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Abstract. Autoimmunity may serve a role in the patho-
logical features of a subgroup of patients with chronic 
obstructive pulmonary disease (COPD); however, in immu-
nological subgroups of COPD patients, the interrelationships 
between airway and circulating autoantibody responses, and 
clinical parameters, remain unclear. The present study was 
undertaken to evaluate these interrelationships in various 
immunological subgroups of COPD patients. Sputum superna-
tant and serum obtained from 102 patients with stable COPD 
were assayed for the presence of immunoglobulin G antibodies 
against ten autoantigens via Luminex multiplex technology. 
Hierarchical clustering based on principal components was 
performed on autoantibody profiles to classify patients into 
clusters. Network‑based and module analyses were conducted 

to explore interrelationships among autoantibodies and clin-
ical variables in each cluster. Topological characteristics were 
compared between clusters. Unsupervised clustering identified 
four clusters: No significant differences in the majority of clin-
ical characteristics were observed among clusters. In cluster 1, 
retrospective exacerbation was only positively associated with 
COPD assessment test score. Lung functions (predicted % of 
forced expiratory volume in 1 sec and maximal mid‑expiratory 
flow) were negatively associated with exacerbation risk only 
in cluster 2. Sputum autoantibodies (against U1 small nuclear 
ribonucleoprotein, proteinase‑3 and Ro/Sjögren syndrome 
type A antigen) were negatively associated with exacerbation 
risks in cluster 2, but positively associated in cluster 3. The 
four networks also exhibited distinct topological properties. 
In COPD, autoantibody responses were heterogeneous and 
differentially associated with exacerbation risk in certain 
subgroups; their dual character should be considered in future 
research.

Introduction

Chronic obstructive pulmonary disease (COPD) is an impor-
tant and growing cause of morbidity and mortality, and is 
predicted to be the third leading cause of mortality globally 
by 2020 (1). Patients with COPD can suffer from episodes of 
symptom exacerbations during the course of the disease that 
negatively affect their prognosis; however, COPD and its exac-
erbations are both heterogeneous conditions that are linked to 
complex and heterogeneous immune responses (2,3).

Autoimmunity has been suggested to be an influential 
factor in the progression of patients who have suffered from 
COPD for >10 years (4,5), as COPD shares numerous patho-
physiological and clinical characteristics with autoimmune 
diseases (4). Increasing evidence indicates that autoimmune 
responses serve a role in the development and progres-
sion of COPD (6‑10). Autoantibodies in stable COPD have 
been comprehensively reviewed recently (11); however, the 
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heterogeneity of autoimmunity should also be considered. 
Kim et al (12) reported abnormal blood T‑lymphocyte subsets 
in a subgroup of patients with COPD. Our recent study 
demonstrated that sputum autoantibody levels were associated 
with exacerbation risk in a subgroup of COPD patients (13), 
suggesting that autoimmunity is highly heterogeneous in 
COPD.

Network‑based analysis is a novel integrative research 
approach that is suitable for the study of complex and heteroge-
neous conditions, such as COPD and its exacerbations (14‑17). 
Divo et al (18) used network analysis to investigate the asso-
ciation between multiple comorbidities in patients with stable 
COPD. The authors included 79 comorbidities and various 
demographic, clinical and functional parameters in the 
network analysis, and observed that the comorbidities were 
significantly interlinked and formed a complex network in 
which six sub‑networks (also termed modules) were identified. 
Grosdidier et al (19) used an integrative network‑based approach 
to investigate the biological associations between COPD, its 
comorbidities and the chemical products contained in tobacco 
smoke. They revealed that comorbidities shared genes, proteins 
and biological pathways with COPD. Faner et al (20) explored 
the association between comorbidities and patients with 
exacerbated COPD from a molecular viewpoint (also termed a 
molecular diseasome) using network analysis. Noell et al (21) 
explored the pathobiological mechanisms of exacerbations and 
biomarkers by comparing multi‑level (clinical, physiological, 
biological, imaging and microbiological) correlation networks 
determined during exacerbation and convalescence in patients 
with COPD; however, no known study has investigated the 
interrelationships between airway and circulating autoan-
tibody responses, and clinical parameters in immunological 
subgroups of patients with COPD. It was hypothesised that 
network analysis, an analytical approach that involves the 
comparison of clinical, functional, biological and immunolog-
ical correlation networks, may provide a novel insight into the 
complex association between autoantibody profiles and COPD 
clinical parameters. To properly adjust for the redundancy of 
autoantibody profiles and the heterogeneity of autoantibody 
responses, principal component analysis (PCA) and hierar-
chical clustering were performed prior to network analysis. 
Thus, in the present proof‑of‑concept study, network analysis 
based on unsupervised classification was used to: i) Compare 
the network structures of different COPD subgroups identified 
by sputum and serum autoantibody profiles; and ii) identify a 
series of exacerbation risk‑associated factors.

Materials and methods

Patients. This was a prospective cross‑sectional study. A total 
of 102 patients with COPD with stable disease were enrolled at 
the First Affiliated Hospital of Guangzhou Medical University 
(Guangzhou, China) between March 2017 and October 2017. 
A group of 18 non‑smoking healthy controls was also enrolled 
for comparison. Inclusion criteria for patients with COPD 
were: i) Aged >40 years; and ii) confirmed diagnosis of COPD 
according to the Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) guidelines (22) [post‑bronchodilator 
forced expiratory volume in 1 sec (FEV1)/forced vital capacity 
(FVC) ratio <0.7]. Exclusion criteria were: i) Diagnosis of 

known respiratory disorders other than COPD; ii) history of 
significant inflammatory disease other than COPD; iii) COPD 
exacerbation within 4 weeks of enrolment; iv) history of lung 
surgery and tuberculosis; v) diagnosis of cancer; vi) having 
undergone a blood transfusion within 4 weeks of enrolment; 
vii) diagnosis of autoimmune diseases; and viii) enrolment in a 
blinded drug trial. The clinicopathological data of the patients 
and healthy controls are presented in Table I.

Inclusion criteria for non‑smoking healthy controls were: 
i) Aged >40 years; and ii) without any known respiratory disor-
ders and significant inflammatory diseases. Subjects with one 
or more of the following criteria were excluded: i) Diagnosis 
of known respiratory diseases; ii) history of significant inflam-
matory disease; iii) diagnosis of cancer; iv) blood transfusion 
within 4 weeks of enrolment; v) inability to walk; or vi) current 
participation in an intervention trial.

Written informed consent was obtained from all 
patients. The study was approved by the ethics committee 
of the First Affiliated Hospital of Guangzhou Medical 
University (permit  no.  2017‑22) and was registered with 
www.clinicaltrials.gov (NCT 03240315).

Clinical and functional parameters. Data collected at enrol-
ment included demographic characteristics, lung function, 
COPD assessment test (CAT), and modified Medical Research 
Council Dyspnea Scale (mMRC) of subjects prior to sputum 
induction. Spirometry was performed according to the 
American Thoracic Society guidelines (23).

Blood samples, sputum collection and processing. Peripheral 
venous blood samples (4 ml per subject) were collected into a 
vacuum tube, and serum was obtained by centrifuging whole 
blood at 1,057 x g (3,000 rpm) for 10 min at room temperature. 
Sputum induction was performed according to guidelines 
suggested by the Task Force of the European Respiratory 
Society (24). A two‑step procedure was conducted to process 
the sputum as previously described (25). Sputum supernatant 
and serum were stored at ‑80˚C.

Autoantibody detection. Based on a literature search, ten 
autoantigens with known or putative links to COPD were 
selected  (26‑29), including Smith antigen (Sm), ribosomal 
phosphoprotein P0 (P0), Ro/Sjögren syndrome type A antigen 
(SS‑A), La/Sjögren syndrome type B antigen (SS‑B), DNA 
topoisomerase I (Scl70), histidyl‑tRNA synthetase (Jo1), U1 
small nuclear ribonucleoprotein (U1‑SnRNP), thyroid peroxi-
dase (TPO), proteinase‑3 (PR3) and myeloperoxidase (MPO). 
Autoantigens (DIARECT AG) were coupled with multiplex 
magnetic beads (Bio‑Rad Laboratories, Inc.) and incubated 
with sputum supernatant and serum samples diluted 1:10 and 
1:180, respectively, at 37˚C for 1 h. The beads were washed 
using the Bio‑Plex Pro™ wash station (Bio‑Rad Laboratories, 
Inc.), and then incubated at 37˚C for 1 h with biotin‑conjugated 
anti‑human IgG (1:1,000; cat. no. A24474; Thermo Fisher 
Scientific, Inc.). Subsequently, they were washed and then 
reacted for 15 min at 37˚C with streptavidin‑R‑phycoerythrin 
(Bio‑Rad Laboratories, Inc.). After the microspheres were 
washed and resuspended, the median fluorescence intensity of 
each encoded microsphere was measured using Bio‑Plex 200 
with an excitation wavelength at  532  nm and emission 
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wavelength at 575 nm (Bio‑Rad Laboratories, Inc.). Bio‑Plex 
Manager™ 6.0 software (Bio‑Rad Laboratories, Inc.) was 
used to generate the result files.

Statistical analysis. All statistical analyses were performed 
using SPSS software (version 19.0; IBM Corp.). PCA was 
performed on autoantibody profiles in sputum and serum, 
and components with eigenvalues >1 were extracted. 
Unsupervised agglomerative hierarchical clustering was 
performed on the above components, using the un‑centred 
correlation as the similarity metric (Cluster version 3.0) (30). 
The dendrogram and resulting heatmap were visualised 
using TreeView (version 1.60) (31). Shapiro‑Wilk test was 
performed to access the normality of distribution of each 
continuous variable, and depending on the distribution of the 
data, ANOVA or Kruskal‑Wallis test were used to compare 
the clusters. Then, Fisher's Least Significant Difference 
(LSD) test or the Nemenyi test was performed to analyse 
the differences between clusters. Correlation networks 

integrating 45 clinical and molecular parameters were 
then established using Gephi software (version 0.9.1) (32). 
Networks integrating clinical and autoantibody parameters 
in each group were constructed using Spearman's correla-
tion test. Correlation coefficients with P>0.05 were excluded. 
Network clustering was conducted using the ʻfast unfoldingʼ 
algorithm within the Gephi software.

Results

Patient information. The clinical characteristics of 
102 patients with COPD and 18 non‑smoking healthy controls 
are presented in Table I. The mean ages of the patients and 
controls were 66.46±8.10 and 58.33±7.67 years, respectively.

Hierarchical clustering based on PCA. Sputum and serum 
autoantibody profile data were processed with PCA: The eight 
largest principal components extracted were able to account 
for 69.54% of the variability contained in the original data 
(Fig. S1; Table SI), suggesting that these eight components 
alone contributed to the majority of the information among the 
groups. Components and coefficient sets used in the analysis 
are presented in Table SII. Using hierarchical cluster analysis, 
four clusters of patients with COPD were identified based on 
the above components (Fig. 1).

Clinical characteristics of the four clusters. To determine 
whether the patients within these clusters represented clini-
cally distinct subgroups of COPD, the clinical parameters of 
the four clusters were analysed (Table II). The average CAT 
score and mMRC of individuals in Cluster 2 were significantly 
increased compared with those in Cluster 4. Conversely, 
there were no significant differences in various other clinical 
characteristics [age, number of exacerbations in the previous 
year (AE), FEV1, FEV1 as a percentage of the predicted value 
(FEV1pred%), maximal mid‑expiratory flow (MMEF), and 
body mass index (BMI)] among clusters. Autoantibody levels 
of the four subtypes were also analysed (Figs. S2 and S3; 
Table SIII).

Differential network analysis. Fig. 2 presents the Spearman 
correlation networks integrating clinical and autoantibody 
parameters in healthy controls (Fig. 2A) and the aforementioned 
four clusters (Fig. 2B‑E). Table III presents the comparisons of the 
topological properties of the five groups. Notable observations 
included: i) The five networks exhibited different topological 
properties (the cluster 2 network displayed high density, whereas 
the cluster 1 network displayed low density); ii) there were seven 
modules in cluster 1, five modules in clusters 2 and 3, and six 
modules in cluster 4, but all modules appeared markedly hetero-
geneous in their clinical and biological content, as the majority 
contained nodes of distinct functional and immunological 
categories (Fig. 2); and iii) the retrospective exacerbation‑asso-
ciated factors (AE‑nodes in Fig. 2) were significantly different 
among the four clusters. In cluster 1 (Fig. 2B), the AE was only 
positively associated with the CAT score. In cluster 2 (Fig. 2C), 
the AE was negatively associated with age, lung function 
(FEV1pred% and MMEF), sputum autoantibodies (P0, Scl70, 
Sm, U1‑SnRNP, PR3 and Ro/SSA) and serum globulin (Glb), 
and positively associated with blood cell counts (peripheral 

Table I. Subject demographics and clinical characteristics.

	N on‑smoking healthy	CO PD patients,
Characteristic	 controls, n=18	 n=102

Age, years	 58.33±7.67	 66.46±8.10
Sex (M/F)	 10/8	 98/4
BMI, kg/m²	 25.26±3.65	 21.86±4.11
Smoking, n	 18/0/0	 10/73/19
(never/ex/current)	
Pre‑BD FEV1, litres	 2.51±0.79	 1.27±0.57
Pre‑BD FEV1pred% 	 96.94±16.79	 49.02±21.40
Pre‑BD FVC, litres	 3.15±0.98	 2.57±0.73
Pre‑BD FEV1/FVC	 0.80±0.06	 0.49±0.13
Post‑BD FEV1, litres	ND	  1.40±0.59
Post‑BD FEV1pred%	ND	  53.34±22.41
Post‑BD FVC, litres	ND	  2.74±0.73
Post‑BD FEV1/FVC	ND	  0.51±0.14
CAT score	NA	  11.67±6.44 
mMRC	NA	  2 (1‑2)
Respiratory 
medications		
  ICS	NA	  66 (64.7%)
  LABA	NA	  66 (64.7%)
  LAMA	NA	  41 (40.2%)

Data are presented as n (%), mean ± standard deviation or median 
(interquartile range) unless otherwise stated. COPD, chronic obstruc-
tive pulmonary disease; pre‑BD, pre‑bronchodilator; post‑BD, 
post‑bronchodilator; BMI, body mass index; FEV1, forced expira-
tory volume in 1 sec; FVC, forced vital capacity; FEV1pred%, forced 
expiratory volume in 1 sec as percentage of predicted; FVCpred%, 
forced vital capacity as percentage of predicted; CAT, COPD assess-
ment test; mMRC, Modified Medical Research Council Dyspnea 
Scale; ICS, inhaled corticosteroids; LABA, long‑acting β agonist; 
LAMA, long‑acting muscarinic antagonist; ND, no data; NA, not 
applicable.
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Figure 1. Hierarchical clustering based on principal component analysis. Each column is a component; each row is an individual patient. Numbers at the right 
side of the heat map indicate the patient number. Left, dendrogram presenting the similarity of groups; four clusters are indicated.
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white blood cell, neutrophil and monocyte) and blood haemo-
globin. In cluster 3 (Fig. 2D), the AE was positively associated 
with the CAT score and sputum autoantibodies (U1‑SnRNP, 
PR3, MPO and Ro/SSA), and in cluster 4 (Fig. 2E), the AE was 
negatively associated with serum uric acid and blood neutro-
phil count (Table III). Additionally, sputum anti‑PR3, sputum 
anti‑Ro/SSA, and sputum anti‑U1‑SnRNP were significantly 
negatively correlated with AE in cluster 2 (Fig. 2C), but were 
positively correlated with AE in cluster 3 (Fig. 2D; Table III). 
The network of non‑smoking controls had a lower density, lower 
average path length, lower average degree and longer diameter 
than those in COPD groups, reflecting normal immunological 
condition (Fig. 2A; Table III).

Exacerbation‑related module analysis. In each cluster, network 
clustering yielded modules, and the module containing retrospec-
tive exacerbation (AE‑node) was extracted for further analysis 
(Fig. 3). Table IV presents the topological properties of the four AE 
modules of the corresponding clusters. These modules exhibited 
significant heterogeneity in terms of their biological and clinical 
contents, in addition to their topological properties. Module 2 
demonstrated very high network density, whereas module 4 
demonstrated low density. Module 2 contained 13 nodes with 
a high average degree, whereas module 1 contained only three 
nodes with a low average degree. In module 1, AE was only 
positively associated with the CAT score. In module 2, AE was 
negatively associated with sputum autoantibodies (P0, Scl70, Sm, 
U1‑SnRNP, PR3 and Ro/SSA) and Glb, and positively associated 
with neutrophil counts. In module 3, AE was positively associated 
with the CAT score and sputum autoantibodies (U1‑SnRNP, PR3, 
MPO and Ro/SSA). In module 4, AE was negatively associated 
with serum uric acid (Fig. 3, Table IV). Sputum anti‑PR3, sputum 
anti‑Ro/SSA and sputum anti‑U1‑SnRNP were significantly 
negatively correlated with AE in module 2, but were positively 
correlated with AE in module 3.

Discussion

Autoimmune components in COPD have received increasing 
attention, as COPD shares various pathophysiological and 

clinical characteristics with autoimmune diseases (4,8,10,11); 
however, there remains a lack of medical literature 
regarding the relationship between airway/circulating 
autoantibody responses and clinical parameters in COPD, 
particularly in different heterogenous subgroups. In the 
present proof‑of‑concept study, three methods were employed 
to investigate the interrelationships among autoantibody 
profiles and clinical variables in various COPD subgroups. 
First, a highly sensitive detection method was used to simul-
taneously investigate autoantibody profiles in sputum and 
serum. Second, unsupervised clustering was performed on 
the PCA‑transformed autoantibody profile data, independent 
of clinical parameters, to identify immunological subgroups 
of COPD. Third, a network‑based analysis was applied to 
investigate the association between immunological and 
clinical parameters, and COPD exacerbation risks, in each 
cluster, followed by comparison of the networks and module 
properties of these clusters. The following main findings were 
reported: i) Four stable COPD subgroups with distinguished 
immunological features were identified, although there were 
no significant differences among subgroups for the majority of 
clinical characteristics; ii) the networks of the four subgroups 
exhibited distinct topological properties; iii) the exacerbation 
risk‑associated factors were significantly different among the 
four clusters; and iv) sputum anti‑PR3, sputum anti‑Ro/SSA 
and sputum anti‑U1‑SnRNP were significantly negatively 
associated with exacerbation risk in cluster 2, but positively 
associated in cluster 3, suggesting the heterogeneity and dual 
nature of the airway autoantibody responses in COPD.

A number of previous studies have investigated autoanti-
bodies in COPD from a clinical point of view. For example, 
Cheng  et  al  (33) detected circulating IgG, IgA and IgM 
against human bronchial epithelial cells (anti‑HBEC) in stable 
patients with COPD using indirect immunofluorescence, and 
observed an increased positive rate of anti‑HBEC expression 
in patients with COPD compared with in healthy controls. 
Sigari et al (34) reported increased serum levels of anti‑cyclic 
citrullinated peptide antibody levels in wood‑smoke‑induced 
COPD compared with in tobacco‑induced COPD and controls. 
Xiong et al (35) reported that the plasma autoantibody levels of 

Table II. Comparison of clinical parameters among clusters.

Clinical parameter	C luster 1, n=17	C luster 2, n=37	C luster 3, n=30	C luster 4, n=18	 P‑value

Age, years	 66.65±8.21	 66.95±8.58	 67.03±8.40	 64.33±6.67	 0.681
BMI, kg/m2	 21.76±5.62	 22.47±3.63	 20.79±4.07	 22.49±3.37	 0.355
Number of exacerbations in	 0 (0‑1)	 1 (0‑1.5)	 1 (0‑2)	 0 (0‑1)	 0.109
the previous year
Blood neutrophil count, x109/l	   4.4±1.11	   4.76±2.45	   4.04±1.71	 4.46±1.69	 0.527
FEV1pred%	 45.16±18.72	   43.65±17.25	   53.26±24.11	 56.63±24.46	 0.095
MMEF	 0.43±0.25	   0.46±0.30	   0.62±0.49	 0.68±0.46	 0.105
CAT	 9.88±4.85	 13.84±6.90	 11.80±5.46	 8.67±7.01	 0.022a

mMRC	 1 (1‑2)	 2 (1‑2)	 1 (1‑2.25)	 1 (0‑2)	 0.029a

aP<0.05; cluster 2 vs. cluster 4. BMI, body mass index; CAT, chronic obstructive pulmonary disease assessment test score; FEV1pred%, forced 
expiratory volume in 1 sec as percentage of predicted; MMEF, maximal mid‑expiratory flow; mMRC, modified Medical Research Council 
Dyspnea Scale.
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IgG, IgA and IgM against cytokeratin‑18 and ‑19 were elevated 
in patients with COPD compared with healthy controls. 
Luo et al (36) investigated the presence of anti‑CD80 autoanti-
bodies in the serum of patients with stable COPD and controls, 
and observed that serum levels of anti‑CD80 were increased 

in patients with COPD compared with those in controls and 
were positively correlated with serum levels of interleukin 
(IL)‑6 and IL‑8. Shindi et al (37) detected serum IgM and IgG 
autoantibodies in patients with COPD and controls using an 
antigen microarray, and reported significant differences in the 

Figure 2. Network analysis of non‑smoking healthy controls and the four clusters. (A) Non‑smoking healthy controls and clusters (B) 1, (C) 2, (D) 3 and (E) 4. 
The size of each node is proportional to its weighted degree value. The colour of each node represents the corresponding module. Correlation coefficients with 
P>0.05 were filtered out. The colour of each edge indicates the correlation coefficient (edge weight) between two nodes. AE, number of exacerbations in the 
previous year; BMI, body mass index; Alb, serum albumin; CAT, chronic obstructive pulmonary disease assessment test score; FEV1pred, forced expiratory 
volume in 1 sec as percentage of predicted; CS, current smoker; Hgb, haemoglobin; Glb, serum globulin; MMEF, maximal mid‑expiratory flow; mMRC, 
modified Medical Research Council Dyspnea Scale; Mon, peripheral blood monocyte count; Neu, peripheral blood neutrophil count; sp, sputum; UA, serum 
uric acid; WBC, peripheral white blood cell count; Sm, Smith antigen; P0, ribosomal phosphoprotein P0; Ro/SSA, Ro/Sjögren syndrome type A antigen; 
La/SSB, La/Sjögren syndrome type B antigen; Scl70, DNA Topoisomerase I; Jo1, histidyl‑tRNA synthetase; U1‑SnRNP, U1 small nuclear ribonucleoprotein; 
TPO, thyroid peroxidase; PR3, proteinase‑3; MPO, myeloperoxidase.
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autoantigenic specificities of IgM autoantibodies compared 
with IgG autoantibodies in COPD serum. Conversely, none 
of these studies reported airway autoantibody responses in 

COPD, and no studies have investigated the autoantibody 
responses in different immunological subgroups of COPD. 
Therefore, the present study was conducted to investigate the 

Table III. Topological properties of the four correlation networks.

A, Network properties

	N on‑smoking
Factor	 healthy controls	C luster 1	C luster 2	C luster 3	C luster 4

Number of nodes	 37	 45	 45	 45	 45
Average degree	 3.459	 4.711	 6.711	 5.156	 6.311
Number of edges	 64	 106	 151	 116	 142 
Network diameter	 9	 7	 6	 8	 6
Graph density	 0.096	 0.107	 0.153	 0.117	 0.143
Average path length	 3.64	 3.043	 2.555	 2.908	 2.552
Average Clustering	 0.45	 0.533	 0.46	 0.441	 0.45
coefficient
Modularity	 0.535	 0.56	 0.367	 0.582	 0.447
Module number	 10	 7	 5	 5	 6
Hubs (nodes with 	 Serum	 Sputum	 Sputum anti‑U1‑	 Sputum anti‑PR3, 	 Sputum
degree within top 10%)	 anti‑MPO,	 anti‑TPO,	 SnRNP,	 MMEF, mMRC, 	 anti‑PR3,
	 sputum	 sputum	AE , sputum	 sputum	 sputum
	 anti‑Scl70,	 anti‑Jo1,	 anti‑P0,	 anti‑MPO,	 anti‑P0,
	 sputum	 sputum	 sputum	 sputum	 sputum
 	 anti‑MPO,	 anti‑Sm,	 anti‑Ro/SSA, 	 anti‑U1‑SnRNP	 anti‑Ro/
	 sputum	 sputum	 sputum		  SSA, 
	 anti‑Jo1,	 anti‑MPO,	 anti‑Scl70		  sputum 
	 sputum	 PEF			   anti‑MPO, 
	 anti‑Ro/SSA				    PEF

B, AE‑node properties

	N on‑smoking
Factor	 healthy controls	C luster 1	C luster 2	C luster 3	C luster 4

Degree	NA	  1	 15	 5	 2
Betweenness centrality	NA	  0	 70.59	 3.59	 7.47
Eccentricity	NA	  2.0	 5	 5	 5.0
Closeness centrality	NA	  0.6	 0.49	 0.35	 0.32
Clustering coefficient	 NA	 0	 0.41	 0.7	 0
Correlated nodes	NA	  Positive: CAT	 Positive: Neu, Mon, 	 Positive: CAT,	 Positive:
		N  egative: none	 WBC, Hgb	 sputum anti‑PR3,	 none
			   Negative: FEV1pred%,	 sputum anti‑MPO,	N egative:
			   MMEF, sputum anti‑P0,	 sputum anti‑Ro/SSA,	UA , Neu
			   sputum anti‑Scl70, 	 sputum anti‑U1‑SnRNP
			   sputum anti‑Sm, sputum	N egative: none
			   anti‑U1‑SnRNP, sputum
			   anti‑PR3, sputum
			   anti‑Ro/SSA, Glb, age

AE, number of exacerbations in the previous year; FEV1pred%, forced expiratory volume in 1 sec as percentage of predicted; MMEF, maximal 
mid‑expiratory flow; Neu, peripheral blood neutrophil count; CAT, chronic obstructive pulmonary disease assessment test score; WBC, periph-
eral white blood cell count; Glb, serum globulin; Mon, peripheral blood monocyte count; Hgb, haemoglobin; UA, serum uric acid; Sm, Smith 
antigen; P0, ribosomal phosphoprotein P0; Ro/SSA, Ro/Sjögren syndrome type A antigen; Scl70, DNA topoisomerase I; Jo1, histidyl‑tRNA 
synthetase; U1‑SnRNP, U1 small nuclear ribonucleoprotein; TPO, thyroid peroxidase; PR3, proteinase‑3; MPO, myeloperoxidase.
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airway/circulating autoantibody responses in heterogenous 
subgroups of COPD.

A number of previous studies have explored the associa-
tions among clinical, functional and biological parameters, 
and exacerbation risk, in COPD. For example, it was reported 
that the CAT score can assist in the prediction of COPD 
exacerbations (38); in the present study, it was observed that 
the CAT score was significantly associated with retrospec-
tive exacerbations only in two subgroups (cluster 1 and 
cluster 3), suggesting clinical heterogeneity in patients with 
COPD. Additionally, it was demonstrated that deteriorating 
airflow limitation is associated with an increasing preva-
lence of exacerbations (39); however, FEV1 lacks sufficient 
precision (wide variation) to be used clinically as a predictor 
of exacerbation in patients with COPD (40). The present 
study reported that airflow limitations were associated with 

retrospective exacerbations only in one COPD subgroup, 
which suggested the heterogeneity of exacerbation risks and 
was consistent with previous reports. Peripheral neutrophil 
count represents low‑grade systemic inflammation in a 
number of chronic conditions (41); Hong et al (42) reported 
that the blood neutrophil count was significantly correlated 
with main clinical outcomes in patients with COPD. Of note, 
it was observed in the present study that blood neutrophil 
count was positively associated with retrospective exacerba-
tion only in one subgroup of COPD patients (cluster 2) and 
was negatively associated with retrospective exacerbation in 
another subgroup (cluster 4). These results indicated that the 
existence of systemic inflammation is also heterogeneous; 
however, verification of this requires further research. 
Finally, a previous study reported that serum uric acid was 
associated with an increased risk of COPD exacerbation (43); 

Figure 3. Exacerbation‑associated modules. (A) Cluster 1; (B) cluster 2; (C) cluster 3; and (D) cluster 4. The size of each node is proportional to its weighted 
degree value. Correlation coefficients with P>0.05 were filtered out. The colour of each edge indicates the correlation coefficient (edge weight) between 
two nodes. AE, number of exacerbations in the previous year; Alb, serum albumin; CAT, chronic obstructive pulmonary disease assessment test score; CS, 
current smoker; Hgb, haemoglobin; Glb, serum globulin; Neu, peripheral blood neutrophil count; sp, sputum; UA, serum uric acid; Sm, Smith antigen; P0, 
ribosomal phosphoprotein P0; Ro/SSA, Ro/Sjögren syndrome type A antigen; La/SSB, La/Sjögren syndrome type B antigen; Scl70, DNA Topoisomerase I; 
LAMA, long‑acting muscarinic antagonist; Jo1, histidyl‑tRNA synthetase; U1‑SnRNP, U1 small nuclear ribonucleoprotein; TPO, thyroid peroxidase; PR3, 
proteinase‑3; MPO, myeloperoxidase.
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however, the present study reported that serum uric acid was 
negatively associated with retrospective exacerbation in a 
subgroup of patients, which may be connected to popula-
tion heterogeneity and/or recall bias during the collection of 
retrospective information.

Differential module analysis also provided further 
insight into COPD by demonstrating relationships between 
autoantibody modules and clinical variables in the various 
subgroups. Module 1 demonstrated a simple structure where 
retrospective exacerbations were only associated with CAT 
score, suggesting that it may be easier to prevent exacerba-
tion in this subgroup (cluster 1). Modules 2 and 3 exhibited 
complex structures, high network density and high degrees of 
their respective AE‑nodes, pointing towards the complexity 
and difficulty of preventing exacerbation in these subgroups. 
Of note, sputum autoantibodies (U1‑SnRNP, PR3, and 
Ro/SSA) were negatively associated with exacerbation risk in 
module 2, but were positively related to exacerbation risk in 
module 3, implying the dual character and heterogeneity of 
airway autoantibody responses. Thus, these autoantibodies 
may mediate tissue injury, but may also serve a protective 
role by removing senescent cells and maintaining immune 
homeostasis.

The present study had two main strengths. First, 
autoantibody profiles were detected in sputum and serum 
simultaneously, whereas the majority of previous clinical 
studies have detected autoantibodies only in serum or 
plasma (34,44‑47). In this study and a previous preliminary 
study  (13), it was observed that sputum autoantibodies 
were more clinically relevant than serum autoantibodies, 
suggesting that studies solely focused on circulating auto-
antibodies may provide limited information. Second, due to 

the heterogeneity and complexity of autoantibody responses 
in cases of COPD, an integrative method was applied based 
on unsupervised classification. This method differs from 
previously published COPD autoantibody studies in that it 
provides the capacity to visualise a wide range of autoan-
tibodies in heterogeneous subgroups, rather than focusing 
on a single or small number of autoantibodies and viewing 
all patients as homogenous. Without dividing patients into 
heterogeneous subgroups, those prior studies may have 
generated inconsistent findings (46,47).

A number of limitations of the current study should be 
discussed. First, this was a cross‑sectional study, so causal 
relationships could not be drawn, meaning that exacerba-
tion‑associated factors identified in this study should be 
validated using longitudinal cohort data; however, previous 
studies reported that the type of inflammatory responses 
observed during exacerbation may depend on patient 
phenotype in stable disease (48‑52), suggesting that patient 
parameters in stable disease and exacerbation are closely asso-
ciated (3,53). Second, as this preliminary study was performed 
to investigate the heterogeneities of airway/circulating auto-
antibody responses in patients with COPD, the autoantibody 
profile data provide limited clinical information to accurately 
discriminate the COPD subgroups. Third, this study was 
preliminary and was limited to the analysis of autoantibodies 
against ten autoantigens. The inclusion of an increased number 
of diverse autoantibodies may be more clinically informative. 
Furthermore, autoreactive B cells, which are the source of auto-
antibodies, should be studied in the future. Finally, the patients 
recruited into the present study were predominantly male, 
which may have been related to their risk factors. According 
to the China Global Adults Tobacco Survey of 2010, 52.9% of 

Table IV. Topological properties of the exacerbation‑related module of the four clusters.

Factor	 Module 1 (Cluster 1)	 Module 2 (Cluster 2)	 Module 3 (Cluster 3)	 Module 4 (Cluster 4)

Number of nodes	 4	 13	 11	 8
Average degree	 1.5	 8.308	 6.364	 2
Number of edges	 3	 54	 35	 8
Network diameter	 2	 2	 3	 4
Graph density	 0.5	 0.692	 0.636	 0.286
AE‑node degree	 1	 8	 5	 1
AE‑correlated nodes	 Positive: CAT	 Positive: Neu	 Positive: CAT	 Positive: none
	N egative: none	N egative: 	 sputum anti‑PR3	N egative: UA
		  sputum anti‑P0 	 sputum anti‑MPO
		  sputum anti‑Scl70	 sputum anti‑Ro/SSA
		  sputum anti‑Sm	 sputum anti‑U1‑SnRNP
		  sputum anti‑U1‑SnRNP	N egative: none
		  sputum anti‑PR3	
		  sputum anti‑Ro/SSA	
		  Glb	

AE, number of exacerbations in the previous year; Neu, peripheral blood neutrophil count; CAT, chronic obstructive pulmonary disease 
assessment test score; Glb, serum globulin; UA, serum uric acid; Sm, Smith antigen; P0, ribosomal phosphoprotein P0; Ro/SSA, Ro/Sjögren 
syndrome type A antigen; Scl70, DNA topoisomerase I; U1‑SnRNP, U1 small nuclear ribonucleoprotein; PR3, proteinase‑3; MPO, myeloper-
oxidase.
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males and 2.4% of females were current smokers (54). In China, 
cigarette smoking is the main risk factor for COPD, although 
in rural Southern China it has been replaced by exposure to 
biomass fuel (55). The patients in the cohort were admitted to 
a university teaching hospital in Guangzhou (the largest city in 
Southern China). Thus, cigarette smoking would have been the 
main risk factor for COPD but would have resulted in a sexual 
bias, as more males than females are smokers.

In conclusion, using unsupervised clustering and network 
analysis, it was demonstrated that: i)  Pulmonary autoan-
tibody responses were heterogeneous and associated with 
exacerbation risk in certain subgroups, and therefore their 
dual character should be taken into consideration in future 
research; and ii) airway and circulating autoantibody profiles 
can identify COPD subgroups with various factors associ-
ated with exacerbation risk and distinct network topologies. 
The present study also provides support for future strategies 
involving personalised predictive biomarker identification and 
precision management. Further clinical research should focus 
on local (airway) autoimmune responses.
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