of myofibroblasts, 
in addition to a population of CD248+/αSMA‑stromal fibro-
blasts. Notably, a subset of CD248‑/αSMA+ myofibroblasts 
was also identified, emphasizing the heterogeneity of these 
cells in fibrotic kidney tissues (32). Of note, Smith et al (32) 
demonstrated that CD248‑deficient mice were protected 
from renal fibrosis, illustrating a pathogenic role for CD248 
in the development of renal fibrosis. In this context the loss 
of CD248 may modulate the response of renal pericytes 
and stromal fibroblasts to UUO injury. Although the precise 
mechanism has not been fully elucidated, it has been revealed 
that the genetic loss of CD248 significantly reduced the forma-
tion of matrix‑depositing myofibroblasts in response to renal 
injury by UUO, with a subsequent decrease in tissue fibrosis. 
However, it should be clarified whether the reduction in stromal 

myofibroblasts and pericytes in CD248‑deficient mice was the 
result of impaired migration or a specific proliferative defect 
in vivo. PDGF‑BB/PDGFR signalling between ECs and peri-
cytes has been shown to be important for vascular stabilization 
following kidney injury (26,90‑92), indicating that CD248 
may exert its effects by modulating the PDGF‑BB pathway. 
Furthermore, PDGF‑induced autophosphorylation of extracel-
lular signal‑regulated kinase (ERK; but not PDGFR itself) 
was markedly diminished in CD248‑deficient pericytes (26). 
These findings suggest that CD248 may perturb PDGF signal-
ling downstream of PDGFR and upstream of ERK1/2, by an 
as yet unidentified mechanism. CD248 may therefore promote 
the proliferation of pericytes after injury, as they differentiate 
into Col‑secreting myofibroblasts (26,93).

Studies of hepatic fibrosis revealed that CD248 promoted 
fibrosis by enhancing a PDGF pro‑proliferative signal to 
hepatic stellate cells  (33). Combined with the established 
roles of the PDGF signalling axis in renal fibrosis (93), the 
CD248‑associated enhancement of PDGF signalling may be 
speculated in pericytes during fibrosis. 

8. Myofibroblast origin in cancer and the role of CD248

In order to identify the source(s) of αSMA‑positive myofi-
broblasts in different pathological conditions, fibrosis and 
cancer development, a number of cell tracing studies were 
performed (94). In response to both injury and dysregulated 
tissue homeostasis, local fibroblasts were able to undergo 
trans‑differentiation to myofibroblasts, and activation in the 
skin, liver, lung, heart and kidney, and in the stromal reaction to 
epithelial tumours (95,96). Epithelial mesenchymal transition 
is another mechanism of myofibroblast generation from local 
epithelial layers during cancer development (97,98), mirroring 
what observed in kidney (99) and lung fibrosis (100,101). In 
addition, the de‑differentiation of perivascular cells into 
ECM‑producing cells may contribute to myofibroblast devel-
opment and function (102). Furthermore, a number of studies 
have reported that bone marrow MSCs and hematopoietic 
stem cells may be the precursors of myofibroblasts (103,104). 
Independent of this speculation, few essential factors are 
required for the activation of myofibroblasts. TGFβ is the 
most potent myofibrogenic growth factor, and the inhibition of 
cancer cell responsiveness to TGFβ has metastasis‑suppressing 
effects (105). Another important factor in myofibroblast acti-
vation is the mechanical stress resulting from remodelling 
activities in the stroma, and the mechanical properties of the 
ECM (106,107). The activation and differentiation of stromal 
cells into cancer‑associated myofibroblasts has consequences 
for tumour development, progression and metastasis (108). 
Fibrosis and cancer are known to be intimately linked and 
myofibroblast activation may serve a pivotal role in cancer 
chemoresistance  (109,110). Also, a dense fibrotic stroma 
correlated with a poor response to neoadjuvant treatments, 
including 5‑fluorouracil epirubicin and cyclophosphamide 
(FEC) in breast cancer, and gemcitabine in pancreatic ductal 
adenocarcinoma (PDAC) (111,112). Furthermore, cancer‑asso-
ciated fibroblasts may secrete hyaluronan, which is responsible 
for the regulation of interstitial pressure within the tumour, 
and results in blood vessel collapse and impaired drug 
delivery (113,114). It has also been shown that CD248 was 
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expressed by these cancer‑associated fibroblasts and mural 
cells, but not ECs (114), and that its expression correlated with 
poor prognosis in patients with gastric cancer (115). These 
findings suggest that the inhibition of CD248 expression may 
represent a novel strategy for perturbing the differentiation of 
stromal cells into cancer‑associated fibroblasts.

9. Therapies targeting CD248

The results of a first‑in‑human, open‑label, phase I study have 
recently been published, enrolling patients with refractory 
solid cancers treated with a humanized monoclonal antibody 
against CD248 (MORAb‑004). Following the administration 
of MORAb‑004, a prolonged, stable disease state of >106 days 
was observed in patients with cancer subtypes believed to 
be of epithelial origin, including colorectal carcinoma (116). 
Although the mechanism of action of MORAb‑004 is not 
completely understood, preclinical models have suggested 
that CD248 is removed from the cell surface upon 
MORAb‑004‑mediated internalization, while MORAb‑004 
exhibits no antibody‑dependent cellular cytotoxicity  (45). 
Furthermore, it is possible that MORAb‑004 may disrupt 
protein‑protein interactions that serve to signal between tumour 
and stromal cells within the cancer microenvironment (116). 
Another phase I study enrolling children with relapsed or 
refractory solid cancer, demonstrated that MORAb‑004 was 
well tolerated and that its pharmacokinetics did not significantly 
differ in children compared with adults (117). Concurrently, 
a multicentre, open‑label, phase II study did not produce the 
same encouraging results; this study evaluated the 24‑week 
progression‑free survival, pharmacokinetics and tolerability of 
2 doses of MORAb‑004 in patients with metastatic melanoma. 
However, the efficacy of single‑agent MORAb‑004 treatment 
in melanoma was low. The principal limitations of this study 
were the small sample size and population heterogeneity of 
previously treated melanoma patients (118). Furthermore, a 
randomized, double‑blind, placebo‑controlled phase II study 
of patients with chemo‑refractory metastatic colorectal cancer 
confirmed that MORAb‑004 was well tolerated, despite the 
fact that no improvement in overall survival and/or response 
rate was demonstrated (119). However, it should be noted that 
the results of this trial may be skewed by the enrolment of 
patients at advanced cancer stages; indeed, it was speculated 
that MORAb‑004 may be more effective at treating patients 
affected by early‑onset cancer and with a short duration of 
disease. 

Future studies with more stringent inclusion criteria are 
necessary to fully evaluate the efficacy of MORAb‑004, and 
an alternative approach may be considered to improve effi-
cacy, including antibody‑drug conjugates to selectively deliver 
cytotoxic agents to tumour sites. Anti‑CD248 drug conjugates 
delivering monomethyl auristatin E, a synthetic antineoplastic 
agent, were tested for their activity in 4 human cancer cell 
lines. The study demonstrated that CD248‑positive tumours 
may be specifically and effectively targeted by a mono-
clonal anti‑CD248 antibody conjugated to an anti‑neoplastic 
agent, and the response was complete and sustained (120). 
Collectively, the results of these studies suggest that additional 
pre‑clinical investigations are required to better understand the 
mechanism of action of anti‑CD248 monoclonal antibodies, 

and to determine their most suitable clinical application (116). 
However, despite the CD248 expression pattern and encour-
aging in vivo results suggesting a potential anti‑cancer target, 
the exact role of CD248 in cancer is not fully understood. 
Current research is hindered by inadequate knowledge of 
the factors and pathways that control CD248 expression and 
distribution. It is also unclear whether the effects of CD248 on 
tumour growth are due to its expression in fibroblastic stromal 
cells or vascular cells (23). 

Although the pathogenic role of CD248 in fibrosis has 
been strongly indicated, there are currently no published 
studies assessing its potential as a therapeutic target in patients 
affected by FPDs. Future studies are required to completely 
elucidate the possible therapeutic applications of targeting 
CD248.

10. Conclusions 

Fibrosis is the hallmark of pathologic remodelling in a number 
of tissues, a contributor to clinical disease and one of the leading 
causes of mortality in the developed world (2). Therefore, there 
is a great deal of interest in identifying a means of inhibiting, or 
even reversing the progression of tissue fibrosis. Notably, FPDs 
are characterized by common pathogenic pathways preserved 
between different organs, thus an understanding of the 
mediators and pathways activated in tissue fibrosis may help to 
establish potential therapeutic targets across different diseases 
and organs systems (108). Another unifying characteristic of 
FPDs is microvascular alteration and its common pathogenic 
pathways, the constituents of which may also be an attractive 
therapeutic target. At present, an improved understanding of the 
mechanisms involved in vascular remodelling are essential for 
the implementation of therapies stimulating vascular network 
stabilization during FPDs. Interestingly, this could also be 
required for cancers vascularised by immature, disorganised 
and leaky blood vessels, with structural abnormalities which 
contribute to blood flow disturbances and cancer cell extravasa-
tion. Indeed, for more effective anti‑angiogenic therapies, it has 
been speculated that in addition to targeting excessive angio-
genesis, the cancer vasculature should also be normalized (121).

CD248 is a glycosylated transmembrane protein that is 
overexpressed in the perivascular cells and fibroblasts of 
several diseases characterized by abnormal vascular remod-
elling, including cancer and FPDs. The exact role of CD248 
is not fully understood; however, in vitro and in vivo studies 
have revealed that inhibiting CD248 signalling may prevent 
myofibroblast accumulation and promote vessel stabilisa-
tion. In line with these findings, anti‑CD248 therapy may be 
considered a promising therapeutic strategy in both cancer and 
FPDs. Indeed, interfering with CD248 may prevent the myofi-
broblast proliferation responsible for ECM stiffening, which 
in turn contributes to the persistence and progression of both 
cancer and fibrosis. Furthermore, anti‑CD248 therapy may 
also prevent pericyte trans‑differentiation into mature αSMA+ 
cells, which may subsequently limit myofibroblast genera-
tion (25,82,87,121). In future, further studies are required to 
clarify the role of CD248 in FPDs, securing this molecule as 
a potential therapeutic target in a clinical setting, in which an 
effective therapeutic approach to prevent fibrosis has yet to be 
developed.
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