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Abstract. MicroRNAs (miRNAs/miRs) are small non‑coding 
RNAs (ncRNAs) that regulate gene expression. Emerging 
knowledge has suggested that miRNAs have a role in the 
pathogenesis of metabolic disorders, supporting the hypothesis 
that miRNAs may represent potential biomarkers or targets 
for this set of diseases. However, the current evidence is often 
controversial. Therefore, the aim of the present study was to 
determine the associations between miRNAs‑target genes, 
miRNA‑long ncRNAs (lncRNAs), and miRNAs‑small mole-
cules in human metabolic diseases, including obesity, type 2 
diabetes and non‑alcoholic fatty liver disease. The metabolic 
disease‑related miRNAs were obtained from the Human 
MicroRNA Disease Database  (HMDD) and miR2Disease 
database. A search on the databases Matrix Decomposition 
and Heterogeneous Graph Inference (MDHGI) and DisGeNET 
were also performed. miRNAs target genes were obtained 
from three independent sources: Microcosm, TargetScan and 
miRTarBase. The interactions between miRNAs‑lncRNA 
and miRNA‑small molecules were performed using the 
miRNet web tool. The network analyses were performed 
using Cytoscape software. As a result, a total of 20 miRNAs 
were revealed to be associated with metabolic disorders in the 
present study. Notably, 6 miRNAs (miR‑17‑5p, miR‑29c‑3p, 
miR‑34a‑5p, miR‑103a‑3p, miR‑107 and miR‑132‑3p) were 
found in the four resources (HMDD, miR2Disease, MDHGI, 
and DisGeNET) used for these analyses, presenting a stronger 
association with the diseases. Furthermore, the target genes 
of these miRNAs participate in several pathways previously 

associated with metabolic diseases. In addition, interactions 
between miRNA‑lncRNA and miRNA‑small molecules were 
also found, suggesting that some molecules can modulate gene 
expression via such an indirect way. Thus, the results of this 
data mining and integration analysis provide further informa-
tion on the possible molecular basis of the metabolic disease 
pathogenesis as well as provide a path to search for potential 
biomarkers and therapeutic targets concerning metabolic 
diseases.

Introduction 

Metabolic diseases affect millions of people in both developed 
and transition countries (1). In addition to conventional genetic 
inheritance of risk alleles, emerging evidence has shown that 
these diseases are also linked to lifestyle and inherited epigen-
etic pattern interactions, which affects gene expression and the 
activity of proteins involved in the onset and pathogenesis of 
diverse metabolic diseases (2).

The strong link between epigenetics and metabolism 
may offer attractive clinical applications to counteract the 
escalating prevalence of metabolic diseases, such as obesity, 
type 2 diabetes mellitus (T2DM), non‑alcoholic fatty liver 
disease (NAFLD), among others (2,3). Regarding the epigen-
etic factors, MicroRNAs (miRNAs) are a class of small 
non‑coding RNAs (ncRNAs) that regulate the expression of 
~60% of protein coding genes. They control many cellular 
functions and metabolic pathways, and subsequently influence 
the development and progression of a number of diseases (4‑7).

Among several activities, miRNAs are recognized as 
regulators of lipid and glucose metabolism and are involved 
in the physiopathology of metabolic diseases  (6,8). The 
liver‑enriched miR‑122‑5p was the first miRNA to be func-
tionally associated with a metabolic phenotype, regulating 
cholesterol and lipid metabolism (9). Additionally, a miR‑122 
inhibitor (Miravirsen) was found as a novel therapeutic 
strategy against chronic hepatitis C virus (HCV) infec-
tion (10). miR‑33a‑5p and miR‑33b‑5p were also demonstrated 
as playing crucial roles in cholesterol and lipid turnover; while 
miR‑34a‑5p may be a key regulator of hepatic lipid homeo-
stasis (11). miR‑103a‑3p and miR‑107 have been reported as 
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regulators of hepatic insulin sensitivity (6) and as contributors 
of adipose growth by accelerating adipocyte differentia-
tion (12). On the other hand, miR‑375 is highly expressed in 
pancreatic islets and is important for insulin secretion and 
β cell development and maintenance (13,14). Thus, the altered 
expression of miRNAs and their target genes could interfere or 
manage the predisposition to metabolic diseases (15,16).

Furthermore, some studies have shown the interactions 
between miRNAs and other epigenetics mechanisms, including 
long ncRNAs (lncRNAs) as described elsewhere (17). Members 
of the lncRNA family contribute to intracellular processes by 
acting as host transcripts for miRNA (18,19) and lncRNAs can 
antagonize miRNA function by competing with miRNAs to 
bind to target mRNAs (20). Furthermore, lncRNAs may act as 
molecular decoys or sponges of miRNAs, affecting the levels 
and function of miRNAs (21,22). Otherwise, some lncRNAs 
are targeted by miRNAs, repressing lncRNAs expression (23). 
Besides that, lncRNA‑miRNA interactions can regulate gene 
expression through a double‑negative feedback loop  (24). 
Moreover, accumulating evidence associates lncRNAs in the 
maintenance of metabolic homeostasis and the dysregulation 
of certain lncRNAs promotes the progression of metabolic 
disorders such as diabetes, obesity, chronic liver diseases, and 
cardiovascular diseases (25,26).

Several small molecules have been suggested as directly 
binding to miRNAs, then modifying miRNAs expres-
sion, thus having therapeutic potential (27). In this context, 
Gumireddy et al (28) report that the small molecule diazoben-
zene modifies the miR‑21 expression, suggesting that miR‑21 
may become a druggable target.

In this study, we aimed to identify metabolic disease‑related 
miRNAs and their target genes, and then construct 
miRNA‑target gene and miRNA‑lncRNA networks to find 
out putative important biological processes and determine 
those miRNAs that have major roles in metabolic diseases. 
Additionally, we aimed also to identify small molecules that 
interact with the miRNAs. These analyses may provide a 
theoretical basis for further studies and contribute to under-
stand important complex mechanisms underlying metabolic 
diseases.

Materials and methods

Search for metabolic disease‑related microRNAs. Metabolic 
disease‑related miRNAs were obtained from two exper-
iment‑supported databases: Human MicroRNA Disease 
Database (HMDD  v3.0)  (29) and miR2Disease (access 
December 2018) (30). The miRNAs previously associated with 
obesity, NAFLD, or T2DM were incorporated into our anal-
yses. After that, the results obtained from these two databases 
were compared to those found in the Matrix Decomposition 
and Heterogeneous Graph Inference (MDHGI; access 
December 2018) (31), a miRNA‑disease predictor database. 
For this, we included the top 10 miRNAs predicted as associ-
ated with metabolic diseases. Thus, the inclusion of validated 
and predicted data increases the power of an association.

Additionally, we also investigated if the target genes of these 
miRNAs were previously associated with metabolic diseases 
(T2DM, NAFLD, and obesity) using the DisGeNET v5.0 data-
base (32). The DisGeNET database is a discovery platform 

containing one of the largest publicly available collections of 
genes and variants associated to human diseases. For this last 
approach, we included only the top 10 genes associated with 
each disease according to the prediction score. This strategy 
was used to increase the association evidence power and to 
focus on those molecules with potential higher interest and 
value.

Evaluation of microRNA target genes. The list of miRNAs 
identified as associated with metabolic diseases was then 
submitted to bioinformatics analyses to search for their puta-
tive target genes. For this approach, the information from 
experimentally validated miRNA‑target gene interactions was 
combined with the results from target prediction algorithms 
in order to retrieve a comprehensive set of target genes while 
controlling for false positive rates. CyTargetLinker v3.0.1 
web tool (33) was used to search for validated and predicted 
miRNA‑target gene interactions  (MTI) and visualize 
them in a graphical way. For this study, we obtained Homo 
sapiens MTIs from one experimentally validated database 
(miRTarBase v.4.4) and from two predicted miRNA databases 
(MicroCosm v.5.0 and TargetScan v.7.0). Moreover, the target 
genes were also searched in the miRWalk v.3.0 (34) database 
and incorporated into the analysis. The miRNA‑mRNA 
networks were visualized and analyzed using the Cytoscape 
software v3.7.0 (35).

Pathways analysis. Functional enrichment analysis of 
miRNA‑target genes were performed to retrieve Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways annotations for the miRNAs target genes, 
using the plug‑ins Biological Networks Gene Ontology 
(BiNGO; v3.0.3) (36) and ClueGO/Cluepedia (v.2.3.5) (37) on 
Cytoscape environment (35). The ClueGO/Cluepedia plug‑in 
permits the visualization of the non‑redundant biological 
terms for large clusters of gene sets in a functionally grouped 
network and the most representative GO term or KEGG 
pathways was used to name the module, considering a κ score 
of 0.3 and q‑values >0.05.

Interactions between microRNAs and lncRNAs and 
associations between miRNAs and small molecules. The 
interactions between miRNAs and lncRNAs were analyzed 
using the starBase v2.0 (38) database, and the connections 
between miRNAs and small molecules were performed 
using the SM2miR (39) and PharmacomiR (40) databases. 
The miRNet web‑tool was used to perform the search and 
analysis (41).

Additionally, we also investigated the subcellular location 
of miRNAs and lncRNAs associated with metabolic disorders 
using RNALocate database (42) as well as iLoc‑lncRNA (43) 
and lncLocator (44) web tools.

Statistical analysis and visualization. Cytoscape  v3.7.0 
software (35) was used to illustrate the disease‑related networks 
and analyze the network properties. The Venn diagrams were 
constructed using the InteractiveVenn instrument  (45). The 
names of miRNAs, mRNAs, and lncRNAs are unified based on 
miRBase 22 release (46), HUGO gene nomenclature committee 
(HGNC), and LNCipedia v5.2 (47), respectively.
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The statistical tests used for the enrichment analysis were 
based on the right‑sided hypergeometric test and adjusted for 
multiple hypotheses using the Benjamini & Hochberg False 
Discovery Rate (FDR) test. Interactions with a q‑value <0.05 
were considered strongly enriched.

Results

Identification of metabolic disease‑related miRNAs. A 
total of 144 unique miRNAs related to metabolic disease 
were found mapping the two databases of human diseases 
(Fig. 1A and Table SI). In the HMDD database, 134 unique 
miRNAs were found; while in the miR2Disease, 35 unique 
miRNAs were found. As shown in Fig. 1A, the two databases 
shared 25 miRNAs. Moreover, the 10 miRNAs found only in 
the miR2Disease database were associated with NAFLD. The 
miR2Disease database had more data regarding NAFLD than 
HMDD; however, there is less information regarding T2DM 
and obesity (Table SI). Regarding the 25 miRNAs shared by 
the 2 databases, these miRNAs were previously associated 
with metabolic alterations and other human diseases, including 
some types of cancer (16,48,49).

Data from the two resources were systematically 
combined according to the metabolic disease criteria. As 
shown in Fig. 1B, 100 miRNAs were found to be associated 
with T2DM, 66 miRNAs with obesity, and 49 miRNAs with 
NAFLD. Moreover, 20 miRNAs were related to the three 
pathologies (let‑7d‑5p, miR‑17‑5p, miR‑21‑5p, miR‑26a‑5p, 
miR‑27a‑3p, miR‑27b‑3p, miR‑29c‑3p, miR‑30a‑5p, 
miR‑33a‑5p, miR‑34a‑5p, miR‑103a‑3p, miR‑107, miR‑122‑5p, 
miR‑126‑3p, miR‑132‑3p, miR‑150‑5p, miR‑155‑5p, 
miR‑200a‑3p, miR‑200b‑3p, and miR‑375‑5p). Additionally, 
the results from the two databases were compared with those 
from the miRNA‑disease predictor, MDHGI (31). Out of the 
20 miRNAs, 10 miRNAs (miR‑17‑5p, miR‑21‑5p, miR‑29c‑3p, 
miR‑34a‑5p, miR‑103a‑3p, miR‑107, miR‑122‑5p, miR‑126‑3p, 

miR‑132‑3p, and miR‑150‑5p) were also found in MDHGI 
database, increasing the evidence of association of these 
miRNAs with metabolic diseases (Table I).

Putative target genes of the selected miRNAs associated 
with metabolic diseases. The 20 miRNAs selected using 
the strategy described in the Methods Section regulate 
together the expression of 10.942 unique target genes 
(predicted or validated). miR‑17‑5p had the largest number 
of target genes  (1181), followed by miR‑155‑5p (904) and 
miR‑34a‑5p (736). The miR‑200a‑3p had the lowest number of 
target genes (151) (Table SII). A group of 484 putative target 
genes was found when we analyzed only the miRNA‑gene 
interactions reported in three online databases (Fig. S1). The 
largest number of interconnections was found for miR‑17‑5p 
and miR‑30a‑5p. Moreover, as expected, the miRNAs 
miR‑107 and miR‑103a‑3p and the miRNAs miR‑27a‑3p and 
miR‑27b‑3p shared a great number of target genes. miR‑150 
did not have common target genes with other miRNAs; and we 
could not find target genes for miR‑126‑3p and miR‑375 when 
considering only the targets that were reported as validated 
and predicted by at least three databases (Fig. S1).

Moreover, of these 20 miRNAs, 13 miRNAs target at 
least one of the top 10 candidate genes associated with each 
metabolic disorder: T2DM, obesity, or NAFLD, according 
to DisGeNET database (Tables I and II). Furthermore, some 
of these genes are very well described targets of the selected 
miRNAs. Regarding the validated and predicted target genes, 
PPARG is targeted by miR‑27a‑3p and miR‑27b‑3p, LDLR is 
targeted by miR‑30a‑3p, SIRT1 by miR‑132‑3p, and NEUROD1 
by miR‑30a‑3p. However, there are genes in this list that are not 
regulated by the selected 20 miRNAs, suggesting that there 
are more miRNAs involved in the pathogenesis of metabolic 
diseases.

Additionally, as shown in Table I, of the 20 miRNAs, a 
subset of 6 miRNAs (miR‑17‑5p, miR‑29c‑3p, miR‑34a‑5p, 

Figure 1. MicroRNAs associated with metabolic diseases. (A) MicroRNAs associated with metabolic diseases selected from the two distinct databases. 
(B) The number of microRNAs associated with T2DM, obesity, and NAFLD selected from the two databases combined. T2DM, type 2 diabetes mellitus; 
NAFLD, non‑alcoholic fatty liver disease; HMDD, Human MicroRNA Disease Database.
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miR‑103a‑3p, miR‑107, and miR‑132‑3p) was found in the four 
resources (HMDD, miR2Disease, MDHGI, and DisGeNET) 
used for these analyses (Fig. S2). Fig. 2 summarizes the inter-
action of the candidate genes for metabolic diseases and the 6 
selected miRNAs.

Pathway analysis of the selected miRNAs associated with 
metabolic diseases. To explore the biological pathways possibly 
affected by the target genes of the 20 analyzed miRNAs, func-
tional enrichment analysis of their target genes using pathway 
maps from the GO and KEGG repositories were carried out.

GO terms were investigated for biological, cellular, and 
molecular processes associated with the set of predicted and 
validated target genes found for the 20 selected miRNAs. 
As a result, a total of 30 unique pathways were enriched for 
miRNAs. Many of these pathways are well established to be 
involved in metabolic diseases, such as transforming growth 
factor β receptor, oxidative stress, apoptosis, VEGF and angio-
genesis signaling pathways (Table SIII and Fig. 3).

After that, the metabolic pathways in which participates the 
subgroup of the 16 genes previously associated with metabolic 

diseases (HNF1A, HNF4A, AKT2, IRS1, NEUROD1, PPARG, 
LEP, LEPR, PCSK1, SIM1, UCP3, ADIPOQ, SIRT1, PNPLA3, 
PPARA and LDLR) were also investigated. These genes are 
regulated by the 6 selected miRNAs (as shown in Table II 
and participate in the biological processes previously associ-
ated with metabolic diseases, such as regulation of cellular 
carbohydrate metabolic process, lipid homeostasis, cholesterol 
transport, and regulation of glucose metabolism (Fig. 4A). 
Additionally, these target genes were also enriched in some 
KEGG pathways such as transcriptional regulation of white 
adipocyte differentiation, AMPK signaling pathway, regula-
tion of gene expression in β cell, and adipocytokine signaling 
pathway (Fig. 4B).

miRNA‑lncRNAs interactions. The 20 miRNAs associated 
with metabolic diseases putatively interact with 423 unique 
lncRNAs (Table SIV). Moreover, the subgroup of 6 miRNAs 
putatively interplays with 210 unique lncRNAs (Fig. 5). The 
miRNA that connects with the largest number of lncRNAs is 
miR‑17‑5p (72 lncRNAs). The lncRNA‑XIST interacts with all 
sub‑selected 6 miRNAs. Moreover, miR‑107 and miR‑103a‑3p 
share the largest number of lncRNAs  (Fig. 5). Besides the 
miRNA‑lncRNA interplay, some relations between lncRNA and 
genes associated with metabolic diseases were also presented 
in Fig. 2. Lnc‑RNA‑XIST interacts with AKT2 and IRS1. In 
the same way, lncRNA‑HCG18 also intercommunicates with 
AKT2, and lncRNA‑MALAT1 interacts with PPARG (Fig. 2) 

Moreover, we also searched subcellular location of the 6 
miRNAs and the 6 lncRNAs associated with metabolic disor-
ders. The RNAlocate database contains a manually curated 
RNA‑associated subcellular localization entries with experi-
mental evidence. In contrast, the iLoc‑lncRNA and lncLocator 
are sequence‑based predictors of subcellular locations. Based 
on the predicted score of iLoc‑lncRNA, the majority of 
miRNAs associated with metabolic disorders is located on 
exosomes, and the lncRNAs on nucleolus, nucleus, or nucleo-
plasm. Similar results were found for lncLocator for lncRNA 
location. However, according to RNALocate database, we 
noted that the location of ncRNAs depends on the tissue, cell 
or condition they are expressed (Table SV).

Interactions between miRNAs and small molecules. 
The 20  miRNAs interplay with 102 unique small mole-
cules (Table SVI). The miRNA that intercommunicates with 
the highest number of small molecules is miR‑21‑5p (70), and 
the miRNA that interacts with the lowest number of molecules 
is miR‑33a‑5p (4). Fig. 6 shows the connections between the 
6 selected miRNAs and 42 small molecules. These miRNAs 
are linked with different types of molecules, including 
metabolites, proteins, chemicals and drugs.

Discussion 

In the present study, miRNAs associated with obesity, T2DM, 
and NAFLD were identified through a valid text mining 
search strategy. For this, several bioinformatics analyses were 
conducted to explore the miRNA‑mRNA, miRNA‑lncRNA, 
and miRNA‑small molecules interactions involved in the 
pathogenesis of metabolic diseases. As main result, we 
propose an interaction of 6 miRNAs with 13 candidate genes 

Table I. miRNAs associated with metabolic diseases from 
distinct databases. 

	 miR2‑			D   isGe‑
miRNAs	D isease	 HMDD	 MDHGI	NE T

let‑7d‑5p	 X	 X		  X
miR‑17‑5p	 X	 X	 X	 X
miR‑21‑5p	 X	 X	 X	
miR‑26a‑5p	 X	 X		  X
miR‑27b‑3p	 X	 X		  X
miR‑29c‑3p	 X	 X	 X	 X
miR‑30a‑5p	 X	 X		  X
miR‑33a‑5p	 X	 X
miR‑34a‑5p	 X	 X	 X	 X
miR‑103a‑3p	 X	 X	 X	 X
miR‑107	 X	 X	 X	 X
miR‑122‑5p	 X	 X	 X
miR‑126‑3p	 X	 X	 X
miR‑132‑3p	 X	 X	 X	 X
miR‑27a‑3p		  X		  X
miR‑150		  X	 X	 X
miR‑200b‑3p		  X		  X
miR‑155‑5p		  X
miR‑375		  X
miR‑200a‑3p		  X

An ‘X’ indicates that the miRNA was present in this database. 
MiR2Disease and HMDD databases present validated interactions 
between the miRNAs and the selected diseases. The MDHGI data-
base presents the predicted associations between the miRNAs and 
diseases according to a score of prediction. DisGeNET (v5.0) is a 
database of candidate genes for human diseases. HMDD, Human 
microRNA Disease Database (v3.0); MDHGI, Matrix Decomposition 
and Heterogeneous Graph Inference; miR/miRNA, microRNA.
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Table II. Top 10 genes associated with each analyzed metabolic disease according to the DisGeNET database and the interactions 
with the selected miRNAs.

A, T2DM

Gene	 Gene name	 Score	 miRNAs

GCK	 glucokinase	 0.899	‑
HNF1A	 HNF1 homeobox A	 0.812	 miR‑107, miR‑27b‑3p
HNF4A	 hepatocyte nuclear factor 4α	 0.729	 miR‑27b‑3p
HNF1B	 HNF1 homeobox B	 0.684	‑
AKT2	 AKT serine/threonine kinase 2	 0.681	 miR‑29c‑3p, miR‑103a‑3p
ABCC8	 ATP binding cassette subfamily C member 8	 0.677	‑
IRS1	 insulin receptor substrate 1	 0.67	 miR‑150‑5p, let‑7d‑5p, miR‑29c‑3p
NEUROD1	 neuronal differentiation 1	 0.645	 miR‑17‑5p, miR‑30a‑5p
PDX1	 pancreatic and duodenal homeobox 1	 0.634	‑
PAX4	 paired box 4	 0.618	‑

B, Obesity

Gene	 Gene name	 Score	 miRNAs

MC4R	 melanocortin 4 receptor	 0.913	‑
PPARG	 peroxisome proliferator activated receptor γ	 0.727	 miR‑34a‑5p, miR‑27a‑3p, miR‑27b‑3p
LEP	 leptin	 0.72	 miR‑17‑5p, miR‑200b‑3p, miR‑132‑3p, 
	 		  miR‑150‑5p
LEPR	 leptin receptor	 0.688	 miR‑103a‑3p, miR‑17‑5p, miR‑26a‑5p
POMC	 proopiomelanocortin	 0.528	‑
PCSK1	 proprotein convertase subtilisin/kexin type 1	 0.507	 miR‑200b‑3p
SIM1	 single‑minded family bHLH transcription	 0.492	 miR‑27b‑3p, let‑7d‑5p
	 factor 1
APOE	 apolipoprotein E	 0.479	‑
UCP3	 uncoupling protein 3	 0.475	 miR‑17‑5p, miR‑200b‑3p
SH2B1	 SH2B adaptor protein 1	 0.439	‑

C, NAFLD

Gene	 Gene name	 Score	 miRNAs

ADIPOQ	 adiponectin, C1Q and collagen domain	 0.283	 miR‑103a‑3p, miR‑107
	 containing
SIRT1	 sirtuin 1	 0.282	 miR‑17‑5p, let‑7d‑5p, miR‑132‑3p
NFE2L2	 nuclear factor, erythroid 2 like 2	 0.281	‑
PNPLA3	 patatin like phospholipase domain containing 3	 0.231	 miR‑200b‑3p, miR‑29c‑3p
TM6SF2	 transmembrane 6 superfamily member 2	 0.205	‑
PPARA	 peroxisome proliferator activated receptor α	 0.205	 miR‑17‑5p
SREBF1	 sterol regulatory element binding transcription	 0.202	‑
	 factor 1
LEP	 leptin	 0.202	 miR‑17‑5p, miR‑200b‑3p, miR‑132‑3p,
	 		  miR‑150‑5p
FGF21	 fibroblast growth factor 21	 0.202	‑
LDLR	 low density lipoprotein receptor	 0.201	 miR‑27b‑3p, miR‑150‑5p, miR‑17‑5p,
	 		  miR‑30a‑5p

The ‘Score’ indicates the gene‑disease association score: The score range from 0 to 1, and considers the number and type of sources, and the 
publications number supporting the association. miRNA/miR, microRNA; T2DM, type 2 diabetes mellitus; NAFLD, non‑alcoholic fatty liver 
disease.
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to metabolic diseases, with 6  lncRNAs, and with 7  small 
molecules. Moreover, the functional enrichment analysis of 

miRNAs target genes reflected the complex biological behavior 
of metabolic diseases, being associated with multiple signaling 

Figure 3. Enrichment pathways analysis. Gene ontology categories in biological networks of the validated and predicted target genes of the analyzed miRNAs. 
Data was taken from the Gene Ontology database.

Figure 2. Interactions of 6 miRNAs with candidate genes and with lncRNAs in the context of metabolic diseases. The miRNAs are presented as hexa-
gons, the target genes as circles, and the lncRNAs as diamonds. Solid lines represent the miRNAs‑mRNAs interactions; vertical dashed‑lines indicate the 
miRNAs‑lncRNAs interactions, and dotted lines represent the lncRNAs‑mRNAs interactions. miRNAs/miRs, microRNAs; lncRNAs, long non‑coding RNAs.
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pathways. In general, miRNAs are related to several human 
diseases (50). It is a well‑known phenomenon that miRNAs 
show cooperativity in gene regulation, i.e. one miRNA binds 
with many target genes and one target gene is regulated by 
many miRNAs [reviewed at (50)].

Among these 6 miRNAs, miR‑17‑5p demonstrated the 
highest degree of connectivity in the present study. Several 
reports have linked miR‑17‑5p expression levels with metabolic 
diseases (51‑53). Thus, Klöting et al (52) reported a significantly 
lower expression of miR‑17‑5p in the omental adipose tissue of 

T2DM patients compared to normal glucose tolerance (NGT) 
subjects and a negative correlation with visceral fat area. 
Also, Heneghan et al (54) showed a decrease in miR‑17‑5p 
expression in human omental adipose tissue and blood from 
obese patients. Additionally, the expression of miR‑17‑5p was 
upregulated in plasma of T2DM with NAFLD compared to 
those without NAFLD (51). Contrarily, miR‑17‑5p expression 
was found to be increased in skeletal muscle of T2DM rats, 
along with marked downregulation of GLUT4 protein level, 
and the miR‑17 knockdown ameliorated glucose metabolism, 

Figure 4. Enrichment pathways analysis for the candidate gene targets by the selected microRNAs. (A) GO terms according to functional cluster. (B) KEGG 
pathways in which the candidate genes participate. Data was taken from the GO and KEGG databases. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.



ASSMANN et al:  Crosstalk between microRNAs, target genes and lncRNAs in metabolic diseases3550

accompanied by elevation of GLUT4 protein level  (53). 
Moreover, miR‑17‑5p was reported to be involved in the 
adipogenesis process in human adipose‑derived mesenchymal 
stem cell (55). The miR‑17‑5p mimic transfection resulted in 
enhanced adipogenesis via repression of bone morphogenetic 
protein 2 (BMP2) and increased CCAAT/enhancer‑binding 
protein α and peroxisome proliferator‑activated receptor γ 
expression (55).

miR‑103a‑3p and miR‑107 belong to the same cluster of 
miRNAs that also contains miR‑15a/b, miR‑16, miR‑195, 
miR‑497, miR‑503, miR‑424, and miR‑646 (56). miR‑103a‑3p 
and miR‑107 have been shown to be upregulated in the liver of 
T2DM patients (16), acting in the insulin signaling pathway by 
primarily targeting caveolin‑1, which is located in lipid rafts 
and affects insulin receptor viability (57). Hence, the silence 
these two miRNAs in mice improved glucose homeostasis and 
insulin sensitivity (57). miR‑107 is a lipid‑modulated miRNA 
involved in modifications of the circadian system (58); interest-
ingly, it has been reported that gut microbiota may be involved 
in the regulation of intestinal miR‑107 levels (59). Moreover, 
some of the effects of miR‑103a‑3p and miR‑107 might be 
mediated through other miRNAs since they strongly inhibit 
the miRNA‑processing enzyme Dicer (60).

The miR‑29 family is among the most abundantly expressed 
miRNA in the pancreas and liver in mice and humans (61). 
Moreover, the miR‑29 family has been reported as a critical 
regulator of cholesterol turnover, fatty acid synthesis, and 
glucose handling (61,62). The knockdown of miR‑29 family 
members (miR‑29a, b and c) in a murine model led to a signifi-
cant reduction of cholesterol and triglyceride plasma levels, 
reduced fatty acid content in the liver, and increased gene 
and protein expression levels of Ahr, Foxo3, and Sirt1 (62). 

Moreover, miR‑29c‑3p expression was increased in skeletal 
muscle from T2DM patients and decreased in healthy young 
men following exercise training. In addition to reduced 
IRS1 protein abundance, miR‑29c‑3p also decreased insulin 
signaling downstream of PI3K at the level of Akt and GSK3 
phosphorylation in human skeletal muscle cells (63).

The main functions described for miR‑34a include cell cycle 
arrest, apoptosis, and senescence promotion (64). Furthermore, 
a meta‑analysis of profiling studies found that miR‑34a was 
upregulated in T2DM patients (16). Also, the expression of 
this miRNA in subcutaneous fat tissue significantly correlated 
with BMI (kg/m²) values (52). Similar results were found in 
ob/ob mice with NAFLD compared to their corresponding 
controls (65). Moreover, the exposure to perfluorononanoic 
acid (an organic pollutant with toxicological impact on the 
liver) induced hepatic miR‑34a expression in mice (66,67).

miR‑132 expression was upregulated in both blood and liver 
of T2DM patients (16). miR‑132 targets insulin‑mediated regu-
lation of CYP2E1 (cytochrome P450, family 2, subfamily E, 
polypeptide 1), which is involved in the metabolism of xeno-
biotics in the liver (68). In omental fat, the expression levels 
of miR‑132‑3p were decreased in T2DM patients compared 
to NGT subjects and the number of macrophages infiltrating 
the fat depot was significantly associated with miR‑132 
expression (52).

Besides indicating a group of miRNAs associated with 
metabolic diseases, the present study also provides new 
insights into the complex molecular mechanisms involved 
in metabolic diseases by revealing some pathways that 
may be regulated by the selected miRNAs. These miRNAs 
potentially control genes from several important processes, 
including cancer, apoptosis, transcriptional regulation of white 

Figure 5. Interactions between miRNAs‑lncRNAs. LncRNAs that interact with the 6 selected miRNAs. The miRNAs are shown as hexagons and the lncRNAs 
as diamonds. Data have been taken from the miRNet web tool. miRNAs, microRNAs; lncRNAs, long non‑coding RNAs.
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adipocyte differentiation, regulation of gene expression in 
β cells, AMPK, and adipocytokine signaling pathways.

Additionally, these six miRNAs have target genes previ-
ously associated with metabolic diseases, indicating that the 
differential expression of this set of miRNAs could lead to 
metabolic diseases via dysregulation of metabolism‑associated 
genes, including PPARG, LDLR, SIRT1 and NEUROD1. In this 
sense, PPARG gene regulates fatty acid storage and glucose 
metabolism and has been implicated in the pathophysiology 
of several diseases, including obesity, T2DM, atherosclerosis, 
and cancer [reviewed at (69)]. The LDLR gene mediates the 
endocytosis of LDL‑cholesterol, contributing to maintain the 
LDL plasma levels (70). SIRT1 gene is downregulated in cells 
that have high insulin resistance and the overexpression of 
SIRT1 increases insulin sensitivity (71,72). In the same way, 
NEUROD1 gene is related to increased expression of glucoki-
nase, suggesting that this gene may play important roles in the 
regulation of insulin synthesis and secretion (73). Moreover, 
NeuroD1 is required for normal development and maintenance 
of pancreatic endocrine cells and the nervous system (74).

An increasing number of publications demonstrate that 
miRNAs interact with lncRNAs, thereby triggering decay 
of lncRNA or repressing its function  (18,19). Thus, it was 

reasonable to investigate the pathogenesis and treatment of 
metabolic diseases by studying the specific miRNA‑lncRNA 
co‑regulation effect. In the present study, lncRNA‑XIST was 
found to interact with all 6 miRNAs and some other genes asso-
ciated with metabolic diseases, suggesting that this lncRNA 
may have a physiopathological role in these diseases. In this 
context, lncRNA‑XIST was increased in patients with T2DM 
compared to controls, and its expression positivity correlated 
with HbA1c, HOMA‑IR, and fasting insulin levels (25). Based 
on online biology websites, we found that miR‑17‑5p may be 
targeted by lncRNA‑XIST, and a study carried out on a linage of 
cancer cells (NSCLC) suggested that lncRNA‑XIST may regu-
late autophagy via the miR‑17/ATG7 signaling pathway (75).

It is known that the subcellular location of ncRNAs, 
especially lncRNAs, correlated with functionality, which 
could influence disease susceptibility; however, the location 
of ncRNAs is still controversial and little is known regarding 
metabolic diseases (76). LncRNA transcripts can be found in 
many different sites within the cell, including the chromatin, 
nucleus, cytoplasm, and exosomes (19,76). LncRNA subcel-
lular location is likely dependent on several factors, such as 
sequence and structural motifs which can facilitate binding to 
proteins involved in location (77).

Figure 6. Interplay between miRNAs‑small molecules. All small molecules that interact with the 6 selected miRNAs. The miRNAs are shown as hexagons 
and the small molecules as rectangles. Data were taken from the miRNet web tool. miRNAs, microRNAs.
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Small molecules can regulate multiple biological processes 
and have been proposed and used for therapeutic purpose in 
different human diseases  (78). Recently, several drug‑like 
compound libraries were screened successfully against 
different miRNAs in cellular assays demonstrating the possi-
bility to target miRNAs with small molecules (79). The present 
article evidenced that some molecules can modulate miRNA 
expression, and this could be a way to indirectly regulate gene 
expression.

Some strengths and limitations of our study should be 
considered. As strengths, a comprehensive search of multiple 
databases was conducted. Additionally, we performed robust 
bioinformatic analyses to investigate the pathways in which 
these miRNAs are participating, explaining the association 
with metabolic diseases. Even though these methods are 
already powerful, this evaluation had some limitations. First, 
the results are based on the available literature about this topic. 
Second, we could not exclude the possibility that other miRNAs 
should be associated with the metabolic disorders; moreover, 
the results found in the online databases change over time. 
Third, the lack of standardization of the official nomenclature 
of miRNAs, without the description of which miRNA straight 
was analyzed (‑3p or ‑5p). Fourth, this is an association study 
and because of that we could not describe the events order. 
These limitations should be considered when interpreting 
the results. Although limitations exist in the current data, the 
patterns uncovered here are important for understanding the 
association of miRNAs and metabolic diseases, and for iden-
tifying new miRNAs, pathways and target genes putatively 
involved in disease onset and progression.

Taken together, the present analyses demonstrate that the 
molecular mechanisms of metabolic diseases can be under-
stood, and that biomarker prediction can be achieved through 
data mining and integration analysis. Overall, 20 candidate 
miRNAs were screened by bioinformatics analysis, and 6 of 
them (miR‑17‑5p, miR‑29c‑3p, miR‑34a‑5p, miR‑103a‑3p, 
miR‑107 and miR‑132‑3p) presented the strongest association 
with metabolic diseases. The construction of miRNA‑mRNA, 
miRNA‑lncRNA and miRNA‑small molecules networks 
provides a novel approach to the study of the metabolic disease 
pathogenesis and establishes solid knowledge for the personal-
ized treatment of these disorders in the future. However, more 
studies are needed to validate these results.
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