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Abstract. With the increasing rate of chemoresistance in 
colorectal cancer (CRC) patients with advanced tumor stages, 
it is a matter of urgent importance to delineate the factors 
involved in the drug resistance process. In this study, gene 
expression profiles were downloaded from the Gene Expression 
Omnibus database and an integrated analysis with the aim of 
detecting hub long non‑coding RNAs (lncRNAs) and their 
regulated, differentially expressed genes (DEGs) during treat-
ment with oxaliplatin (OxPt) or irinotecan was conducted. 
A total of seven differentially expressed lncRNAs were 
correlated with OxPt resistance and 21 were correlated with 
resistance to SN‑38, the active metabolite of irinotecan. Gene 
Ontology annotation and Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analysis confirmed that drug 
resistance was strongly associated with an imbalance between 
cell proliferation and apoptosis, cell energetic metabolism 
under hypoxic conditions, and angiogenesis. Moreover, a large 
number of lncRNA‑targeted DEGs were located in extracel-
lular exosomes. Further analyses identified four hub lncRNAs 
involved in the process of drug resistance, including CRNDE, 
H19, UCA1 and HOTAIR, which are predictive factors for 
treatment sensitivity. Among them, HOTAIR stands out as a 

strong factor, the elevated expression of which is also associ-
ated with advanced tumor node and metastasis stage and poor 
CRC disease prognosis.

Introduction

Colorectal cancer (CRC) is a frequent malignant tumor in 
developed countries, with high morbidity and a high death 
rate. According to statistics published in 2015, CRC is the 
third most frequently diagnosed cancer in males and ranks 
second in females  (1). According to the American Joint 
Committee on Cancer, the 5‑year overall survival (OS) rate of 
CRC is 65.2% (2). Common risk factors for CRC include age, 
obesity, smoking and an unhealthy diet (3). Previous studies 
have found that several patients present with unresectable 
stage disease at initial diagnosis (4,5). Standard treatments for 
CRC include surgical resection, modern chemotherapy and 
radiation therapy. Although chemotherapy plays an important 
role in CRC treatment, the chemoresistance‑reduced effective-
ness of anti‑neoplastic agents causes a lower survival rate of 
advanced‑stage CRC patients.

Oxaliplatin (OxPt) is a third‑generation platinum‑based 
chemotherapeutic drug that inhibits the DNA replication 
and transcription of tumor cells (6). When used in combina-
tion with fluorouracil (5‑FU), leucovorin and folinic acid, 
it is recognized as the first‑line chemotherapy strategy for 
CRC  (7). In recent years, the extensive use of OxPt has 
caused increased chemoresistance in clinical practice. 
Previous studies have found that the nucleotide excision 
repair pathway plays a key role in OxPt resistance  (8,9). 
Moreover, the overexpression of chemoresistance‑associated 
proteins (e.g., transforming growth factor‑β and WBSCR22) 
and microRNAs, and increased messenger RNA levels of 
XPAC and ERCC1, are believed to predict chemoresistance 
to OxPt (10‑12).
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Irinotecan, an analogue of camptothecin isolated from the 
Chinese tree Camptotheca acuminata, was first approved by 
the Food and Drug Administration for the treatment of CRC 
in 1996 and is now used as the second choice for CRC chemo-
therapy (13). Irinotecan selectively inhibits topoisomerase I 
and induces the degradation of double‑stranded DNA via 
intracellular modifications. Ultimately, irinotecan is activated 
by carboxylesterases to its active metabolite SN‑38, which 
combines with topoisomerase and induces the breakage of DNA 
strands, DNA replication failure and cellular apoptosis (14,15). 
The therapeutic efficacy and toxicity of irinotecan are related 
to the expression of tumor‑specific genes and the intra‑tumor 
accumulation of SN‑38 (16). Irinotecan treatment may also 
cause severe chemoresistance via variable levels of metabolic 
enzymes, reduced cellular accumulation from active drug efflux 
and reduced levels of Topo I expression, as well as different muta-
tions and/or the activation of nuclear factor κB (NF‑κB) (17).

Long non‑coding RNAs (lncRNAs), defined as mRNA‑like 
transcripts with lengths up to 200 nucleotides, are important 
members of the non‑coding RNA family (18). lncRNA expres-
sion is regulated by both transcriptional and epigenetic factors. 
Several studies have revealed that lncRNAs are expressed in 
various tumor tissues and are involved in a number of cellular 
functions and developmental processes, such as cell growth, 
development, invasion, and apoptosis (19‑21). Increasing lines 
of evidence suggest that lncRNAs are valuable bio‑targets 
in the diagnosis and treatment of CRC (22). Recent studies 
have suggested that lncRNAs play a key role in drug function 
regulation and chemoresistance through various mechanisms 
in multiple cancers (23,24). At present, at least 70 CRC‑related 
lncRNAs have been recognized, including HOTAIR, CCAT1, 
CCAT2, MALAT‑1 and H19 (25). Changes in the expression of 
these lncRNAs could lead to chemotherapy and radiotherapy 
resistance. Therefore, further research and efforts are needed 
to clarify the chemoresistance mechanism of each lncRNA. 
Then a simple and reliable screening program based on the 
expression levels of lncRNAs can be developed to guide the 
selection of chemotherapy drugs.

In the current study, previously published RNA expression 
datasets on the chemoresistance of CRC in the Gene Expression 
Omnibus (GEO) database were searched. A comprehensive 
bioinformatics analysis was performed by defining the 
differentially expressed lncRNAs and other RNAs separately 
according to their chemoresistance to irinotecan or OxPt. The 
differentially expressed lncRNAs were correlated with differ-
entially expressed genes (DEGs) and potential diseases based 
on the RNA‑associated interactions database (RAID) and the 
mammalian lncRNA‑disease repository (MNDR) database. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were also 
performed and a protein‑protein interaction (PPI) network was 
established to screen for crucial genes and lncRNAs, whose 
hazard degrees were further demonstrated by evaluating their 
expression in tumors and according to tumor, node and metas-
tasis (TNM) stage, as well as survival.

Materials and methods

Datasets and DEG identification. Gene expression profiles 
for chemoresistance to two chemotherapeutic drugs, OxPt and 

irinotecan (active metabolite SN‑38), in three CRC cell lines 
(HCT116, HT29, and LoVo) were obtained from GSE42387 
in the GEO database  (26). Gene expression data were 
explored and visualized in the ggplot2 package of R software 
(version 3.2.0, https://ggplot2.tidyverse.org) for each sample 
in the nine groups (normal HCT116, OxPt‑resistant HCT116, 
SN‑38‑resistant HCT116, normal HT29, OxPt‑resistant HT29, 
SN‑38‑resistant HT29, normal LoVo, OxPt‑resistant LoVo 
and SN‑38‑resistant LoVo). A detailed workflow of the data 
analysis is shown in Fig.  S1. The limma package, which 
includes lmFit, eBayes and top Table functions, was used for 
the pairwise comparison of DEGs among the nine groups (27). 
The cutoff criteria were P<0.05 and abs(log2FC)>1, where FC 
indicates fold‑change. The screened DEGs were divided into 
two groups, differentially expressed mRNAs and lncRNAs, 
which were further analyzed.

GO annotation and KEGG pathway enrichment analyses of 
DEGs. As mentioned above, two groups of DEGs: mRNAs 
and lncRNAs were analyzed. Based on RAID version 2.0 (28), 
the potential targets (confidence score >0.5) of the differen-
tially expressed lncRNAs were obtained and intersected with 
DEGs found in the same group. Next, the intersected DEGs 
were divided into two groups: OxPt resistance and irinotecan 
resistance. GO annotation is a classic method used to identify 
the biological attributes of DEGs. This analysis comprises 
three parts: Biological process (BP), cell component (CC) 
and molecular function (MF). KEGG, a collection of genome, 
biological pathway, disease, drug and chemical substance 
databases, was used to identify the functional attributes of 
the DEGs. The Database for Annotation, Visualization and 
Integrated Discovery (DAVID; ver.  6.8)  (29,30) was also 
applied for the functional interpretation of the two large lists of 
genes derived from previous analyses. Statistical significance 
was set at P<0.05.

PPI network construction and hub gene identification. A PPI 
network was constructed for the DEGs using STRING (31), an 
online functional protein association network tool, to detect 
potential relationships among the DEGs with confidence 
scores ≥0.4 and a maximum number of interactors of 1. The 
generated PPI network data were downloaded and imported 
into Cytoscape software (ver. 3.5.1), a bioinformatics tool used 
to create networks of protein interactions and reassess and inte-
grate gene information from numerous embedded applications. 
The CentiScaPe plugin was used to determine the character-
istics of each node in the PPI network, which gave each gene 
a degree score, the simplest topological index, allowing for 
immediate evaluation of the average number of edges (interac-
tions) incident to the node (32). Genes with a degree ≥5 in 
significantly perturbed networks were defined as hub genes 
(mRNA). The differentially expressed lncRNA‑mRNA inter-
action network was constructed and displayed by Cytoscape 
(version 3.5, http://www.cytoscape.org/). The lncRNA holding 
interactions with the greatest number of hub genes (mRNA) in 
the network were defined as hub lncRNAs.

Constructing the differentially expressed lncRNA‑related 
disease network. Each lncRNA has a disease association 
profile. According to MNDR version 2.0 (33), a global view 
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of the lncRNA‑mediated disease network, which contains all 
of the differentially expressed lncRNA‑related disease data 
(confidence score >0.5), was downloaded and integrated by R 
software. The disease network was constructed by Cytoscape. 
The disease label size was normalized to the number of 
lncRNAs related to each disease.

Hub lncRNA analysis. The hub lncRNAs were further inves-
tigated using Gene Expression Profiling Interactive Analysis, 
a newly developed interactive web server for analyzing the 
RNA sequencing expression data of 9,736 tumors and 8,587 
normal samples from The Cancer Genome Atlas (TCGA) and 
Genotype‑Tissue Expression projects (34). The expression of each 
hub lncRNA in colon adenocarcinoma and rectum adenocarci-
noma was compared with in normal tissue and to different tumor 
stages and plotted. Survival analysis was performed based on 
information from TCGA database. Relapse‑free survival and OS 
were calculated. Hazard ratios with 95% confidence intervals and 
P‑values calculated based on the Mantel‑Cox log‑rank test are 
displayed in Kaplan‑Meier plots.

Results

Data quality control and DEG screening. A total of 32,705 
genes were detected in each sample; their expression values 
and data distributions were similar between groups (Fig. S2A) 
and among samples (Fig. S2B). Principal component analysis 
showed that samples were easily grouped in different cell 
lines but not into certain drug resistance patterns (Fig. S2C). 
Therefore, further bioinformatics analysis should be performed 
separately based on different cell lines and chemoresistance. 
This dataset qualified for the following analysis.

Following data processing using limma, 255 DEGs in 
HCT116‑OxPt vs. HCT116, 672 DEGs in HT29‑OxPt vs. 
HT29, 491 DEGs in LoVo‑OxPt vs. LoVo,  283 DEGs in 
HCT116‑SN‑38 vs. HCT116, 779 DEGs in HT29‑SN‑38 vs. 
HT29 and 1,713 DEGs in LoVo‑SN‑38 vs. LoVo were identi-
fied (Fig. S2D and E). The detailed DEGs information were 
shown in Tables SI‑SVI.

Intersection between the predicted targets of lncRNAs and 
DEGs. Among all of the DEGs identified in each comparison, 
the differentially expressed lncRNAs were isolated and are 
listed in Table I. The target prediction of each lncRNA was 
searched and obtained using RAID version 2.0. Next, the 
target genes were intersected with the identified DEGs in each 
comparison and are displayed as Venn diagrams (Fig. 1A). 
The intersected DEGs in the same drug management were 
united to perform GO annotation and KEGG pathway enrich-
ment analyses based on DAVID. All significant (P<0.05) 
enriched entries in OxPt resistance are shown in a histogram 
(Fig. 1B), with the top three being protein ubiquitination, 
SMAD protein signal transduction and negative regulation 
of protein kinase activity in the BP GO annotation category; 
extracellular exosome and focal adhesion in the CC category; 
and GTP binding, receptor binding, and calmodulin binding 
in the MF category. All significant (P<0.05) enriched entries 
in irinotecan resistance are also shown in a histogram (Fig. 1C 
and D), with the top three being positive regulation of transcrip-
tion from RNA polymerase II promoter, positive regulation 

of apoptotic process, angiogenesis in the BP GO annotation 
category; cytoplasm, extracellular exosome, and extracel-
lular space in the CC category; protein homodimerization 
activity, RNA polymerase II core promoter proximal region 
sequence‑specific DNA binding, and growth factor activity 
in the MF category; and pathways in cancer, microRNAs in 
cancer, and TNF signaling pathway in the KEGG pathway. 
Detailed information on the DEGs involved in the BP GO 
category and KEGG pathway are listed in Fig. 1E.

Identification of hub lncRNAs and their associated disease 
network. There was a positive association between mRNA and 
protein expression changes; therefore, putative PPI network 
maps were constructed for the united datasets of chemoresis-
tance using the STRING database and Cytoscape. Excluding 
the DEGs distributed on the edge of the PPI network, the 
remaining 26 and 57 central DEGs in the OxPt and SN‑38 
groups, respectively, were evaluated using the CentiScaPe 
plugin. The degree index of each central DEG was calcu-
lated and hub genes were defined using the criterion that the 
degree value must be ≥5. In the OxPt group, the hub genes 
were FOS, VIM, PLAUR and IGF2. In the SN‑38 group, the 
hub genes were VEGFA, JUN, PTGS2, FOS, VIM, STAT1, 
CDKN1A, MMP3, CCL5, LYN, ATF3, KITLG, MMP1, 
FN1, CEBPB, CXCL2, MUC1, CRYZ, WNT5A and FOXA2 
(Tables SVII and SVIII). These hub genes are marked in red 
in the PPI network (Figs. 2A and 3A). In a similar manner, 
the interaction network between each specific lncRNA and its 
potential targets in DEGs were visualized using Cytoscape in 
Figs. 2B and 3B. Up‑ and downregulated DEGs are colored in 
red and blue, respectively. The log2FC value is also indicated 
by the size of the node. Each hub lncRNA was identified by 
calculating its downstream hub genes whose count should 
be ranked in the top three and larger than 2. During OxPt 
screening, the lncRNAs CRNDE (target DEGs: PLAUR and 
FOS) and H19 (target DEGs: IGF2 and VIM) stood out. SN‑38 
screening revealed the following lncRNAs: CRNDE (target 
DEGs: STAT1, MUC1, LYN, KITLG, CXCL2, CRYZ, CCL5 
and ATF3), HOTAIR (target DEGs: VEGFA, CDKN1A, VIM, 
MMP3, and MMP1), and UCA1 (target DEGs: CDKN1A, 
JUN, WNT5A, PTGS2, and FN1).

Information on lncRNA‑associated diseases was 
obtained in full scale according to the MNDR database. By 
integrating this information in Cytoscape, the major related 
diseases associated with the differentially expressed lncRNAs 
were clearly sorted out. The more lncRNAs a disease is 
connected to, the larger its label. As shown in Fig. 4, cancer is 
the word that most frequently appears. Among them, CRC is 
obvious in the OxPt‑lncRNA‑related disease network, which is 
strongly connected to CRNDE and H19 (Fig. 4A), whereas the 
SN‑38‑lncRNA‑related disease network is strongly connected 
to GAS5, UCA1, NEAT1, and CRNDE (Fig. 4B).

lncRNA expression validation and survival analysis in TCGA. 
TCGA database was utilized to validate and compare hub 
lncRNA expression in tumor and normal tissues. Although the 
results cannot relate the expression levels of these lncRNAs to 
chemoresistance, it did, to a certain extent, partially confirm 
the hazard degree of each lncRNA. As indicated in Fig. 5A‑D, 
the expression of CRNDE and UCA1 was significantly 
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Figure 1. Functional analyses of differentially expressed long non‑coding RNA lncRNA‑targeted DEGs. (A) A Venn diagram between lncRNA target genes 
in the database and screened DEGs for the six comparison groups. Histograms of GO functional classification of DEGs for the (B) OxPt resistance group and 
the (C) SN‑38 resistance group. The x‑axis represents the number of DEGs and the y‑axis represents the GO terms. All GO terms were grouped into three 
ontologies: Biological process, cellular component and molecular function. The graph displays only significantly enriched GO terms (P<0.05); darker blue 
indicates greater significance. 
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increased in tumor tissue compared with in normal tissue 
(P<0.05). Except for CRNDE, the expression of three other 
lncRNAs increased as the TNM stage increased. In Fig. 5E‑H, 
only HOTAIR showed a significant relationship with OS and 
disease‑free survival (DFS; P<0.05). Patients with increased 
expression of HOTAIR suffered a shorter OS (HR=1.9, 
P=0.0066) and DFS (HR=1.8, P=0.012) compared to those 
with weaker expression.

Discussion

In recent years, the prevalence of CRC has increased worldwide. 
Due to the popularity of prophylactic screening, CRC can be 

diagnosed and treated increasingly early (3). However, many 
patients are in late stages when diagnosed (≥stage III or high‑risk 
stage II) and require neoadjuvant or adjuvant chemotherapy (7). 
Some patients must face a tough reality‑chemoresistance‑which 
results in a shorter survival owing to limited chemotherapy 
choices. Although a previous bioinformatics analysis has revealed 
differences in gene expression patterns in chemoresistant cells, 
such as original study of GSE42387 done by Jensen et al (26), 
few have determined pivotal lncRNAs involved in this process. 
Therefore, a comprehensive analysis at the whole‑genome level 
is necessary to identify key lncRNAs and provide detailed 
gene signatures for effective chemotherapy. The present study 
aimed at exploring the relationship between aberrant expressed 

Figure 1. Continued. (D) A histogram of the KEGG pathway enrichment of DEGs screened in the SN‑38 resistance group, where the x‑axis represents the 
number of DEGs annotated in a pathway term; enriched pathways are shown on the y‑axis. The graph displays only significantly enriched KEGG terms 
(P<0.05); darker red indicates greater significance. (E) A table listing biological process GO and KEGG terms in each group. lncRNA, long non‑coding RNA; 
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed genes.
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lncRNAs and mRNAs. The GEO dataset was re‑analyzed by 
relaxing DEG screening condition to gain more information. 

Only DEGs predicted to be the targets of differential expressed 
lncRNAs were involved in the following analysis.

Figure 2. PPI network construction for the OxPt resistance group. (A) PPI network for screened lncRNA‑targeted DEGs. Genes marked in red represent hub genes 
with a degree ≥5 (color and size are increased along with degree value). The darker the connection line, the greater the confidence score. (B) lncRNA‑mRNA 
association network. Circles indicate mRNAs and diamonds indicate non‑protein‑coding RNAs. A larger node indicates a larger log2FC value. Upregulated 
genes are shown in pink and downregulated genes are shown in blue. PPI, protein‑protein interaction; lncRNA, long noncoding RNA; OxPt, oxaliplatin; DEG, 
differentially expressed genes; FC, fold‑change.
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To gain further insight into the biological pathways and 
identify key factors involved in chemoresistance, functional 
analyses of lncRNA‑targeted DEGs, including GO annotation 
and KEGG pathway enrichment analyses were performed. 
The present study found that several DEGs are components 
of the extracellular exosome. Interestingly, the exosome is 
believed to confer chemoresistance to pancreatic cancer (35), 

breast cancer (36), gastric cancer (37) and CRC (38). It is 
believed that due to their cell‑to‑cell communication, 
exosomes protect tumor cells from the cytotoxic effects of 
chemotherapy drugs and transfer chemoresistance properties 
to nearby cells (39). The items enriched in GO biological 
processes indicate that chemoresistance occurring during 
both OxPt and irinotecan therapy is associated with an 

Figure 3. PPI network construction for the SN‑38 resistance group. (A) PPI network for screened lncRNA‑targeted DEGs. Genes marked in red repre-
sent hub genes with a degree ≥5 (color and size are increased along with degree value). The darker the connection line, the greater the confidence score. 
(B) lncRNA‑mRNA association network. Circles indicate mRNAs and diamonds indicate non‑protein‑coding RNAs. A larger node indicates a larger 
log2fold‑change value. Upregulated genes are shown in pink and downregulated genes are shown in blue. PPI, protein‑protein interaction; lncRNA, long 
noncoding RNA; DEG, differentially expressed genes.
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imbalance between cell proliferation and apoptosis regula-
tion, cell energetic metabolism under hypoxic conditions, 
and angiogenesis. However, it seems that irinotecan treat-
ment yields more DEGs than OxPt treatment. The present 
study hypothesized that this is why OxPt is the first choice 
for the clinical therapy of CRC.

In the present study, four hub lncRNAs were identified: 
CRNDE, H19, UCA1 and HOTAIR. CRNDE is a 1,910‑nt 

cancer‑secreted lncRNA transcribed by human chromosome 16 
(16q12.2). Decades of research have shown that the high expres-
sion of CRNDE is involved in the progression of several cancers, 
such as renal cell carcinoma (40), hepatocellular carcinoma (41) 
and glioma tumors (42). Liu et al (43) found exosomal CRNDE‑h 
in the sera of CRC patients. They also found a positive correla-
tion between serum levels of CRNDE‑h and regional lymph 
node or distant metastasis. Therefore, they believe that exosomal 

Figure 4. lncRNA‑related disease network construction. (A) The OxPt resistance group and (B) the SN‑38 resistance group. lncRNAs are indicated in red 
circles. Diseases are indicated in blue square. The disease label size is normalized to the number of lncRNAs related to each disease. Lnc, long noncoding; 
OxPt, oxaliplatin.
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Figure 5. Clinical significances of hub lncRNAs. Analyses of hub lncRNAs expression in tumor vs. normal tissues and in different tumor stages for (A) CRNDE, 
(B) H19, (C) HOTAIR, and (D) UCA1. The red box stands for tumor tissue; grey box is for normal tissue; and dots presents each sample value in left panel. 
*P<0.05; other P‑values are shown on the diagrams. 
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Figure 5. Continued. Overall and disease‑free survival analyses of hub lncRNAs (E) CRNDE, (F) H19, (G) HOTAIR, and (H) UCA1. P‑values are shown on 
the diagrams. READ, rectum adenocarcinoma; COAD, colon adenocarcinoma
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CRNDE can be used as a serum biochemical marker in the 
diagnosis and prognosis of CRC. Another recent study revealed 
that the overexpression of CRNDE promoted the development 
of CRC by suppressing the expression of dual‑specificity phos-
phatase 5 (DUSP5) and CDKN1A. Moreover, the knockdown 
of CRNDE significantly blocked cell proliferation and induced 
apoptosis (44). In glioma, CRNDE promoted cell growth and 
invasion via mTOR signaling (42). The involvement of CRNDE 
in the chemoresistance of CRC treatment has also been assessed 
by a number of researchers (45,46). After treating CRC cells 
with different concentrations of 5‑FU, Han et al (45) found that 
CRNDE‑knockdown CRC cells exhibited increased sensitivity 
to 5‑FU and OxPt treatment. Together, these results suggest that 
CRNDE is closely related to the development and chemoresis-
tance of CRC.

Another hub lncRNA identified in the present study, 
lncRNA H19, is a key oncogenic mediator coded by chromo-
some 11. According to previous studies, H19 is overexpressed 
in various cancers, including breast cancer  (47), thyroid 
carcinoma  (48) and lung cancer  (49). H19 also plays an 
oncogenic role in the development of CRC. The expression of 
H19 is increased in CRC tissues from advanced TNM stage 
patients (50). Enhanced H19 expression was also found in a 
CRC cell line and treatment with H19 significantly induced 
the proliferation of CRC cells, suggesting an underlying rela-
tionship between H19 and colorectal carcinogenesis (51). H19 
also plays an important role in the migration and invasion of 
CRC cells (52). Increasing research attention has been given to 
the chemoresistance of H19 in the treatment of cancer (53,54). 
Emerging evidence also indicates that H19 knockout in the 
HT‑29 cell line (MTX‑resistant colorectal cells) reduces the 
risk of drug resistance. Further investigations showed that this 
H19‑related chemoresistance is mediated by the Wnt/β‑catenin 
signaling pathway (55).

HOTAIR is a novel oncogenic lncRNA transcribed by the 
HoxC gene. As with the abovementioned lncRNAs, HOTAIR 
has also been identified in several cancers, including osteo-
sarcoma (56), cervical cancer (57) and gastric cancer (58). 
Similarly, HOTAIR exerts its oncogenic role by regulating 
CRC cell proliferation, invasion, and migration by medi-
ating p21 (59). Elevated HOTAIR expression has also been 
detected in CRC cells and tissues relative to adjacent control 
tissues (60,61). The precise role of HOTAIR in chemoresistance 
in the chemotherapy of CRC was also recently reported. 
Li et al (62) indicated that HOTAIR promotes the chemore-
sistance of CRC cells to 5‑FU by suppressing miR‑218 and 
activating NF‑κB signaling. Another study performed by 
Xiao et al (63) found that HOTAIR knockout improved the 
sensitivity of CRC cells to cisplatin and paclitaxel and that 
this mechanism may, at least in part, be related to the expres-
sion of miR‑203a‑3p and activation of the Wnt/β‑catenin 
signaling pathway.

The regulatory role of UCA1 in chemotherapy drug resis-
tance in CRC was also investigated. The upregulated lncRNA 
UCA1 is correlated with the progression of lung cancer, 
esophageal squamous cell carcinoma and CRC (64‑66) and 
predicts a poor prognosis. Compared with control tissues, an 
increased level of UCA1 was found in CRC tissues and cells 
and the level of UCA1 was positively correlated with tumor 
size and depth (67). Further in vitro experiments suggested 

that UCA1 induces CRC cell proliferation and inhibits apop-
tosis. Recent studies have also revealed the potential role of 
UCA1 in chemoresistance in CRC. CRC cells with UCA1 
knockdown exhibit sensitivity to 5‑FU by increasing tumor 
cell apoptosis. Conversely, UCA1 overexpression may result 
in increased resistance to 5‑FU treatment, suggesting that 
UCA1 may predict the response to CRC chemotherapy (68). 
Furthermore, overexpression of UCA1 has a consanguineous 
connection with radioresistance in CRC treatment (69).

Collectively, the current study identified four pivotal 
lncRNAs, CRNDE, H19, UCA1 and HOTAIR, which are 
strongly associated with CRC chemoresistance and can be 
used as predictive factors for treatment sensitivity and tumor 
prognosis. Functional enrichment analysis indicated that 
an imbalance between cell proliferation and apoptosis, cell 
energetic metabolism under hypoxic conditions, and angio-
genesis were the key biological processes whereby lncRNAs 
perturbed gene expression and altered sensitivity of tumor 
cells to chemotherapy. However, the results of the present 
study are based entirely on bioinformatics analyses and lack 
in vivo and in vitro experimental evidence. Further research 
is required to delineate their potential roles in chemoresis-
tance.
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