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Abstract. The purpose of the present study was to explore 
aging‑associated cardiac dysfunction and the possible 
mechanism by which swimming exercise modulates cardiac 
dysfunction in aged mice. Aged mice were divided into two 
groups: i) Aged mice; and ii) aged mice subjected to swimming 
exercises. Another cohort of 4‑month‑old male mice served as 
the control group. Cardiac structure and function in mice were 
analyzed using hematoxylin and eosin staining, and echocar-
diography. The levels of oxidative stress were determined by 
measuring the levels of superoxide dismutase, malondialdehyde 
and reactive oxygen species (ROS). Levels of the endoplasmic 
reticulum (ER) stress‑related protein PKR‑like ER kinase, 
glucose‑regulated protein 78 and C/EBP homologous protein 
were determined to evaluate the level of ER stress. The aged 
group exhibited an abnormal cardiac structure and decreased 
cardiac function, both of which were ameliorated by swimming 
exercise. The hearts of the aged mice exhibited pronounced 
oxidative and ER stress, which were ameliorated by exercise, 
and was accompanied by the reactivation of myocardial cGMP 
and suppression of cGMP‑specific phosphodiesterase type 5 
(PDE5). The inhibition of PDE5 attenuated age‑induced 
cardiac dysfunction, blocked ROS production and suppressed 
ER stress. An ER stress inducer abolished the beneficial effects 

of the swimming exercise on cardiac function and increased 
ROS production. The present study suggested that exercise 
restored cardiac function in mice with age‑induced cardiac 
dysfunction by inhibiting oxidative stress and ER stress, and 
increasing cGMP‑protein kinase G signaling.

Introduction

Aging is an important risk factor for the development of 
cardiovascular disease (1), and this association may be caused 
by a continuum of cardiac structural and functional alterations 
that occur with age (2). These cardiac changes are relevant in 
age‑associated diseases (3). Since aging increases the risk of 
cardiac disease and reduces organ function, studies that aim 
to develop interventions that combat cardiac aging and eluci-
date the disease mechanisms have significant preclinical and 
clinical implications. Swimming exercise has recently been 
shown to improve structural abnormalities and upregulate the 
antioxidant defense capacity of senescent female rat hearts (4). 
Oxidative stress, due to excessive reactive oxygen species (ROS) 
production and impaired antioxidant defense mechanisms, 
induces a range of pathologies that are believed to be important 
contributors to the cardiovascular aging process (2,5). Recently, 
Belaya et al (6) reported that long‑term wheel running can 
protect against age‑related cellular stress. The endoplasmic 
reticulum (ER) is a specialized organelle where the folding and 
post‑translational maturation of almost all membrane proteins, 
and most secreted proteins, occur  (7). Although exercise 
significantly improves cardiorespiratory fitness, little is known 
about the impact of physical activity on myocardial function. 
Many of the pathological changes associated with aging have 
been attributed to oxidative stresses (8). It has been proposed 
that endurance exercise training is associated with altered ER 
function (9). The unfolded protein response (UPR) is a crucial 
process in maintaining ER homeostasis or inducing cell death 
in chronically damaged cells; the UPR causes ER stress. ER 
stress is initiated by the activation of at least three types of 
stress sensors: i) Inositol‑requiring enzyme‑1; ii) activating 
transcription factor 6; and iii) PKR‑like ER kinase (PERK) (7). 
Additionally, a previous report demonstrated that levels of 
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the ER chaperones glucose‑regulated protein 78 (GRP78) 
are decreased, whereas levels of the pro‑apoptotic mediator 
C/EBP homologous protein (CHOP) are increased in aged 
brains (10,11). These previous findings suggested that the ability 
to maintain ER homeostasis may be disrupted during aging; 
however, the functional significance of these processes in aged 
hearts remains unclear. Both oxidative stress and ER stress are 
involved in physiological and pathophysiological processes 
associated with aging. Therefore, strategies designed to reduce 
the aberrant activation of oxidative stress and ER stress in the 
aged heart are of great interest.

cGMP is a ubiquitous second messenger involved in 
many cardiovascular processes and is produced by guanylate 
cyclases  (12). The biological activity of cGMP is regulated 
by cGMP‑specific phosphodiesterase type 5 (PDE5) through 
hydrolytic degradation (13). Previous studies have indicated 
that protein kinase G (PKG) activation by cGMP has a role in 
cGMP‑induced myocardial functions (13-15). It has also been 
reported that PKG activation decreases with aging (15). However, 
the actions of cGMP‑PKG signaling in the aged heart are not 
fully understood. Therefore, the present study was designed 
with two aims: i) To determine whether exercise training 
improves myocardial function via the cGMP‑PKG pathway; 
and ii) to examine whether the endogenous cGMP‑PKG system 
attenuated aged‑induced myocardial ER stress.

Materials and methods

Animals and treatment. A total of 64 male C57Bl/6J mice were 
obtained from the animal center of the Fourth Military Medical 
University. All animal experimental procedures and protocols 
were approved by the Ethics Committee of The Fourth Military 
Medical University. The animals were studied at 4 (young) 
and 20 (aged) months of age (ranging approximately 25‑40 g). 
They were housed under a 12‑h light/dark cycle in tempera-
ture (22±2˚C) and humidity (55±10%)‑controlled rooms with 
free access to food and water. The mice were assigned to 
three groups: i) Young (n=16); ii) aged (n=24); and iii) aged + 
exercise (n=24). The animals in the exercise group performed 
swimming exercise, free of any loading, 5  days/week for 
8 weeks in water maintained at 32‑35˚C. The mice swam for 
15 min on the first day, with the swimming duration increased 
gradually over a 1 week period to 60 min continuously every 
day on one protocol. All exercise sessions were performed 
between 8:00 and 11:00 a.m., as previously described (10,14). 
The aged mice were intraperitoneally injected with sildenafil 
(3 mg/kg/day for 3 weeks) or tunicamycin (TM; 2 mg/kg/day 
for 2 days) (13,16). Sildenafil and TM were purchased from 
Sigma‑Aldrich; Merck KGaA. The compounds were dissolved 
in 0.9% saline for injection. All mice were anaesthetized by 
inhaling oxygen with 5% isoflurane at the rate of 1 l/min after 
24 h of the last drug administration. The mice were confirmed 
to be deeply anesthetized after they were immobile for 1 min. 
To euthanatize the mice, a 25% volume of CO2 gas was allowed 
to constantly flow of 0.2 l/min into the chamber until the lack 
of respiration and heart beat were detected. The heart tissue 
was isolated post‑mortem.

Echocardiography. Echocardiographic examinations were 
performed using an ACUSON Sequoia 512 ultrasound machine 

(Siemens AG) using 2.5% isoflurane as an inhalant anesthetic. 
The measurements were performed using M‑mode tracings 
from the papillary muscles and the apical four‑chamber view.

Pathological examination. The excised heart samples 
were fixed with 4% paraformaldehyde at 4˚C for 24 h and 
incubated in 80, 90 and 100% ethanol. Each incubation was 
performed for 30 min. Subsequently, samples were incubated 
in 100% ethanol for 15 min at room temperature, and were 
subsequently embedded in paraffin wax. The samples were 
longitudinally sectioned to a thickness of 5 µm. The sections 
were stained with hematoxylin and eosin (Sigma‑Aldrich: 
Merck KGaA) and assessed using an optical microscope 
(Olympus Corporation; magnification, 40‑400x). Sections 
were incubated with haematoxylin (0.2%) for 5 min at room 
temperature and with eosin (1%) for 2 min temperature.

Measurements of the level of superoxide dismutase (SOD) 
activity and malondialdehyde (MDA) content. The hearts were 
homogenized with saline and the activity of the antioxidant 
enzyme SOD and the concentration of MDA were determined 
using commercially available kits (cat. nos. A001 and A003 
respectively; Nanjing Jiancheng Bioengineering Institute), 
according to the manufacturer's instructions.

Detection of ROS. A reactive oxygen species (ROS) assay kit 
(cat. no. E004, Nanjing Jiancheng Bioengineering Institute) 
was used to determine the level of ROS generation. The 
myocardial tissue was trypsinized with trypsin (0.4%) at 37˚C 
for 3 min, and then washed with PBS and stained with 10 µM 
2',7'‑dichlorodihydrofluorescein diacetate for 30 min at 37˚C. 
After centrifugation at 1,000 x g for 5 min at room tempera-
ture, the tissues were washed three times with PBS and the 
fluorescence intensity was analyzed using a fluorescence 
microplate reader (Molecular Devices, LLC) at an excitation 
wavelength of 480 nm and an emission wavelength of 530 nm.

cGMP measurement. The cGMP content in the myocardium 
was measured using the cGMP complete ELISA kit (cat. 
no. ADI900164, Assay Designs, Inc.), according to the manu-
facturer's instructions and as previously described (14). The 
results were reported as pmol cGMP/mg tissue.

Western blot analysis. Western blot analysis was performed 
as described in our previous study (17). Briefly, frozen animal 
heart tissues were homogenized in ice‑cold RIPA lysis buffer 
[500 mM Tris‑HCl (pH 8.0), 150 mM NaCl, 1% Nonidet P‑40, 
0.02% sodium azide, 0.1% SDS, 100 µg/ml PMSF, 1 µg/ml 
aprotinin and 0.5% sodium deoxycholate]. The cell extracts 
were centrifuged for 30 min at 15,000 x g at 4˚C and the 
supernatants were collected. Protein lysates (35  µg/lane) 
were separated by 10% SDS‑PAGE and transferred onto 
PVDF membranes. Membranes were blocked with 5% non‑fat 
milk for 1 h at room temperature, and then incubated with 
the following primary antibodies at 4˚C overnight: GRP78 
(cat. no. 3177, Cell Signaling Technology, Inc.), CHOP (cat. 
no. 5554, Cell Signaling Technology, Inc.), PKG (cat. no. 3248, 
Cell Signaling Technology, Inc.), PDE5 (cat. no. SAB2500767, 
Sigma‑Aldrich; Merck KGaA) and β‑actin (cat. no.  3700, 
Cell Signaling Technology, Inc.). Membranes were then 
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incubated with a peroxidase‑conjugated secondary antibody 
(goat‑anti‑rabbit; 1:5,000; cat. no. A0208; goat‑anti‑mouse; 
1:5,000; cat. no. A0216; Beyotime Institute of Biotechnology) 
for 2‑3 h at room temperature before visualization using an 
Immobilon western ECL hydrogen peroxidase substrate 
(EMD Millipore; cat. no. WBKLS0500) and analyzed using 
the Discovery Series Quantity One software (version, 4.52; 
Bio‑Rad Laboratories, Inc.).

Statistical analysis. The results are presented as the 
mean  ±  SEM. Statistical analyses were performed using 
Student's t‑test for comparing two groups or two‑way ANOVA 
for comparing ≥3 groups followed by Bonferroni's post hoc 
test. All statistical analyses were performed using GraphPad 

Prism software version 5.0 (GraphPad Software, Inc.). P<0.05 
was considered to indicate a statistically significant difference. 
All the experiments were repeated for three times.

Results

Swimming exercise improves cardiac structure and function 
in aged mice. Swimming exercise attenuated the irregularly 
arranged cardiomyocytes that are caused by aging (Fig. 1A). 
A decrease in cardiac function is a hallmark of aging. The 
left ventricular ejection fraction (LVEF) and left ventricular 
fraction shortening (LVFS) were measured using echocardiog-
raphy to determine the cardiac function of mice in the young, 
aged and aged + exercise groups (Fig. 1B). A significantly 

Figure 1. Swimming exercise protects cardiac structure and function. (A) Representative images of hematoxylin and eosin staining of hearts from mice in each 
group. Scale bar, 100 µm. (B) Echocardiography of hearts from mice in each group. (C) LVEF and (D) LVFS of hearts from mice in each group. (E) Cardiac 
SOD activity. n=9. (F) Cardiac MDA level n=9. (G) Cardiac ROS production n=9. Data are presented as the mean ± SEM. *P<0.05 vs. young mice; #P<0.05 vs. 
aged mice. LVEF, left ventricle ejection fraction; LVFS, left ventricle fractional shortening; SOD, superoxide dismutase; E, exercise; MDA, malondialdehyde; 
ROS, reactive oxygen species.
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lower LVEF and LVFS were observed in aged mice compared 
with young mice (Fig. 1C and D). Swimming exercise signifi-
cantly improved the heart function of aged mice (Fig. 1B‑D). 
Additionally, the levels of several oxidative stress indicators, 
including SOD, MDA and ROS, were measured. Lower SOD 
activity was detected in hearts from the aged group compared 
with the young group, and swimming exercise significantly 
increased SOD activity (Fig. 1E). In addition, swimming exer-
cise ameliorated age‑induced alterations in the levels of MDA 
(Fig. 1F) and ROS (Fig. 1G). Based on these results, swimming 
exercise was found to exert beneficial effects on the heart that 
were found to be associated with an attenuation of oxidative 
stress in aged mice.

Swimming exercise inhibits ER stress in the hearts of aged 
mice. ER stress and oxidative stress are closely related 
processes  (18). Therefore, experiments were conducted to 
examine the levels of ER stress‑related proteins. ER stress was 
induced in the aged hearts, as indicated by the increased level 
of p‑PERK (Fig. 2A). Furthermore, the levels of GRP78 and 
CHOP were also increased (Fig. 2B). The increased levels of 
p‑PERK, GRP78 and CHOP were all suppressed by swim-
ming exercise. Therefore, swimming exercise was found to 
inhibit ER stress in aged mice.

Swimming exercise reverses the downregulation of 
cGMP‑PKG signaling in the hearts of aged mice. The effect 
of swimming exercise on myocardial cGMP‑PKG signaling 
was evaluated to investigate the cardioprotective mechanism 
of swimming exercise in aged hearts. Significantly lower PKG 
expression was observed in aged hearts compared with young 
hearts, and this effect was significantly reversed by swimming 
exercise (Fig.  3A). cGMP levels in the myocardium were 
higher in aged mice subjected to swimming exercise than in 
the aged group (Fig. 3B). Furthermore, higher levels of PDE5 
were detected in aged hearts compared with young hearts, and 
swimming exercise reduced the increase of PDE5 levels in 
aged hearts (Fig. 3C). Based on these results, swimming exer-
cise was found to reverse the downregulation of cGMP‑PKG 
signaling in aged hearts by increasing PKG and cGMP levels 
and reducing PDE5 levels.

Effects of the cGMP signaling pathway on cardiac func‑
tion, ROS production and ER stress. To determine whether 
cGMP‑PKG signaling regulated the anti‑ER stress effect 
of swimming exercise in aged hearts, the aged group were 
treated with sildenafil, a specific PDE5 inhibitor, and the 
aged + exercise group were treated with TM, an ER stress 
inducer. The heart function in all groups was observed by 
echocardiography (Fig.  4A). The LVEF and LVFS values 
were slightly increased in the hearts of aged mice treated 
with sildenafil or swimming exercise compared with aged 
hearts (Fig. 4B and C). Additionally, sildenafil and swimming 
exercise significantly reduced the levels of ROS in the aged 
hearts (Fig. 4D). Exposure to the ER stress inducer TM, which 
increased the expression levels of GRP78 and CHOP proteins 
to mimic ER stress‑induced injuries, abolished the beneficial 
effects of swimming exercise on cardiac function in aged 
mice and increased ROS production compared with swim-
ming exercise in aged mice (Fig. 4A‑D). Sildenafil decreased 

the levels of the ER stress‑related proteins GRP78 and CHOP 
(Fig. 4E), increased levels of PKG and reduced the level of 
PDE5 (Fig. 4F), while reducing ROS production (Fig. 4A‑D). 
The present data suggested that the activation of cGMP‑PKG 
signaling can mimic the protective effect of exercise in aged 
mice. TM did not affect PKG and PDE5 expression (Fig. 4F). 
However, TM increased ROS production and reduced cardiac 
function in aged mice after exercise (Fig. 4A‑D). Collectively, 
the present data suggested that activation of ER stress 
abolished the protective effect of exercise in aged mice. In 
summary, swimming exercise exerted its cardioprotective 
effect by ameliorating ER stress through the cGMP‑PKG 
signaling pathway.

Discussion

The present study identified that swimming exercise signifi-
cantly attenuated the negative effects of aging on cardiac 
structure and myocardial function by suppressing the oxidative 
stress and ER stress responses. In addition, it was found that 
the cGMP‑PKG cascade may serve an important role in the 
exercise‑induced decrease in ER stress in aged hearts. The 
present results not only provide additional evidence supporting 
the cardioprotective effects of swimming exercise on reducing 
cardiac injuries in aged mice, but also emphasize the impor-
tance of the ER stress‑dependent cGMP‑PKG cascade in the 
protective effects of swimming exercise on the heart.

Cardiac aging alters cardiac filling function, compliance 
and ventricular pump capacity, thus contributing to a decrease 
in cardiac function (19). In the present study, the cardiac struc-
ture and function were found to be impaired in aged mice. 
The aging‑induced deterioration of the cardiac structure and 

Figure 2. Swimming exercise decreases the levels of endoplasmic reticulum 
stress‑related proteins in aged hearts. (A) Levels of p‑PERK in the hearts of 
mice from each group. Proteins levels were normalized to PERK. (B) Levels 
of GRP78 and CHOP. Proteins levels were normalized to β‑actin. *P<0.05 vs. 
young mice; #P<0.05 vs. aged mice. Data are presented as the mean ± SEM 
from independent experiments performed in triplicate. PERK, PKR‑like ER 
kinase; GRP78, glucose‑regulated protein 78; CHOP, C/EBP homologous 
protein; p‑, phosphorylated; E, exercise.
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decreased cardiac function were attenuated in mice performing 
swimming exercise. Therefore, swimming exercise improved 
aging‑induced impairments in cardiac performance. Specific 
increases in oxidative stress have been reported to represent 
potential factors that determine the induction and maintenance 
of cellular senescence, and the aging process (8,20,21). An 
imbalance in ROS generation triggers oxidative stress, and ROS 
play an important role in many physiological and pathological 
processes (22). Additionally, SOD and MDA are involved in 
oxidative stress defense (23). Regular physical exercise delays 
the accumulation of ROS‑mediated cell damage by improving 
antioxidative protective mechanisms in the myocardium (24). 
Exercise has been reported to increase SOD mRNA expres-
sion  (25). As shown in the present study, aging decreased 
SOD activity and increased MDA levels. However, swimming 
exercise exerted beneficial effects by increasing the activity 
of the antioxidant enzyme SOD, and by decreasing MDA and 
ROS production.

Accumulating evidence demonstrated that oxidative 
stress and the ER stress are associated events  (17,18). The 
ER‑localized transmembrane kinase PERK is a major trans-
ducer of ER stress (26). Normally, PERK is maintained in an 
inactive, monomeric state by binding to GRP78. When this 
binding is disrupted, PERK homodimerizes, undergoes auto-
phosphorylation, becomes active and initiates downstream 
signaling  (27). Protein accumulation in the ER results in 
ER stress and ultimately activates apoptosis. This pathway 
involves the upregulation of CHOP (28). CHOP levels are 
elevated in the liver in response to aging (29). Consistent with 
this previous study, increased levels of CHOP were observed in 
aged hearts in the present study. Swimming exercise reduced 
CHOP activity. Moreover, in the present study, swimming 
exercise inhibited the increase in GRP78 expression in aged 
hearts. The present results suggested that swimming exercise 
protected the hearts of aged mice from oxidative stimulation 
and ER stress.

Figure 3. Swimming exercise increases the myocardial levels of cGMP and PKG, and decreases the level of PDE5 in aged mice. (A) PKG levels in the hearts 
of mice from each group. (B) Myocardial cGMP contents in mice. (C) PDE5 levels in the hearts of mice from each group. *P<0.05 vs. young mice; #P<0.05 vs. 
aged mice. Data are presented as the mean ± SEM from three independent experiments. cGMP, cyclic GMP; PKG, protein kinase G; PDE5, cGMP‑specific 
phosphodiesterase type 5; E, exercise.
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The primary mediator of cGMP signaling is PKG, which 
in turn phosphorylates multiple intracellular proteins in the 
cardiovascular system (30). Both cGMP and its downstream 
effector, the PKG signaling pathway, are associated with 
markedly reduced infarct sizes (15) and regulate cardiac func-
tion (13). Previously, aging has been reported to be associated 
with the downregulation of cGMP‑PKG signaling in vascular 
smooth muscle cells (31) and postmenopausal women (32). The 
previous studies provided evidence supporting the relationship 
between aging and the increased risk of cardiovascular disease. 
The levels of cGMP and PKG activity were decreased in aged 
hearts in the present study, indicating that aging impaired 
myocardial cGMP‑PKG signaling. Consistent with the present 
results, previous studies reported a significant downregula-
tion of the cGMP‑PKG axis in diabetic animals (33) and in 
response to myocardial ischemia/reperfusion injury  (14). 
Therefore, decreased cGMP‑PKG signaling may be associ-
ated with aggravated damage induced by a myocardial insult. 

The present study suggested that the reduced levels of cGMP 
and PKG activity in the heart were ameliorated in aged mice 
following swimming exercise. Taken together, the findings 
of the present study indicated that the cGMP‑PKG signaling 
pathway may be involved in the protective effects of swim-
ming exercise against the aging‑induced decline in cardiac 
function.

According to previous in vitro and in vivo studies, cardiac 
cGMP levels are increased following inhibition of the 
cGMP‑degrading enzyme PDE5 (33‑35). PDE5 is expressed 
at low levels in the heart under normal physiological condi-
tions  (36). PDE5 expression is upregulated in myocardial 
samples from patients with different heart diseases (37‑39). 
Theoretically, the blockade of the pathological effects of 
PDE5 should exert cytoprotective effects against different 
cardiovascular diseases. Similarly, PDE5 inhibitors are useful 
treatments that improve cGMP signaling to reduce cardiomyo-
cyte stiffness (34,35). In the present study, PDE5 expression 

Figure 4. Activation of cGMP inhibits ROS production and endoplasmic reticulum stress. (A) Echocardiography of hearts from mice in each group. (B) LVEF 
and (C) LVFS of hearts from mice in each group. (D) ROS production. (E) Levels of GRP78 and CHOP. (F) Levels of PKG and PDE5. Proteins were normalized 
to β‑actin. *P<0.05 vs. young mice; #P<0.05 vs. aged mice; ΔP<0.05 vs. aged mice + E. Data are presented as the mean ± SEM of three independent experi-
ments. LVEF, left ventricle ejection fraction; LVFS, left ventricle fractional shortening; ROS, reactive oxygen species; GRP78, glucose‑regulated protein 78; 
CHOP, C/EBP homologous protein; PKG, protein kinase G; PDE5, cGMP‑specific phosphodiesterase type 5; E, exercise; Sil, sildenafil; TM, tunicamycin.
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was increased in aged hearts. Furthermore, PDE5 expression 
was decreased in aged mice after swimming exercise or silde-
nafil treatment. The results of the present study further support 
the hypothesis that the effects of swimming exercise on aged 
hearts are potentiated via the activation of the cGMP‑PKG 
signaling pathway.

ER stress is increased in response to aging and cardio-
vascular disease  (40). The cGMP‑PKG signaling pathway 
has been reported to contribute to cardioprotective mecha-
nisms (14). Gong et al (41) reported a significant correlation 
between increased PDE5 expression and the activation of ER 
stress in failing hearts. However, few studies have examined 
the effects of the cGMP‑PKG pathway on ER stress in aged 
hearts. In the present study, treatment with the PDE5 inhibitor 
sildenafil or swimming exercise attenuated myocardial injury 
and levels of ER stress‑related proteins. A specific inducer of 
ER stress, TM, was used to determine whether the activity of 
the cGMP signaling pathway was suppressed by ER stress. 
TM abolished the beneficial effects of swimming exercise on 
the aged hearts. Based on the results from the present study, 
age‑induced cardiac dysfunction is associated with enhanced 
oxidative stress and ER stress. By contrast, swimming exer-
cise improved cardiac function by inhibiting the oxidative 
stress and ER stress responses, which were mediated through 
activation of the cGMP‑PKG signaling pathway.

Collectively, the present study suggested that swimming 
exercise improved myocardial function and exerted benefi-
cial effects on aged hearts. The underlying mechanism may 
be explained by a swimming exercise‑mediated increase in 
cGMP‑PKG signaling, causing an increase in the antioxidant 
response and reductions in ER stress. The present study 
provided new insights into the myocardial effects of physical 
activity, which may facilitate the identification of novel 
therapeutic regimens for age‑related cardiovascular diseases.
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