A novel seven-miRNA prognostic model to predict overall survival in head and neck squamous cell carcinoma patients

LE LU1,4, YUFAN WU4, MIN FENG3, XIAOFENG XUE4 and YUAN FAN1,2

1Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University; 2Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of Oral Medicine, The Stomatological Hospital Affiliated to Soochow University; 4Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China

Received March 11, 2019; Accepted August 1, 2019

DOI: 10.3892/mmr.2019.10665

Abstract. Head and neck squamous cell carcinoma (HNSCC) is highly prevalent worldwide, and the outcome of HNSCC is still difficult to predict due to the lack of appropriate prognostic markers. In the present study, a prognostic model based on a miRNA panel was established to better predict the survival of HNSCC patients. miRNA expression data and clinical information regarding HNSCC patients were acquired from The Cancer Genome Atlas (TCGA) database. Accompanying clinical data was obtained from the University of California, Santa Cruz (UCSC) Xena browser. Using this data, 140 differentially expressed miRNAs (DEMs) were identified between HNSCC tissue samples (n=525) and adjacent normal tissue samples (n=44). The present prognostic model included seven miRNAs (i.e. hsa-miR-499a, hsa-miR-548k, hsa-miR-3619, hsa-miR-99a, hsa-miR-137, hsa-miR-3170, and hsa-miR-654), which were identified using least absolute shrinkage and selection operator (LASSO) and Cox regression analyses. The independence of the predictive power of this model was validated by further analyses using clinical information. The outstanding performance of the seven-miRNA prognostic model was confirmed by time-dependent receiver operating characteristic curve (ROC) analysis. These results indicated that combining the miRNA panel with pathological characteristics may provide a more accurate prognosis for HNSCC.

Functional identification of the target genes of the focal miRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. The present study demonstrated that the novel miRNA panel reported here may be useful in making different prognoses and may improve the clinical management of patients with HNSCC.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common general malignancy worldwide, and five million new cases of HNSCC are diagnosed each year (1). Tobacco smoking, alcohol consumption, and human papilloma virus infections are associated with the occurrence of HNSCC (2). The 5-year overall survival rate of patients with HNSCC is 40-50%, and this has remained unchanged over the last four to five decades, despite substantial advances in multimodal therapies.

MicroRNAs (miRNAs) are small non-coding RNAs that silence genes by binding to the target mRNAs to either inhibit their translation or destabilize the mRNA (3). Since the beginning of the 21st century, research on the relationship between miRNAs and cancer development has intensified (4).

The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program, that molecularly characterizes over 20,000 primary cancers and matches normal samples spanning 33 cancer types. The creation of TCGA and the ubiquity of high-throughput sequencing data has meant that the sharing of genomic datasets related to cancer research has become more common (5). For instance, a study by Long et al (6) reported that four overall-survival (OS)-related genes sourced from a hepatocellular carcinoma dataset deposited in the TCGA were predictive of different prognoses. This result demonstrates that clinically relevant cancer biomarkers can be identified from next-generation sequencing (NGS) datasets.

In this study, a TCGA dataset consisting of miRNA expression data from HNSCC tumor and adjacent normal tissues was obtained and identification of potential gene biomarkers was attempted. Based on the results of this analysis, a seven-miRNA prognostic model was constructed and designed to recognize...
a miRNA expression signature to predict the overall survival rate of HNSCC patients when provided with clinical information and bioinformatic data as inputs. Functional analysis of the identified miRNAs was also performed. These results may improve our knowledge concerning the mechanisms of HNSCC progression and may be useful for guiding the clinical treatments of HNSCC patients.

Materials and methods

Sources of expression profiles and clinical data. A dataset containing miRNA expression profiles from paired samples of HNSCC tissue and adjacent non-tumorous head and neck tissue was obtained. As of January 1, 2018, this dataset, which was acquired from the TCGA data portal (https://portal.gdc.cancer.gov) (7), contained 525 HNSCC tissue samples and 44 samples of adjacent non-tumorous tissue. All sequencing procedures were performed on an Illumina HiSeq platform. Accompanying clinical data (‘id’, ‘survival time’, ‘survival state’, ‘the prognostic model’, ‘T-stage’, ‘N-stage’, ‘perineural invasion’, ‘lymphovascular invasion’, ‘sex’, ‘age’, ‘histologic grade’ and ‘tumor site’) were obtained from the University of California, Santa Cruz Xena browser (UCSC https://xenabrowser.net/datapages/dataset). All data used was obtained from the TCGA database or the UCSC browser. Because the original deposition of the data abided by the ethical guidelines of the TCGA platform, there was no need to obtain additional ethical clearance from our local research ethics committee.

Identification of differentially expressed miRNAs in HNSCC and adjacent normal tissue samples. Approximately 1,881 miRNA expression profiles of HNSCC tissue samples were acquired from the TCGA database. Next, differentially expressed miRNAs (DEMs) were identified using the edgeR package (8). DEMs were identified by having an absolute log fold change (FC) >1.5 and a P-value <0.01.

 Establishment of a miRNA-related prognostic model. A prognostic model was constructed by implementing log-rank tests, LASSO-Cox regression (9), and multivariate Cox regressions to analyze the DEM dataset. First, all miRNAs were screened using log-rank tests of the overall survival rates of patients and the miRNA expression levels. Only DEMs with P-values <0.05 were retained for further analyses. Second, a LASSO-Cox regression analysis was used to develop a prognostic miRNA panel for HNSCC patients. Next, the independency of the prognosis power of the miRNA panel was assessed using a stepwise multivariate Cox regression. Finally, a novel seven-miRNA prognostic model was established by multiplying the expression levels of the constituent miRNAs with a regression coefficient derived from the multivariate Cox regression. Every HNSCC patient can obtain a risk score according to the prognostic model given the correct inputs. Risk scores were employed to classify patients into low- and high-risk groups by the median method. Finally, the predictive ability of the model was evaluated using a time-dependent receiver operating characteristic curve (ROC) and analysis of Kaplan-Meier survival estimates (10,11).

Univariate and multivariate Cox regression analyses. Both univariate and multivariate Cox regression analyses (12-17) were performed on the HNSCC patient list to assess the independence of the prognosis from other clinical information (i.e. age, sex, histologic grade, T stage, N stage, perineural invasion, and lymphovascular invasion). Hazard ratios (HRs) and 95% confidence intervals were calculated using SPSS version 19.0 (IBM Corp.). All tests performed were two-tailed.

Functional enrichment analysis. The function of the downstream target genes of the seven miRNAs using TargetScan (18) was predicted. The Gene Ontology (GO) annotations of predicted target genes were determined and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted them using the clusterProfiler R package (19).

Results

Some miRNAs are differentially expressed in HNSCC and adjacent normal tissue samples. Fig. 1 depicts a flow chart of the analysis procedure used for this study. Approximately 140 DEMs (i.e. genes with logFC>1.5 or <1.5 and adjusted P<0.01) were identified in the miRNA expression profiles of HNSCC tissue samples (n=525) relative to adjacent normal tissue samples (n=44). Of these DEMs, 52 miRNAs were found to be downregulated in HNSCC tissue, while 88 miRNAs were upregulated. Fig. 2 reveals a volcano plot and heatmap of the 140 DEMs as generated by the edgeR and ggplot2 R packages, respectively. Normal and HNSCC tissues are distinguished by red or green labels in Fig. 2A.

Log-rank tests and least absolute shrinkage and selection operator (LASSO) regression. First, the prognostic significance of each miRNA was evaluated by performing log-rank tests as implemented by the survival R package. miRNAs with P-values <0.01 are listed in Table I. Next, LASSO regression was performed to simplify and regularize the miRNA model for HNSCC patients. LASSO is a biased estimation method used to process data with complex patterns of collinearity. The LASSO procedure generates a relatively concise model by constructing a penalty function, which forces the sum of the absolute values of the coefficients to be less than a standardized constraint parameter Lambda (λ). Fig. 3A reveals a generalized cross-validation plot for the HNSCC patient data. The partial likelihood deviance was plotted against log (λ), where λ is the tuning parameter. The dotted vertical lines were drawn at the optimal values by minimum criteria and 1-SE criteria. The suitable λ occurred when the model included 20 variables. Fig. 3B reveals the estimated coefficients from the LASSO-derived model and the dotted line indicates the coefficients selected by cross-validation. Thus, 20 miRNAs were included in further analyses (20). Selected miRNAs with non-zero coefficients were deemed to be potential prognostic indicators (Fig. 3).

Multivariate Cox regression analysis and predictive model building. Table II shows the results of a stepwise multivariate Cox regression analysis as implemented by SPSS, which established seven significant OS-related miRNAs. Then, the seven-miRNA-based prognostic model
Figure 1. Overall workflow describing the process used to develop the prognostic model. TCGA, The Cancer Genome Atlas; HNSCC, head and neck squamous cell carcinoma; OS, overall survival; ROC, receiver operating characteristic; LASSO, least absolute shrinkage and selection operator regression.

Table 1. miRNAs with P<0.01 assessed by the log-rank test.

<table>
<thead>
<tr>
<th>miRNAs</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-let-7c</td>
<td>4.363x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-127</td>
<td>4.794x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-133a-1</td>
<td>2.701x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-133a-2</td>
<td>3.285x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-137</td>
<td>1.177x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-206</td>
<td>2.287x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-299</td>
<td>2.963x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-3170</td>
<td>4.739x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-337</td>
<td>1.329x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-3619</td>
<td>9.871x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-369</td>
<td>1.572x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-376c</td>
<td>8.053x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-377</td>
<td>4.575x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-99a</td>
<td>2.318x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-379</td>
<td>2.769x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-381</td>
<td>3.687x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-410</td>
<td>1.425x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-411</td>
<td>1.950x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-433</td>
<td>3.721x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-4746</td>
<td>9.439x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-487b</td>
<td>3.156x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-495</td>
<td>8.206x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-499a</td>
<td>2.196x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-513c</td>
<td>4.539x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-548k</td>
<td>4.249x10^{-2}</td>
</tr>
<tr>
<td>hsa-mir-654</td>
<td>1.788x10^{-4}</td>
</tr>
<tr>
<td>hsa-mir-7854</td>
<td>2.614x10^{-3}</td>
</tr>
<tr>
<td>hsa-mir-877</td>
<td>7.084x10^{-3}</td>
</tr>
</tbody>
</table>

Figure 2. Heatmap and volcano plot of 140 DEMs in HNSCC. (A) Heatmap of 140 DEMs in HNSCC patients. Normal and HNSCC tissues are distinguished by red or green labels. (B) Volcano plot of 140 DEMs in HNSCC patients. Red color indicates upregulated expression, and green color represents downregulated expression. DEMs, differentially expressed miRNAs; HNSCC, head and neck squamous cell carcinoma.
was established using the risk score method according to the following formula: Risk score = (0.21 x hsa-miR-499a expression) + (0.264 x hsa-miR-548k expression) - (0.404 x hsa-miR-3619 expression) - (0.367 x hsa-miR-99a expression) + (0.123 x hsa-miR-137 expression) + (0.298 x hsa-miR-3170 expression) + (0.222 x hsa-miR-654 expression). The median risk score (-0.9560) was used as a threshold to divide patients into the high-risk and low-risk groups.

Kaplan-Meier curve and time-dependent ROC curve validation of the performance of the prognostic model. Fig. 4A reveals a bar chart of the expression levels of every selected miRNA. The patients were divided into high- and low-risk groups by the risk scores presented in Fig. 4B. In the image, the x-axis represents the distribution of the HnScc patients from low-risk to high-risk. The image in Fig. 4B reveals that HnScc patients in whom hsa-miR-654, hsa-miR-548k, and hsa-miR-499a were highly expressed often had a high risk of poor prognosis. As revealed in Fig. 5, risk scores based on the seven OS-related miRNAs divided patients into two groups that significantly differed in overall survival time (P<0.0001). In addition, the prognostic capacity of the seven-miRNA model was assessed by computing the AUC of a time-dependent ROC curve. The higher time-dependent AUC represented better performance and stability for the prognostic model. The AUCs of the seven-miRNA prognostic model were 0.64, 0.67, 0.68, 0.68 and 0.64 for 1-, 2-, 3-, 4- and 5-year survival times. Collectively, these measures indicated that the prognostic model possessed good specificity, sensitivity, and time-dependent stability for predicting the overall survival of HnScc patients.

Independence of the prognostic model is verified by multivariate Cox analysis. The complete clinical information of 279 HnScc patients from the TCGA HnScc cohort was obtained. Univariate and multivariate Cox regression analysis was then performed on this dataset to assess the independent predictive ability of the prognostic model. The univariate Cox regression results revealed significant differences between surviving and non-surviving HnScc patients when grouped by ‘the prognostic model’, ‘T-stage’, ‘N-stage’, ‘perineural invasion’ and ‘lymphovascular invasion’ predictors (P<0.05). However, sex, age, and histologic grade did not correlate with OS (P>0.05). In addition, the primary tumor site had no influence on the overall survival (Fig. S1) (P>0.05). Then all factors were included into a multivariate Cox regression analysis (Table III), which indicated that the ‘T-stage’, ‘perineural invasion’ and ‘prognostic model’ variables were independent prognostic factors related to OS (P<0.05).

Combination of the prognostic model and pathological characteristics. Since the T-stage, N stage, perineural invasion, and lymphovascular invasion variables had non-zero prognostic value according to the univariate Cox regression analysis, the prognostic model with the aforementioned four pathological features were separately combined to refine its
Figure 4. Expression profiles and the heatmap of the seven miRNAs in the TCGA HNSCC dataset. (A) The expression level of the seven miRNAs in HNSCC patients from TCGA (**P<0.05). (B) From top to bottom are the expression heatmap of the seven miRNAs, the risk score and the survival status for low- and high-risk groups. TCGA, The Cancer Genome Atlas; HNSCC, head and neck squamous cell carcinoma.

Figure 5. Kaplan Meier curves and time-dependent ROC curves for the prognostic model in the TCGA HNSCC cohort. (A) The Kaplan Meier survival curves revealed the overall survival in low- and high-risk groups divided by the median risk score. (B) The time-dependent ROC curves evaluated the stability for predicting the overall survival of HNSCC patients at different time-points (1, 2, 3, 4, 5 years). The area under the ROC curve was 0.64, 0.67, 0.68, 0.68 and 0.64 for the prognostic model at 1, 2, 3, 4 and 5 years, respectively. ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; HNSCC, head and neck squamous cell carcinoma; AUC, area under the curve.
predictive capacity using a Kaplan-Meier curve. As revealed in Fig. 6, all groups revealed that the patients belonging to the green curve possessed a markedly good prognosis. This information may, therefore, help clinicians distinguish between different prognoses for their patients. In addition, patients with high-risk scores and poor pathological characteristics can be identified earlier by clinicians. These patients should also have health checks more frequently than the other groups.

Functional enrichment analysis. To clarify the functional characteristics of the miRNAs used for this prognostic model,
the target genes of all seven miRNAs were predicted using TargetScan. Next, enrichment analysis of GO annotations and KEGG pathways with the predicted target genes were carried out. The results revealed that these target genes were strongly associated with the ErbB pathway, the Rap1 signaling pathway, and DNA binding activities. More detailed information on the predicted functions of target genes based on GO and KEGG analyses is presented in Fig. 7.

Discussion

In the present study, RNA-seq data was used from the TCGA database to identify the differences in miRNA expression between HNSCC and normal tissue samples. Additional analyses were performed to construct a prognostic model that included the following miRNAs: Hsa-miR-499a, hsa-miR-548k, hsa-miR-3619, hsa-miR-99a, hsa-miR-137,
hsa-miR-3170 and hsa-miR-654. It was then revealed that high- and low-risk groups identified by the median model score exhibited significant differences in mean patient OS (P<0.0001). Patients with high-risk scores were predisposed to poor prognoses. If this model was used in clinical practice, clinicians could adjust patient treatment plans according to its results to produce individualized and comprehensive therapies for HNSCC patients. In addition, it is also important to develop strategies to detect HNSCC early in high-risk populations, who should be followed closely. Finally, by performing pathway enrichment and functional analyses, it was determined that the GO terms associated with the target genes of the seven miRNAs were related to DNA binding activities. Similarly, the KEGG pathways associated with the target genes were the ErbB and Rap1 signaling pathways.

In the present study, seven miRNAs that were differentially expressed in HNSCC and adjacent normal tissue samples were identified. Using this information along with clinical data from HN CSCC patients, a miRNA expression-based prognostic model was developed to forecast the clinical prognoses of HNSCC patients. Other studies have also reported miR-499a (21) as a prognostic indicator for early gastric cancer patients. In addition, Zhang et al (22) have reported that hsa-miR-548k plays a role in promoting lymphatic metastasis of esophageal squamous cell carcinoma; this miRNA is, therefore, a potentially useful diagnostic marker for esophageal squamous cell carcinoma. Furthermore, hsa-miR-137 (23) may promote the invasion ability of certain lung cancer cell types. Lu et al (24) have also reported that miR-654 targets GRB2-related adaptor protein (GRAP) via the Ras/MAPK signaling pathway to promote proliferation, metastasis, and resistance to chemotherapy in oral squamous cell carcinoma. In addition, hsa-miR-3170 (25) has been validated to be significantly correlated with the OS of patients with uterine corpus endometrial carcinoma in the latest research. As per our results, hsa-miR-499a, hsa-miR-548k, hsa-miR-137, hsa-miR-654 and hsa-miR-3170 are probable risk factors for HNSCC patients. Patients with high levels of expression of these miRNAs tend to have poor prognoses.

The present results also revealed that some miRNAs are associated with cancer suppression. In another study, overexpression of hsa-miR-99a (26) could inhibit cell proliferation and induce apoptosis by downregulating the expression of insulin-like growth factor 1 receptor (IGFIR) and mechanistic target of rapamycin kinase (mTOR) genes in oral cancer cells. Moreover, hsa-miR-3619 (27) is known to suppress the expression of β-catenin to mediate cancer invasion and growth in non-small cell lung cancers. In the present prognostic model, the coefficients of hsa-miR-3619 and hsa-miR-99a were negative. Hence, it is speculated that hsa-miR-3619 and hsa-miR-99a are factors that protect against HNSCC.

Several limitations of the present study should be considered. Patient records lacking clinical information were excluded, which may cause systematic errors. In addition, the model did not validate the present results using another database (e.g. GEO). Moreover, since the type of treatment patients received was not included in the clinical information, to some extent the results may contain systematic errors. Collectively, the mechanisms by which the OS-related miRNAs affect HNSCC require further investigation in future studies.

In conclusion, in the present study a seven-miRNA prognostic model that is a reliable predictor of the OS of HNSCC patients was developed. This model can distinguish between low- and high-risk patients, thus enabling better clinical management of patients with HNSCC.

Acknowledgements

Not applicable.

Funding

The present study was funded by the Key Research and Development Project of Jiangsu Province (grant no. BE2016760), the National Natural Science Foundation of China (grant no. 81470748), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant no. PAPD 2018-87).

Availability of data and materials

The datasets downloaded and analyzed during the current study are available from the TCGA data portal (https://portal.gdc.cancer.gov/projects/TCGA-HNSc); the data contains 525 HNSCC tissue samples and 44 samples of adjacent non-tumorous tissue as of January 1, 2018.

Authors’ contributions

YF and XX contributed to the conception and design of the work. LL and YW contributed to the acquisition, analysis, and interpretation of data and drafting the manuscript. MF contributed to designing the work, drafting the manuscript, and revising the manuscript and figures critically for important intellectual content. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

