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Abstract. The purpose of the present study was to inves-
tigate the effect of bufadienolides on the A‑375 melanoma 
cell line, and to delineate the underlying mechanism. A Cell 
Counting Kit‑8 assay was used to determine the viability of 
the cells, and flow cytometry was used to evaluate apoptosis. 
Western blot analysis was used to evaluate the expres-
sion levels of proteins involved in the AKT pathway that 
are associated with apoptosis and autophagy. The results 
demonstrated that bufadienolides reduced the viability 
of A‑375 cells in a dose‑ and a time‑dependent manner. 
Following treatment with bufadienolides, A‑375 cells exhib-
ited clear properties that were characteristic of apoptosis 
and autophagy. The expression levels of the pro‑apoptotic 
proteins Bax and p53 were upregulated, whereas those of 
the anti‑apoptotic proteins, Bcl‑2 and caspase‑3 were down-
regulated. In addition, the level of a protein known to be 
associated with autophagy, microtubule‑associated proteins 
1A/1B light chain 3‑II, was increased, whereas that of p62 
protein was reduced. Finally, the AKT signaling pathway 
was blocked in the bufadienolide‑treated A‑375 cells. In 
conclusion, these results revealed that bufadienolides effec-
tively induced apoptosis and autophagy in A‑375 cells via 
the AKT pathway, and therefore may be one of the candidate 
targets for the future development of targeted drugs to treat 
melanoma.

Introduction

Melanoma, also known as malignant melanoma, arises from 
the pigment‑producing cells of the deeper layers of the skin, 
attributed to skin lesions  (1). Melanocytes are abundant 
in the skin  (2). Melanogenesis is complex regulated by a 
variety of factors that interact with each other in a hormonal, 
autogenous, para‑endocrine or endocrine manner, through 
receptor‑dependent and independent mechanisms of acti-
vation  (3). Nearly 20,000  cases of cutaneous malignant 
melanoma are diagnosed in China every year (4). Increasing 
numbers of studies have confirmed that ultraviolet (UV) radi-
ation is the main risk factor for the development of melanoma. 
Cumulative UV exposure leads to UV‑induced DNA damage, 
oxidative stress and skin inflammation (5‑8); in particular, 
UV leads to DNA damage and immunosuppression, both of 
which cause melanoma to develop and are involved in the 
pathogenesis of melanoma (9). At the same time, the interac-
tion between melanoma cells and the microenvironment of 
melanocytes in the skin epidermis is also considered to affect 
melanin damage (10,11). In addition, an immunosuppressive 
field is produced in the intermediate stage of melanogen-
esis, which weakens the effect of any immunotherapy for 
melanoma. Therefore, uncontrolled melanogenesis, together 
with melanin, leads to decreased efficacy of radiotherapy, 
chemotherapy, phototherapy and immunotherapy  (12). In 
view of the above, traditional treatment methods include 
surgical treatment, radiotherapy and chemotherapy. These 
treatment strategies are often self‑limiting, achieve far from 
satisfactory results, and may even lead to an increase in the 
burden of global public health (13,14). Therefore, the urgent 
task is to find an effective drug, improve the level of compre-
hensive treatment, reduce the side effects of melanoma 
and reduce the mortality rate of melanoma.

Chan Su, which is obtained from the skin and parotid 
venom glands of the toad (15), has been traditionally used 
for the treatment of a variety of clinical diseases in China. 
Bufadienolides, including gamabufotalin, arenobufagin, 
telocinobufagin, bufalin and other ingredients, are the major 
pharmacological constituents of Chan Su, which is frequently 
used in the clinic for the treatment of cancer, including 
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hepatoma, gallbladder carcinoma and lung cancer  (16). In 
previously published studies, bufadienolide compounds have 
been demonstrated to induce arrest of the tumor cell cycle and 
apoptosis (17,18). In addition, bufadienolides were revealed 
to markedly inhibit proliferation and induce autophagy in 
liver cancer cells (19), and alterations in the expression levels 
of microtubule‑associated proteins 1A/1B light chain 3‑II 
(LC3‑II), p62, Bax, Bcl‑2, cyclin D1 and caspase‑3 are involved 
in the underlying mechanism (20).

It has been previously reported in the literature that the AKT 
pathway has an important role in promoting cell apoptosis and 
autophagy (21). Based on these previous findings, the present 
study aimed to explore whether bufadienolides are able to 
impair the viability of melanoma cells and to increase the 
levels of apoptosis and autophagy via inhibition of the AKT 
pathway.

Materials and methods

Reagents and antibody. The bufadienolides were a gift from 
Dr Jiang (Macau University of Science and Technology). 
Preparation of bufotoxin and bufogenin fractions from toad 
venom and toad skin (200 g; Xiangshui Bolin Pharmaceutical 
& Chemical Co., Ltd.) was ground into powder and ultra-
sonically extracted with methanol five times, as previously 
described (22). The methanol solution was filtered, combined 
and evaporated at reduced pressure to obtain the total extract 
(138 g bufadienolides; purity >97%), which was used for this 
study. The chemical profile and structure of bufadienolides 
has been presented in a previous study (22). Bufadienolides 
were dissolved in anhydrous DMSO at a concentration of 
5,000 g/l, for use as a stock solution. The Annexin V‑FITC 
& PI Apoptosis Detection kit (cat.  no.  BD556547) was 
purchased from BD Biosciences. Anti‑Bax (cat. no. 2772), 
anti‑Bcl‑2 (cat.  no. 15071), anti‑caspase‑3 (cat.  no. 9662), 
anti‑p53 (cat.  no.  sc‑126), anti‑LC3‑II (cat.  no.  2775), 
anti‑p62 (cat. no. 5114), anti‑AKT (cat. no. 9272), anti‑mTOR 
(cat.  no.  2972), anti‑phosphorylated (p)‑AKT (Ser473; 
cat. no. 4060), anti‑p70S6K (cat. no. 9202), anti‑p‑p70S6K 
(cat.  no.  9204), anti‑glycogen synthase kinase (GSK)‑3β 
(cat.  no.  9325), anti‑p‑GSK‑3β (cat.  no.  (Ser9)9323) and 
anti‑cyclinD1 (cat.  no.  2922) were purchased from Cell 
Signaling Technology, Inc. GAPDH (cat.  no. A P0066) 
antibody was purchased from Bioworld Technology, Inc. 
Horseradish peroxidase (HRP)‑labeled anti‑mouse IgG 
(cat. no. TA130001) or anti‑rabbit IgG (cat. no. TA130015) 
were obtained from OriGene Technologies, Inc.

Cell culture and treatment. Melanoma A‑375 cells, 
obtained from the American Type Culture Collection 
(cat. no. CRL‑1619), were incubated in 10% FBS (Ausbian) 
and Gibco® DMEM (Thermo Fisher Scientific, Inc.), and 
subsequently maintained at  37˚C in an atmosphere of 5% 
CO2. The bufadienolides were dissolved in anhydrous 
DMSO, and diluted with fresh medium to achieve the desired 
concentrations (see below). 

Cell morphology. Cells were seeded at 2x104/100  µl per 
well in 500  µl DMEM in a 24‑well plate and incubated 
for 12  h. Subsequently, DMEM medium alone (negative 

control) and media containing bufadienolides at various 
concentrations (0, 0.001, 0.01, 0.1, 1 mg/l) were incubated 
for 0, 24, 48, 72 or 96 h. The cell morphology change was 
visualized and photographed under an inverted phase contrast 
microscope at x200 magnification.

Cell Counting Kit‑8 (CCK‑8) assay. A‑375 cells were seeded 
in 96‑well plates at a density of 2x104/100  µl containing 
0, 0.001, 0.01, 0.1 and 1 mg/l bufadienolides, and subsequently 
cultured for 0, 24, 48, 72 or 96 h. As a negative control, cells 
were incubated in the absence of bufadienolides. In order 
to measure cell viability, 10  µl CCK‑8 reagent (Dojindo 
Molecular Technologies, Inc.) was added to each well 
and incubated for 2 h at 37˚C in a tissue culture hood. The 
absorbance [optical density (OD)] at 490 nm was measured 
using a microplate reader. 

Annexin V/propidium iodide (PI) staining assay. An 
Annexin V‑FITC/PI kit was used to assess cell apoptosis. After 
treating with bufadienolides (0, 0.001, 0.01, 0.1 and 1 mg/l) for 
48 h, A‑375 cells were collected, and the harvested cells were 
diluted with PBS to a concentration of 5x105‑1x106 cells/ml, 
centrifuged at 4˚C and 7,000 x g for 10 min, and resuspended 
in 200 µl 1X binding buffer. Subsequently, Annexin V‑FITC 
(10 µl) and PI (5 µl) were added to each sample. The samples 
were incubated at room temperature for 15 min, and examined 
immediately on a flow cytometer (BD Biosciences), according 
to the manufacturer's protocol. A BD FACSCanto running 
BD CellQuest™ software version 3.3 (BD Biosciences) was 
used to perform flow cytometric analysis. Early apoptosis was 
defined by Annexin V+/PI‑staining (Q4) and late apoptosis 
was defined by Annexin V+/PI+ staining (Q2). 

Gel electrophoresis and western blot analysis. The expres-
sion levels of Bax, Bcl‑2, caspase‑3, p53, LC3‑II, p62, AKT, 
p‑AKT, mTOR, p70‑S6K1, p‑p70‑S6K1, GSK‑3β, p‑GSK‑3β 
and cyclin D1 in cells were determined using western blot 
analysis. A‑375 cells were placed in 6‑well cell culture 
plates at a concentration of 2x105 cells/well, and incubated 
at 37˚C for 24 h. The cells were subsequently treated with 
bufadienolides at the aforementioned concentrations for 
48  h. Subsequently, A‑375 cells were lysed using RIPA 
lysis buffer (Beijing Solarbio Science & Technology Co., 
Ltd.) on ice for 30  min. The protein concentration was 
determined using a bicinchoninic acid protein assay kit 
(Beyotime Institute of Biotechnology). An equal amount of 
total protein (20 µg) was loaded in each lane. Proteins were 
separated by 10% SDS‑PAGE, the proteins were transferred 
onto PVDF membranes (EMD Millipore). The membranes 
were blocked with 5% skimmed milk powder solution at 
room temperature for 1 h in order to reduce the non‑specific 
background. The blotted membranes were incubated with 
anti‑Bax, anti‑GAPDH, anti‑Bcl‑2, anti‑caspase‑3, anti‑p53, 
anti‑LC3‑II, anti‑p62, anti‑AKT, anti‑mTOR, anti‑p‑AKT, 
anti‑p70S6K, anti‑p‑p70S6K, anti‑GSK‑3β, anti‑p‑GSK‑3β 
and anti‑cyclin D1 (all 1:1,000) at 4˚C overnight in the fridge. 
Subsequently, the membrane was washed three times with 1X 
TBS with Tween‑20 (TBST), and HRP‑labeled anti‑mouse 
IgG or anti‑rabbit IgG were used as secondary antibodies 
(1:10,000) for 2 h at room temperature. Membranes were 
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subsequently washed again with 1X TBST buffer, and 
the protein signals were detected with an ECL kit (EMD 
Millipore). Protein expression levels were quantified by 
using a Bio‑Rad Image station and its built‑in software 
(version 6.0; Bio‑Rad Laboratories, Inc.), and are shown 
as the densitometric ratio of the target protein to the input 
control, GAPDH. 

Statistical analysis. Each experiment was repeated three 
times. All the presented data are shown as the mean ± stan-
dard deviation. Statistical analyses were performed using 
one‑way ANOVA followed by the Bonferroni post‑hoc test in 
GraphPad Prism software (version 6.0; GraphPad Software, 
Inc.). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Bufadienolides inhibit the viability of the A‑375 melanoma 
cells. The A‑375 cells were treated with the various concentra-
tions of bufadienolides for 24, 48, 72 and 96 h. The IC50 values 
at 24, 48, 72 and 96 h were 2.56, 1.27, 0.24 and 0.04 mg/l 
(Table I ). The cell morphology following bufadienolide 
treatment was observed. From the inverted phase contrast 
microscopy (Fig.  1A), it was found that following bufa-
dienolide treatment, the A‑375 cells appeared abnormal 
with a rounded shape; some cells had shrunk and had 
ruptured membranes, compared with those in the control 
group. Additionally, the proportion of normal and living 
cells decreased with an increasing bufadienolide concen-
tration. The results of the CCK‑8 assay revealed that at 
24, 48, 72 and 96 h, bufadienolide treatment led to a decrease 
in the viability of the A‑375 cells in a time‑dependent manner 
compared with the negative control (Fig. 1B). Furthermore, 
when the A‑375 cells were treated with bufadienolides at 
different doses, their viability was inhibited in a dose‑depen-
dent manner (Fig. 1C). Therefore, these findings confirmed 
that bufadienolides inhibited the viability of A‑375 cells in a 
dose‑ and time‑dependent manner. 

Bufadienolides regulate apoptosis‑associated protein levels 
and promote apoptosis in A‑375 cells. Subsequently, the 
present study assessed whether the bufadienolides were 
able to induce apoptosis in A‑375 cells. It was identified that 
the increases in the percentages of cells in the early and late 
apoptotic phases were observed with an increasing concentra-
tion of bufadienolides (Fig. 2A). The cell apoptosis rates in 
the bufadienolide‑treated cells (0, 0.001, 0.01, 0.1 and 1 mg/l) 
were 1.40±0.26, 7.30±1.67, 17.20±0.38, 23.40±1.80 and 
28.16±0.90% (Fig. 2B). In addition, based on the results of the 
western blots shown, it was observed that the expression levels 
of Bcl‑2 and caspase‑3 were reduced in a dose‑dependent 
manner. However, conversely, the expression levels of Bax and 
p53 were increased in A‑375 cells following treatment with 
bufadienolides (Fig. 2C). It was also observed that higher 
concentrations of the bufadienolides exerted more marked 
effects; in particular, the protein expression levels of Bax and 
p53 were appreciably enhanced (Fig. 2D). These observations 
suggested that bufadienolides are able to induce and promote 
apoptosis in A‑375 cells.

Bufadienolides regulate autophagy‑associated proteins in 
A‑375 cells. To investigate whether the inhibition of viability of 
the A‑375 cells by bufadienolides was mediated via the potentia-
tion of autophagy, A‑375 cells were treated with bufadienolides 
at the specified concentrations (0.001, 0.01, 0.1 and 1 mg/l) for 
24 h, and the level of autophagy was determined by western 
blot analysis. These experiments revealed that treatment with 
bufadienolides affected the protein expression levels of LC3‑II 
and p62 in A‑375 cells. It was noteworthy that the level of 
LC3‑II was significantly increased, whereas that of p62 was 
reduced (Fig.  3). Furthermore, treatment with the higher 
concentrations of bufadienolides led to more pronounced 
changes in the expression levels of the autophagy‑associated 
proteins LC3‑II and p62 in A‑375 cells.

Effects of bufadienolides on the AKT signaling pathway. To 
address whether the AKT signaling pathway is involved in 
mediating the effects of bufadienolide treatment on A‑375 
cells, the AKT pathway and its downstream proteins were 
investigated by western blot analysis. No evident changes in 
AKT expression were identified, whereas the level of p‑AKT 
was decreased upon treatment with different concentrations 
of bufadienolides in the A‑375 cells. There were also reduc-
tions observed in the expression levels of p‑p70S6K and 
p‑GSK‑3β, while levels of total p70S6K and GSK‑3β were not 
significantly changed after exposure to different concentra-
tions of bufadienolides. In addition, following treatment with 
higher concentrations of bufadienolides, the total mTOR and 
cyclin D1 levels were markedly decreased (Fig. 4). Each bar in 
the histograms represent the average of three replicates. These 
findings confirmed that the effect of bufadienolides on A‑375 
cells may be mediated via the regulation of different proteins 
downstream of AKT.

Discussion

Melanoma, a malignant tumor of melanocytes, is the under-
lying cause of 80% of mortalities associated with skin 
cancer (23). In this study, it was found that bufadienolides 
induced apoptosis and autophagy in A‑375 cells; furthermore, 
these alterations in apoptosis and autophagy were associated 
with inhibition of the AKT pathway.

Two classical apoptotic pathways were selected to 
examine the effect of bufadienolides on A‑375 cells. First, 
in the mitochondrial pathway, the Bcl‑2 family of proteins 
exerts a major role in tumorigenesis and tumor maintenance. 

Table I. IC50 values of bufadienolides in A375 cells at different 
time points.

Time 	IC 50 value	 Mean ± SD

24 h	 2.56 mg/l	 2.56±0.70
48 h	 1.27 mg/l	 1.27±0.13
72 h	 0.24 mg/l	 0.24±0.54
96 h	 0.04 mg/l	 0.04±0.01

Mean ± SD, mean ± standard deviation.



LI et al:  BUFADIENOLIDES INHIBIT MELANOMA CELL VIABILITY2350

A previous study revealed that bufadienolides may mediate 
apoptosis through downregulation of Bcl‑2 and/or upregu-
lation of Bax in cancer cells (24,25). In the present study, 
bufadienolides were identified to induce the apoptosis of 
A‑375 cells, upregulate the expression of Bax and p53, and 
downregulate Bcl‑2 expression. Secondly, the cell death 
caspases, including initiator caspases and executioner 
caspases, are known to occupy a central role in the process of 
apoptosis (26). In the present study, the results also demon-
strated that bufadienolides were able to induce apoptosis of 
A‑375 cells via the activation of caspase‑3. 

In addition, autophagy is a cellular catabolic process 
that helps to maintain cellular homeostasis. The regulation 
of autophagy exerts an important role in tumor suppression 
and promotion in numerous types of cancer (27). In cancer 

therapy, autophagy is activated as an adaptive response 
to promote cell survival  (28). LC3‑II is a marker protein 
for autophagosomes, and increases in the level of this 
autophagy marker have been demonstrated to inhibit tumor 
cell growth (29). Furthermore, as an adaptor protein, p62 is 
able to localize to the site of autophagosome formation and 
interact with the autophagosome localization protein LC3 to 
promote tumor cell autophagy (30,31). In the present study, 
it was observed that bufadienolides upregulated the level 
of LC3‑II, and that p62 was itself degraded by autophagy 
in a dose‑dependent manner.

Accumulating evidence from recent systematic studies has 
indicated that the AKT pathway exerts an immense influence 
on the regulation of growth, survival and differentiation of 
tumor cells (32), and is also associated with their apoptosis 

Figure 1. Effects of bufadienolides on A‑375 cell viability. (A) Cell morphology changes were observed by phase‑contrast microscopy (magnification, x200) 
after treatment with the various concentrations of bufadienolides for 24, 48, 72 and 96 h. The effects of bufadienolides on A‑375 cell viability at (B) different 
times (0, 24, 48, 72 or 96 h) and (C) different concentrations (0, 0.001, 0.01, 0.1 and 1 mg/l) are shown. Data are presented as the mean ± standard deviation of 
at least three independent experiments. *P<0.05 and **P<0.01 vs. respective negative control (0 mg/l bufadienolides).
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and/or autophagy (33,34). In addition, previous studies have 
shown that inhibition of mTOR is related to the enhancement 
of apoptosis activation and autophagy induction (35,36). The 
results of this study showed that the AKT level did not change 
significantly after treatment of A‑375 cells with bufadienolides, 
but the p‑AKT levels decreased, while the mTOR expres-
sion level decreased. Inactivated mTOR leads to a decrease 
in the activity of downstream proteins, p‑p70S6K  (37) 
and p‑GSK‑3β  (38), and inactivated GSK‑3β leads to the 
inactivation of cyclin D1 (39). 

The results indicated that bufadienolides may regulate 
AKT, p‑AKT and proteins located further downstream in the 
AKT pathway, including mTOR, p‑p70S6K, p‑GSK‑3β and 
cyclin D1. Based on these results, the present study is the 
first, to the best of our knowledge, to demonstrate that bufa-
dienolide induces apoptosis and autophagy in A‑375 cells, 
and that this may be due to inhibition of the AKT signaling 
pathway. Therefore, bufadienolides should be considered as 
potential drug candidates for the treatment of melanoma by 
inhibiting the AKT signaling pathway. The limitation of the 

Figure 2. Expression of apoptosis‑associated proteins in A‑375 cells treated with or without bufadienolides. A‑375 cells were treated with bufadienolides 
(0, 0.001, 0.01, 0.1 and 1 mg/1) for 48 h in 6‑well plates (2x105 cell/ml). (A) The effects of bufadienolides on the induction of A‑375 cell apoptosis were analyzed 
by flow cytometric analysis. (B) The apoptosis rate was statistically analyzed. (C) Western blotting images for Bax, Bcl‑2, caspase‑3, p53 and GAPDH in A‑375 
cells treated with bufadienolides. (D) Quantification of the levels of Bax, Bcl‑2, caspase‑3 and p53 was performed, and the results were normalized relative 
to the expression level of GAPDH. Each protein was statistically analyzed, and the results are shown in the right panel. *P<0.05 and **P<0.01 vs. respective 
negative control (0 mg/l bufadienolides). 
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present study is that the effects of bufadienolide treatment 
were analyzed in only one melanoma cell line, which was 
not compared with normal epidermal keratinocytes. Further 
studies in vivo and in vitro in different tumor cell lines and 
their corresponding normal cell lines are required to demon-
strate the anti‑tumor mechanism of bufadienolides, which is 
part of ongoing research. This work will ultimately increase 
knowledge of the anticancer potential of these naturally 
occurring compounds.
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