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Abstract. Intervertebral disc degeneration (IDD) and liga-
mentum flavum hypertrophy (LFH) are major causes of 
degenerative spinal disorders. Comparative and proteomic 
analysis was used to identify differentially expressed proteins 
(DEPs) in IDD and LFH discs compared with normal discs. 

Subsequent gene ontology term enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes pathway enrichment 
analysis of the DEPs in human IDD discs or LFH samples 
were performed to identify the biological processes and 
signaling pathways involved in IDD and LFH. The PI3K‑AKT 
signaling pathway, advanced glycation endproducts‑receptor 
for advanced glycation endproducts signaling pathway, p53 
signaling pathway, and transforming growth factor‑b signaling 
pathway were activated in disc degeneration. This review 
summarizes the recently identified DEPs, including prolargin, 
fibronectin 1, cartilage intermediate layer protein, cartilage 
oligomeric matrix protein, and collagen types I, II and IV, and 
their pathophysiological roles in degenerative spinal disorders, 
and may provide a deeper understanding of the pathological 
processes of human generative spinal disorders. The present 
review aimed to summarize significantly changed proteins 
in degenerative spinal disorders and provide a deeper under-
standing to prevent these diseases.
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1. Introduction

Lower back pain (LBP) and other clinical symptoms occur 
as a result of degenerative spinal disorders, which includes 
disc degeneration, facet joint degeneration, and adjacent 
segment disease (1). Intervertebral disc degeneration (IDD) 
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and ligamentum flavum hypertrophy (LFH) are most common 
degenerative spinal disorders (2,3). Intervertebral discs (IVDs) 
are elastic joint tissues between vertebral bodies that bear the 
load of daily activities and are more susceptible to degeneration 
because of the upright posture of humans (4). IDD is a major 
cause of LBP and sciatica, with the severity of LBP depending 
on the pathological grading of IDD because the pathology 
depresses the normal function of IVDs (5,6). LFH and IDD are 
exacerbated by increased cellular apoptosis and senescence, 
and the upregulation of pro‑inflammatory cytokines and 
proteins, which results from the turnover of the matrix in IVDs 
and the ligamentum flavum (LF) (7,8). Furthermore, aging 
(especially over the age of 50) (2) and several environmental 
factors (such as oxygen, mechanical stress and osmotic pres-
sure) have been reported to trigger the onset and progression 
of IDD (9). Nevertheless, the pathophysiological mechanisms 
of IDD and LFH remain poorly understood. 

A number of high‑throughput proteomic analysis 
techniques, such as isobaric tags for relative and absolute quan-
tification (iTRAQ), have been used to profile the proteomic 
map of the annulus fibrosus (AF) and nucleus pulposus (NP; 
Table I). NP is a gel‑like tissue which is surrounded by AF, a 
layered cartilaginous structure. The present review summa-
rizes the results of quantitative proteomic studies of the LF, 
AF, and NP, as well as body fluids, including cerebrospinal 
fluid (CSF) and serum from patients with degenerative spinal 
disorders. The aim of this review was to identify the crucial 
proteins mediating the onset and progression of IDD and LFH, 
which may facilitate the development of novel potential thera-
pies for these disorders.

2. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis

Methods. To conduct KEGG pathway analysis, 54 differen-
tially expressed proteins (DEPs) from LF tissue, 15 DEPs from 
the AF (soluble, the supernatant of samples), 10 DEPs from AF 
(insoluble, the lyophilized pellet of samples), 21 DEPs from NP 
(soluble), and 7 DEPs from NP (insoluble) were selected based 
on previous proteomic studies (Table SI) (10,11); patient infor-
mation is provided in Table SII. Briefly, for the LF, the DEPs 
were selected according to the protein expression ratio between 
lumbar spinal stenosis (LSS) and the control (individuals with 
disc herniation; protein expression ratio=LSS/control, ≥2 or 
≤0.5) (11). For the AF and NP, genes which encoded DEPs 
that were significantly increased or decreased in the degen-
erative samples compared with control samples were selected 
(P<0.05) (10). 

The KEGG pathway analysis database (http://www.genome.
jp/kegg) was used to identify signaling pathways enriched by 
genes which encoded DEPs and the KEGG Orthology‑Based 
Annotation System (KOBAS) version 3.0 (http://kobas.cbi.
pku.edu.cn) was used to investigate gene/protein functional 
annotation and gene set enrichment (12‑14). The module of 
KOBAS called ‘Gene List Enrichment’, based on the first 
gene set enrichment method, overrepresentation analysis, was 
used for KEGG pathway analysis. Statistical analysis was 
performed using a hypergeometric test and Fisher's exact test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results. KEGG pathway analysis indicated that multiple 
pathways were involved in LFH and the degeneration of AF 
and NP. Some were the same in LF, AF and NP, such as 
ECM‑receptor interaction and focal adhesion. The total enrich-
ment pathways are presented in Table SIII. The top 10 KEGG 
pathways enriched with DEPs, including protein digestion 
and absorption, ECM‑receptor interaction and focal adhesion, 
are presented in Figs. 1B and 2. The p53 signaling pathway, 
advanced glycation endproduct‑receptor for advanced glyca-
tion endproducts signaling pathway (AGE‑RAGE), PI3K/AKT 
signaling pathway, and transforming growth factor (TGF)‑β 
signaling pathway were enriched by these DEPs (Table II). 
These four signaling pathways were not in the top 10 path-
ways in LF, but they were still enriched by DEPs (Table SIII). 
This review combines past proteomic analyses with present 
analysis to provide a deeper understanding of the molecular 
mechanisms of degenerative diseases of the spine.

3. Proteomic analysis of the human LF

Structural proteomic analysis of the LF. Hypertrophy and 
ossification of the LF are major causes of LSS  (15,16). 
However, the proteins involved in hypertrophy of the LF 
remain unknown. To clarify the molecular events during LSS 
disease progression and to identify targets for treatment, LF 
proteomic analysis was employed using 2‑dimensional image 
converted analysis of liquid chromatography (2DICAL)‑based 
label‑free proteomics. A set of small leucine‑rich proteogly-
cans (SLRPs), including asporin, decorin, and fibromodulin 
were identified, in addition to the large proteoglycans (PGs), 
versican and aggrecan (11). These protein components suggest 
that the LF structure shares common features with other 
elastic tissues and that within normal physiology the LF is 
more elastic compared to other ligaments and tendons (17). 
This is demonstrated through the increased presence of fibu-
lins (FBLN 1/2/3/5), elastin, and microfibril‑associated protein 
4 (10). Redox proteins present in the LF, including lysyl oxidase 
homolog 1 and superoxide dismutase (SOD) 3, are considered 
to be involved in the formation and regulation of these elastic 
fibers (18,19). The proteins identified in the human LF were 
classified into 24 cellular components by gene ontology (GO) 
term enrichment analysis (Fig. 1A) (11). 

Comparative proteomic analysis of the LF. A number 
of proteins were identified through Selective Reaction 
Monitoring/Multi Reaction Monitoring in LFH samples (20) 
(Table I). Notably, vasculature is thought to be implicated 
in LFH owing to the significantly upregulated expression of 
plasma proteins, including fibrinogen, apolipoproteins (APOs), 
and transthyretin. Chondrometaplasia is also observed in 
degenerated LF (20); with multiple proteins involved in chon-
drometaplasia consistently upregulated in LFH, including 
chondroadherin (CHAD), prolargin, cartilage intermediate 
layer proteins, and aggrecan (21). These proteins have been 
reported to be associated with the ossification of the LF (21).

CHAD is a leucine‑rich repeat (LRR) protein that is 
highly expressed in cartilaginous tissues (22). LRR proteins 
are involved in promoting interactions with other extracellular 
matrix (ECM) molecules and collagen fibrillogenesis  (23), 
and are often regulated by TGF‑β (24). In addition, prolargin 
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and SLRPs isolated from mice lacking decorin are reportedly 
involved in collagen fiber assembly and fibril abnormalities (25). 
Thus, the interactions between molecules in the ECM and 
collagen fibrillogenesis may directly influence the structure of 
the LF, and may be involved in the process of degeneration.

In vitro studies have demonstrated that cartilage interme-
diate layer protein (CILP) modulates TGF‑β signaling (26), 
and TGF‑β has been detected in the early stages of degenera-
tive hypertrophy of the LF (27). Furthermore, the expression 
of lysophosphatidic acid (LPA), and its receptor, LPA receptor 
1 (LPAR1), are significantly upregulated in samples isolated 
from LFH specimens (11). Previous studies from Japan and 
Finland have reported that LPA is closely related to the process 
of IDD (26,28), and that upon LPA interacting with LPAR1, the 
protein can promote LF cell proliferation and further induce 
LFH, through the LPAR1/AKT signaling pathway (29). 

The expression levels of fibronectin 1 (FN1), tenascin, and 
serine protease HTRA1 (HTRA1) are positively correlated 

with LFH, whereas asporin expression is negatively correlated 
in LFH (11). The level of peptides derived from FN1 is influ-
enced by HTRA1, and the HTRA1 mutation causes diseases 
such as cerebral autosomal recessive arteriopathy and leuko-
encephalopathy  (30). In addition, HTRA1 upregulation is 
observed in many degenerative disorders, including age‑related 
macular degeneration, osteoarthritis (OA), and lumbar disc 
degeneration (31‑33), with a previous study reporting that FNS 
is regulated by HTRA1 in joints affected by OA (34).

4. Proteomic analysis of the human AF

Structural proteomic analysis of the AF. The spine resists multi-
directional loading from the radial, axial, and circumferential 
directions, and the upright posture of humans imposes greater 
mechanical loading and accelerates the process of IDD (35). 
IDD pathological features are accompanied by NP fibrosis, AF 
fissuring, and protein structure disorganization (36). Type II 

Figure 1. Proteomic characterization of the human ligamentum flavum in lumbar spinal stenosis. (A) Gene Ontology term enrichment analysis of unique 
proteins. (B) Top 10 Kyoto Encyclopedia of Genes and Genomes pathways enriched by differentially expressed proteins (54 proteins). ECM, extracellular 
matrix.
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collagen (COL2), chondroitin sulfate, and PGs are produced by 
AF cells (37), and in healthy IVDs, the AF contains 65‑70% water; 
with the dry weight composed of 20% PGs, ~60% collagen, and 
2% elastin (38). Type I collagen (COL1) extracted from AF cells is 
also significantly upregulated compared to COL1 extracted from 
NP cells, but the level of chondroitin‑6‑sulfated PGs demon-
strates the opposite pattern (39). In IDD, changes in the level of 
PGs can be detected. In the early stages, AF cells proliferate with 
increasing biosynthetic processes, whereas in degenerated IVDs, 
the level of aggrecan is decreased, and the levels of decorin, 
biglycan, and fibromodulin (which are small PGs) are upregu-
lated in AF cells (40). Tenomodulin levels were also reported to 
be increased in degenerated AF cells (41). Other genes that are 
correlated with AF cells in degenerated IVDs have been identi-
fied, including the gene encoding pleiotrophin, which increases in 
the AF with age (42); increased vascularization in the degenerated 
AF tissues may also be present (43). The proteome of a normal 
IVD from a 35‑year old patient (male) has been established (10), 
and the cellular components from the AF (soluble and insoluble) 
determined by GO term enrichment analysis are presented in 
Fig. 3A and B. Compared with the AF (soluble), ECM proteins are 
present at a higher proportion in the AF (insoluble), and nuclear 
proteins only exist in the AF (soluble). 

Comparative proteomic analysis of the AF. A previous study 
has identified a total of 759 proteins in non‑degenerative 
AF tissue (44). DEPs of importance in the degenerated AF 
include the ubiquitin‑associated domain‑containing protein 
1 (UBAC1), aspartyl transfer RNA synthetase, potassium 
voltage‑gated channel subfamily D member 3 (KCND3), struc-
tural proteins, and signaling factors such as Indian hedgehog 
protein  (44) (Table I ). UBAC1 serves a prominent role in 
lysosomal and proteasomal degeneration (45,46), and KCND3, 
a voltage‑activated A‑type potassium ion channel, is involved 
in degenerative diseases such as spinocerebellar ataxia (47). 

Semi‑quantitative analysis of silver‑stained 2D elec-
trophoresis gels of AF cells isolated from normal and 
degenerated IVDs has demonstrated that the expression 
levels of glucose‑6‑phosphate 1‑dehydrogenase (G6PD), heat 
shock cognate 71‑kDa protein (HSPA8), and protocadherin‑23 
are decreased, whereas SOD, transmembrane protein 51 
(TMEM51), guanine nucleotide‑binding protein G(i) subunit 
α‑2 (GNAI2), 26S protease regulatory subunit 8, adenosine A3 
receptor (ADORA3), fatty acyl‑CoA reductase 1 (FAR1), and 
lipid phosphate phosphatase‑related protein type 2 (LPPR2) 
expression levels are increased (48). 

HSPA8 is a heat shock cognate protein that represses 
pre‑mRNA splicing and forms an essential part of the spli-
ceosome, where it is thought to be involved in spliceosome 
assembly (49). Thus, the low expression of HSAP8 suggests that 
the reduced repression of pre‑mRNA splicing is a potential regu-
latory mechanism in the degenerated AF. G6PD is a member of 
the dehydrogenase family that provides pentose phosphates and 
serves as a reductant in fatty acid and nucleic acid synthesis (50). 
A significant decrease in G6PD expression in the AF suggests 
an important role for oxidative stress in the process of degenera-
tion. These findings suggest that oxidative stress may be a major 
contributor to the process of degeneration (51). The main function 
of protocadherin‑23 is to provide adhesion and it is involved in 
morphogenesis during development (52). However, the correlation 

between protocadherin‑23 and IDD remains to be elucidated. 
GNAI2 may serve as a signal transducer or modulator in multiple 
types of transmembrane signaling systems, as the α‑subunit GTP 
activating protein, GNAI2 is a regulator for the effector interac-
tion (53). ADORA3 is an adenosine receptor and serve a role in 
duplication (54). Both GNAI2 and ADORA3 are associated with 
G‑proteins (55), thus, G‑proteins of the transmembrane signaling 
systems may be involved in the process of AF degeneration. FAR1 
reduces saturated fatty acids into fatty alcohols (56). In addition, 
fatty alcohols accumulated in specific cell lines defective in 
plasmalogen biosynthesis (56). Thus, the upregulation of FAR1 
suggests that plasmalogen biosynthesis may be involved in the AF 
degenerative process. The function of LPPR2 is similar to that of 
other lipid phosphate phosphatase superfamily members, which 
serve roles in signal transduction and extracellular concentra-
tions of lipid phosphate esters (57); TMEM51 is a member of the 
multipass membrane proteins (58). However, the roles of LPPR2 
and TMEM51 in AF cells are unknown, but the data suggest that 
these proteins may influence the process of AF cell degeneration.

5. Proteomic analysis of the human NP

Structural proteomic analysis of the NP. NP cells are 
commonly described as ‘chondrocyte‑like’ or ‘stem cell‑like’ 
owing to their morphology and the cell markers that they 
synthesize; the main constituents of the NP are PGs, collagen, 
elastin and water (38,59). The PGs absorb the water in the 
NP, and account for 35‑65% of the dry weight (60), whereas 
COL2 fibrils form an incompact frame structure that holds the 
NP tissues together. A previous study demonstrated that NP 
water levels decrease with age, and a similar decrease may 
occur in PGs (38), which would decrease the size of the NP 
by ~50%. Although the morphology of the NP is closer to a 
solid form than a fluid structure due to the dehydration (61), the 
proteome of the NP (soluble and insoluble) is similar to the AF 
(Fig. 3C and D). Nevertheless, PGs are more abundant in the 
NP (soluble and insoluble) compared with the AF (10). 

Comparative proteomic analysis of the NP. Similar to the LF, 
cartilage oligomeric matrix protein (COMP), prolargin, FN1, 
and clusterin expression were upregulated in both soluble and 
insoluble fractions of the NP from IDD specimens (10) (Table I). 
Furthermore, the expression of SLRPs, such as biglycan and 
decorin, and extracellular SOD, were increased in the soluble 
fraction (10). However, Erwin et al reported that SLRPs were 
intact in both chondrodystrophic canines that developed early 
disc degeneration and non‑chondrodystrophic animals (62). As 
previously discussed, COL2 and CHAD are closely associated 
with collagen fibrillogenesis and are observed to be down-
regulated with age (11), thus indicating that substantial matrix 
remodeling is involved in NP degeneration. The majority of 
abnormal changes in proteins are similar to those observed 
in the LF, except for COL1. COL1, the major component of 
the insoluble fraction of the degenerative NP, was present 
in increased amounts (10). It has been reported that COL1 is 
capable of achieving cross‑linking, mediated by enzymatic 
or non‑enzymatic processes (10), which is consistent with the 
increasing trends in the insoluble fraction of the degenerative 
NP. These data suggested that COL1 may be a major contributor 
to reducing protein solubility in degenerative discs.
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The function of local or migratory cells in IVD is not 
completely understood. Nevertheless, self‑repair induced by 
local or migratory cells has been observed in dogs with IDD 
induced by enzymatic digestion (63). A number of studies 
have transplanted bone marrow‑derived mesenchymal stromal 
cells (BM‑MSCs) and stem‑like or progenitor‑like cells in IDD 
models (64,65). The transplantation of these cells activates a set 

of native, uncharacterized cells, which express both α‑1 COL2 
(COL2A1) and SRY‑related protein 9 (SOX9)  (66), which 
postponed the onset of IDD in humans and sheep (64,65). 
However, this evidence is not sufficiently robust to support 
cellular transplantation as a clinical therapy. In fact, another 
study reported that there was no clinically significant differ-
ence between MSC and sham treatment for IDD, regardless 

Figure 2. Top 10 KEGG pathways enriched by DEPs identified in (A) AF soluble (15 proteins), (B) AF insoluble (10 proteins), (C) NP soluble (21 proteins) and 
(D) NP insoluble (7 proteins) fractions. ECM, extracellular matrix; AGE‑RAGE, advanced glycation endproducts‑receptor for advanced glycation endprod-
ucts, AF, annulus fibrosus; NP, nucleus pulposus.

Figure 3. Structural proteomic analysis of a normal intervertebral disc from a 35‑year old sample determined by GO analysis. (A‑D) GO term enrichment 
analysis of the (A) 71 unique cellular proteins detected in the AF (soluble), (B) 24 unique proteins detected in the AF (insoluble), (C) 64 unique proteins 
detected in the NP (soluble), and (D) 18 unique proteins detected in the NP (insoluble). GO, gene ontology; AF, annulus fibrosus; NP, nucleus pulposus, PGs, 
proteoglycans; ECM, extracellular matrix.



LIU et al:  PROTEINS AND SIGNALING PATHWAYS CONTRIBUTING TO DEGENERATIVE SPINAL DISORDERS14

of allogeneic or autologous transplantation methods  (67). 
Therefore, the development of progenitor cell therapies and 
the identification of specific biomarkers will require a deeper 
understanding of progenitor cells. 

Notochordal cells (NCs), which are potential progenitor 
cells, can induce the differentiation of MSCs to NP cells by 
synthesizing PGs and resisting the expression and hypertrophy 
of collagen fiber; this is noted through the increased produc-
tion of glycosaminoglycans (GAG), laminin B1, and type III 
collagen (COL3) observed in human MSCs cultured in 
porcine notochordal conditioned medium (68). Furthermore, 
following MSC transplantation in animals, NCs in the native 
tissue promoted the upregulation expression of SOX9, COL2, 

and transforming growth factor β3 (TGF‑β3), which are also 
detected in healthy NP (69‑71). These data suggest that laminin 
B1, GAG, COL3, SOX9, and TGF‑β3 may serve vital roles in 
the transformation of MSCs into NP cells (72). 

6. Comparative proteomic analysis of IDD model mice 

Previous studies have established SM/J and LG/J mouse 
models of IDD. The former display cellular and matrix changes 
in IVDs similar to those in degenerative human IVDs, whereas 
the latter maintain abundant vacuolated NC‑like cells in the 
NP (72). FN1, Prolargin, and COMP upregulated in SM/J mice, 
which is consistent with observations in degenerative human 

Table I. Significantly differentially expressed proteins in degenerative disc disease.

			D   ecreased protein	
Author, year	 Sample source	I ncreased protein expression	 expression	 (Refs.)

Kamita et al, 2015	 Ligamentum flavum	 Chondroadherin, cartilage	 Asporin	 (11)
		  intermediate layer protein, 
		  lysophosphatidic acid 
		  receptor 1, SLRPs, prolargin, 
		  FN1, HTRA serine peptidase 1, 
		  tenascin
Johnson et al, 2006	 Annulus fibrosus	 Ubiquitin‑associated	 NA	 (39)
		  domain‑containing protein 1, 
		  potassium voltage‑gated 
		  channel subfamily D member 3
Battié et al, 2008		  FN1, clusterin, aggrecan, 	COL 2, type XI collagen, 	 (9)
		  decorin, prolargin,	COL 1, COL6
Yee et al, 2016		  Guanine nucleotide‑binding	 Heat shock cognate	 (10)
		  protein G(i) subunit α‑2, 	 71‑kDA protein, 
		  transmembrane protein 51, 	 glucose‑6‑phosphate
		  adenosine receptor A3, FAR1, 	 dehydrogenase, 
		  lipid phosphate phosphatase‑related	 protocadherin‑23
		  protein type 2
Battié et al, 2008	N ucleus pulposus	 Prolargin, FN1, COMP, clusterin, 	COL 1	 (9)
		  SLRPs
Honsho et al, 2010	N otochordal cell	L aminin B1, glycosaminoglycan, 	 Type III collagen	 (56)
	 conditioned medium	 SOX9, COL2, transforming growth 
		  factor β3
Elliott and Setton,	 Murine intervertebral 	 FN1, prolargin, COMP, COL6, type	NA	  (61)
2001	 discs	 XII collagen, type XV collagen, 	
		  SOX9, COL2
Markolf and Morris,	 Cerebrospinal fluid	 APO A‑IV, vitamin D‑binding protein, 	 ProSAAS, 	 (63)
1974		  neurofilament triplet L protein, 	 prostaglandin D2 synthase, 
		  tetranectin, hemoglobin, 	 creatine kinase B, 
		  immunoglobulin G	 superoxide dismutase 1, 
			   peroxiredoxin 2
Yang et al, 2009	 Serum	A PO L1	 apolipoprotein M, 	 (66)
			   tetranectin

APO, apolipoprotein; COL1, type I collagen; COL2, type II collagen; COL6, type VI collagen; COMP, cartilage oligomeric matrix protein; 
FN1, fibronectin 1; NA, not applicable; SLRP, small leucine‑rich proteoglycan; SOX9, SRY‑related protein 9; ProSAAS, proprotein convertase 
subtilisin/kexin type 1 inhibitor. 



Molecular Medicine REPORTS  21:  9-19,  2020 15

IVDs (73). In addition, the upregulation of collagen, such as α‑1 
type VI and type V collagen expression, is observed in SM/J 
mice (73). These changes indicate ECM enrichment in SM/J 
mice, with processes such as chondrogenic differentiation and 
fibrillogenesis likely to be taking place. Notably, chondrocyte 
markers such as SOX9 and COL2A1 are detected at the edge 
of the NP region, close to the AF, which has been observed in 
other mouse strains (74). Thus, chondrocyte markers may serve 
an important role in the process of IVD degeneration in mice.

7. Clinical proteomic analysis of body fluids from patients 
with degenerative spinal disorders

The majority of lumbar disk herniation (LDH) cases are caused 
by IDD (75); however, the pathophysiological mechanism of 
disc herniation is not fully understood. Owing to the compres-
sion of the NP on the nerve root, many of the DEPs in the CSF 
of patients with LDH are associated with neurons and pain; for 
example, Lin et al reported that a total of nine proteins were 
detected at high levels in the CSF of LDH patients, including 
cystatin C and APO A‑IV, whereas five proteins were found 
to be decreased, including creatine kinase B‑type and SOD1 
(Table I) (76). In addition, APOL1, which exists in endothelial 
cells and is closely related to atherosclerotic iliac arteries, is 
regulated by tumor necrosis factor‑α (TNF‑α), and upregulated 
in the serum of people suffering from LDH (77,78). This higher 
expression of APOL1 may be responsible for the degeneration, 
because TNF‑α is involved in the inflammation induced by 
LDH (79). Similarly, APOM which was downregulated in 

serum of LDH patients is an immunity‑associated gene adja-
cent to the TNF‑α and lymphotoxin genes (80). However, the 
explanation behind the downregulation of APOM in the serum 
of LDH patients requires further study.

8. Differentially regulated proteins and their signaling 
pathways in degenerative spinal disorders

α‑2 COL1 forms one of the chains for COL1 and the structural 
disturbance of this protein is involved in bone develop-
ment  (81). There is not enough evidence to prove the link 
between bone development and IDD except for the downregu-
lation of COLA2. COL2 is a major component of cartilage, 
and mutations in this protein have been reported to contribute 
to type II collagenopathies (82). The expression levels of FN1, 
one of the major components of the ECM that binds a large 
number of molecules related to signal transduction and cell 
adhesion, is reportedly increased in degenerating discs, which 
is related to the change in the organizational structure (83,84). 
Furthermore, COMP, which is found in the ECM as an integral 
part of ligaments and tendons, is believed to serve a role in 
cellular proliferation and apoptosis, in addition to regulating 
cell movement and attachment (85). A previous study demon-
strated that the abnormal expression of COMP and SOX9 is 
associated with cartilage degeneration in OA (86), and another 
study reported that alongside CILP and HTRA1, COMP serves 
as a biomarker that may be involved in the process of IDD (10).

A previous study indicated that downregulated 
microRNAs (including hsa‑miR‑125b‑1‑3p and hsa‑miR‑1184) 

Table II. Differentially expressed proteins enriched in the PI3K/AKT, AGE‑RAGE, p53 and TGF‑β signaling pathways.

Tissue	E nriched signaling pathway	I ncreased protein expression	D ecrease protein expression

LF	 PI3K/AKT	 Type VI collagen, FN1, COMP, 	COL 1A1, COL1A2
		  chondroadherin
	A GE‑RAGE	 FN1	COL 1A1, COL1A2
	 p53	I nsulin‑like growth factor‑binding	NA
		  protein
AF (soluble)	 PI3K‑AKT	 THBS1, FN1	COL 1A2, COL2A1, COL1A1, 
			   α‑2 type VI collagen, α‑3 type VI 
			   collagen
	A GE‑RAGE	 FN1	COL 1A2, COL1A1
	 p53	 THBS1	NA
	 TGF‑β	 THBS1	NA
AF (insoluble)	 PI3K/AKT	CO MP, FN1	COL 2A1
	 AGE‑RAGE	 Α‑1 type III collagen, FN1	 NA
	 TGF‑β	DCN	NA 
NP (soluble)	 PI3K/AKT	CO MP, FN1	C hondroadherin, COL2A1
	A GE‑RAGE	 FN1	NA
	 TGF‑β	DCN	NA 
NP (insoluble)	 PI3K/AKT	COL 1A2, FN1, COMP, COL1A1	COL 2A1
	A GE‑RAGE	COL 1A2, FN1, COL1A1	COL 2A1

AGE‑RAGE, advanced glycation end products‑receptor for advanced glycation endproducts; AF, annulus fibrosus; THBS1, thrombospondin 1; 
COL1A1, α‑1 type I collagen; COL1A2, α‑2 type I collagen; COL2A1, α‑1 type II collagen; COMP, cartilage oligomeric matrix protein; FN1, 
fibronectin 1; LF, ligamentum flavum; NA, not applicable; NP, nucleus pulposus; TGF‑β, transforming growth factor β; DCN, decorin.
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and upregulated genes (including AP2 associated kinase 1 
and hemoglobin subunit β) between normal and degenerative 
discs are involved in the PI3K/AKT signaling pathway (87). 
The activation of the PI3K/AKT pathway serves an important 
role in protecting cells from harmful physiological processes, 
such as cellular apoptosis, oxidative damage, and a hypoxic 
microenvironment, and has been found to protect against 
IDD (88). Furthermore, it was recently demonstrated that bone 
morphogenetic protein 2 can inhibit cellular apoptosis and 
suppress the synthesis of matrix proteins via the PI3K/AKT 
signaling pathway, which further alleviates IDD (89).

Activation of the AGE‑RAGE signaling pathway in diabetic 
polyneuropathy, a complication of diabetes, is commonly 
observed, and increased AGE‑RAGE signaling exacerbates 
degenerative disorders of peripheral neurons (90). In fact, a 
recent study reported no significant difference in the GAG 
content or histological features between discs from non‑obese 
diabetic mice and euglycemic littermates, but noted increases 
in cellular apoptosis and matrix aggrecan fragmentation (91). 
To determine the link between diabetes and IDD, the role of 
the AGE‑RAGE signaling pathway in IDD requires further 
research.

The p53 signaling pathway is an important indicator of 
cellular apoptosis, and decreased expression of wild‑type 
p53‑induced phosphatase 1 is closely related to p53 activation 
and neuronal apoptosis  (92). During periods of replicative 
senescence, the p53/p21/retinoblastoma pathway is activated to 
alleviate telomere erosion and DNA damage response (93,94). 
Furthermore, the effects of small ubiquitin‑related modifier 2 
on the proliferation and senescence of NP cells has been inves-
tigated through the mediation of the p53 signaling pathway in 
rat models of IDD (95) which indicated that SUMOS was a 
potential target for IDD treatment.

 TGF‑β signaling is an extensive pathway involved in 
developmental programs of cells, including proliferation, 
differentiation, homeostasis, and regeneration  (96). In the 
IVD, TGF‑β is a major regulatory cytokine that maintains 
cellular differentiation and homeostasis  (97). Previous 
research has reported that the upregulation of TGF‑β causes 
a decrease in NF‑κB (98). The inhibition of NF‑κB may play 
an important role in IDD (99). Furthermore, TGF‑β‑dependent 
AF cell proliferation and progressive vertebral fusions due to 
the loss of filamin B was involved in IDD (100). Moreover, 
the increased expression of COL2 and aggrecan regulated by 
TGF‑β1 alleviates the degeneration of IVDs (101).

9. Conclusions

Main components of the matrix such as prolargin, FN1, CILP, 
COMP, COL1 and COL2 are significantly changed in the 
degenerative LF, AF, and NP. COMP is involved in cartilage 
degeneration in OA (102), but it has not been fully studied in 
IDD. Moreover, The role of AGE‑RAGE signaling pathway in 
IDD requires further research. Despite the limitations of GO 
and KEGG pathway analysis, proteomic analysis still provides 
novel targets that aid in understanding IDD pathophysiology. 
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