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Abstract. The present study aimed to explore the differences 
in protein and gene expression of Brucella abortus cultured 
under biofilm and planktonic conditions. The proteins 
unique to biofilms and planktonic B. abortus were separated 
by two-dimensional (2-d) electrophoresis and then identi-
fied by matrix‑assisted laser desorption/ionization‑tandem 
time of flight‑mass spectrometry (MALDI‑TOF/TOF‑MS). 
High-throughput sequencing and bioinformatic analyses 
were performed to identify differentially expressed genes 
between B. abortus cultured under biofilm and planktonic 
conditions. The proteins and genes identified by proteomic 
and genomic analyses were further evaluated via western 
blot and reverse transcription-quantitative polymerase 
chain reaction (rT-qPcr) analyses. 2-d electrophoresis 
identified 20 differentially expressed protein spots between 
biofilms and planktonic cells, which corresponded to 18 
individual proteins (12 downregulated and 6 upregulated) 
after MALDI‑TOF/TOF‑MS analysis, including elongation 
factor Tu and enolase. rT-qPcr analysis revealed that all 
of the 18 genes were downregulated in biofilms compared 
with planktonic cells. Western blot analysis identified 9 
downregulated and 3 upregulated proteins. High-throughput 

sequencing and bioinformatic analyses identified 14 func-
tion and pathway-associated genes (e.g., BabS19_i14970). 
rT-qPcr analysis of the 14 genes showed that they were 
upregulated in biofilm compared with in planktonic state. 
in conclusion, these differentially expressed genes may play 
important roles in bacterial defense, colonization, invasion, 
and virulence.

Introduction

Brucella is a group of α-2 Proteobacteria that has a great 
impact on animal and human health worldwide (1). infection 
with Brucella results in brucellosis, one of the most common 
bacterial zoonotic diseases in humans and cattle globally (2). 
an estimated 500,000 cases of brucellosis occur each year 
globally (3). Brucellosis can not only lead to the reproductive 
failure of livestock but also decrease human productivity. as 
a result, Brucella species have been regarded as potential 
agricultural, animal husbandry, civilian and even bioterrorism 
agents (4,5).

During chronic infection, bacteria can organize them-
selves into matrix-enclosed microcolonies or aggregates, 
termed biofilms (6,7). Biofilm formation is a critical survival 
mechanism for bacteria in the environment (8). altered gene 
and protein expression in biofilms is responsible for cell 
virulence, adherence and drug resistance (9,10). additionally, 
biofilm-grown microorganisms have an inherent lack of 
susceptibility to antibiotics (11-13). Brucella melitensis 
(B. melitensis) has been suggested to form biofilms during its 
life cycle (14). Wild-type B. abortus can also develop biofilms 
under nutritionally deficient, microaerobic conditions (15). 
Previous studies have investigated several virulence and drug 
resistance-associated proteins from planktonic Brucella, such 
as lipopolysaccharide (16), B lymphocyte mitogen (17) and 
outer membrane proteins (18). However, numerous different 
types of bacterial infections are presumed to be due to bacteria 
growing in a biofilm state including cystic fibrosis‑related lung 
infections, biomaterial-related infections, chronic wounds, 
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and endocarditis. The uSa national institutes of Health has 
estimated that 80% of all infections are biofilm‑related (19). 
However, little is known concerning the proteins associated 
with biofilm‑mediated infections.

The present study investigated differences in protein 
and gene expression of B. abortus cultured under biofilm 
compared with planktonic conditions. The differential proteins 
unique to biofilms and planktonic B. abortus were identified 
by employing two-dimensional (2-d) electrophoresis and 
matrix‑assisted laser desorption/ionization‑tandem time of 
flight‑mass spectrometry (MALDI‑TOF/TOF‑MS) analyses. 
The differential genes were identified by high-throughput 
sequencing and bioinformatic analysis. Findings of the current 
study may help to understand the underlying molecular 
mechanisms that control biofilm formation in B. abortus.

Materials and methods

Bacterial strains and culture conditions. B. abortus strain 
isolate a3313 was used in this study, which was isolated from 
the abortus of dairy cows in Hohhot district, inner Mongolia, 
china. The a3313 strain was grown in Brucella broth medium 
(BD Biosciences) at 37˚C with 5% CO2.

all the experiments related to the cultivation of Brucella 
and its biofilms, as well as the operation of viable bacteria were 
conducted in a Biosafety level 3 laboratory in the college 
of Veterinary Medicine, Huazhong Agricultural University 
(Wuhan, China). For the experiments of electron microscope 
observation, 2-d electrophoresis, high-throughput sequencing 
and reverse transcription-quantitative polymerase chain reac-
tion (rT-qPcr) analysis, the Brucella and its biofilm were 
effectively inactivated with glutaraldehyde or bacterial lysate 
before being removed from the Biosafety level 3 laboratory.

Biofilm culture and microscopic observation. Brucella broth 
was added to 6-well cell culture plates. a clean coverslip 
sterilized by autoclaving (121˚C, 20 min) was then put in each 
well, and the a3313 bacterial suspension was inoculated on 
the coverslip at 2 ml/well. The culture plate was placed at 37˚C 
with 5% co2, and the culture medium was changed every 48 h 
until a complete biofilm was formed. The coverslips were 
taken out, gently washed three times with phosphate-buffered 
saline (PBS; 30 mM, pH 7.4), and then fixed immediately with 
2.5% glutaraldehyde for 6‑8 h at 4˚C. After being washed 
with PBS, biofilms were stained with 200 µl 1% crystal 
violet (ding Bei Biological Technology co., ltd.) for 20 min 
at room temperature. These procedures were conducted to 
protect biofilms from falling off from the abiotic surfaces. 
The biofilms were observed under a phase-contrast light 
microscope (magnification, x20) (Axiovert 135; Zeiss AG).

For scanning electron microscope observation, biofilms 
were fixed with 2% osmic acid at room temperature until black. 
after washing with 0.1 M PBS for three times, the samples 
underwent sequential dehydration with gradient ethanol solu-
tions (30, 50, 70 and 90%) for 15 min each. Then, samples 
were dehydrated with 100% ethanol twice (15 min each), and 
dried with a critical point dryer. The dry samples were fixed on 
the sample stage with conducting resin, and sprayed gold with 
ion sputtering equipment (15 mA) for 2 min. The biofilms were 
observed under a scanning electron microscope.

2‑D electrophoresis. Biofilms and planktonic bacteria were 
used for 2‑D electrophoresis. For biofilm culture, the A3313 
strain was grown in Brucella broth medium in Petri dishes at 
37˚C and 5% CO2. The culture medium was changed every 
48 h for 8 days. after removing the supernatant, the plates were 
rinsed twice with PBS. Biofilms were detached by scraping. 
Planktonic B. abortus was cultured in the same condition. The 
culture medium was collected and centrifugally washed twice 
with PBS. The planktonic B. abortus was resuspended with 
PBS.

Protein was precipitated as previously described (10,20). 
The biofilm and planktonic bacteria were harvested by 
centrifugation (6,000 x g) at 4˚C for 10 min. The bacteria 
were washed four times with a solution containing 3 mM 
Kcl, 68 mM nacl, 9 mM naH2Po4 and 115 mM KH2Po4, 
and then resuspended in lysis buffer (7 M urea, 2 M thiourea, 
4% cHaPS, 10 mM dTT and 2% Pharmalyte pH 3-10) with 
protease inhibitor. after ultrasonic decomposition on ice at 
40% maximum power for 90 cycles (5 sec on, 10 sec off; the 
ultrasound conditions were the same for biofilm disruption 
and planktonic cells), unbroken cells and the cell debris were 
incubated at 25˚C for 30 min, and removed by centrifugation 
(10,000 x g) for 30 min at 25˚C. Proteins in the supernatant 
were precipitated in 10% trichloroacetic acid (Tca) on ice 
for 30 min. Precipitated proteins were washed with chilled 
acetone and then centrifuged at 10,000 x g for 10 min at 4˚C. 
The air-dried proteins were dissolved in 400 µl sample prepa-
ration solution [2‑D lysate: 9.5 M urea, 4% CHAPS, 2% (v/v) 
ampholytes, and 60 mM dTT; 10 µl 50 XProtein inhibitor 
cocktail Set i (Merck KGaa) was added into 500 µl 2-d 
lysate] at 25˚C for 30 min and centrifuged at 10,000 x g for 
20 min at 25˚C. The protein concentration was determined via 
a Bradford protein assay.

Proteins (200 µg) were separated by 2-d electrophoresis. 
Isoelectric focusing for the first dimension was performed in 
precast immobiline dryStrips (Ge Healthcare life Sciences) 
with a nonlinear gradient of pH 3 to 10 in an ethan iPGphor 
Isoelectric Focusing System (GE Healthcare Life Sciences) 
according to the manufacturer's instructions. The electropho-
resis conditions were 30 V for 12 h, 500 V for 1 h, 1,000 V for 
1 h, 8,000 V for 8 h and 500 V for 4 h. The second dimension 
(SdS-PaGe) was conducted vertically in a Hofer Se 600 
(Ge Healthcare life Sciences) using 12.5% polyacrylamide 
gels. The resolved proteins were then stained with silver 
for 30 min at room temperature and scanned with uMax 
Powerlook 2110Xl (Ge Healthcare life Sciences). all experi-
ments were performed in triplicate. The gels were analyzed 
with the image Master Platinum version 5.0 software (Ge 
Healthcare Life Sciences). The normalized protein amount 
for each protein spot was calculated as the ratio of that 
spot volume to the total spot volume on the gel. Significant 
differences between two groups were determined using the 
Student's t‑test, and a fold change ≥1.5 was considered the 
threshold value.

MS analysis. The differentially expressed protein spots 
were excised from the 2-d gels and then subjected to 
MALDI‑TOF/TOF‑MS analysis (Shanghai Applied Protein 
Technology co. ltd.). Before MS analysis, the protein spots 
were digested in‑gel by 0.1 mg/ml trypsin for 2 h at 37˚C 
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and desalinated by Ziptip (eMd Millipore). The digested 
samples were then freeze‑dried. After being re‑dissolved, 
1 µl samples were spotted on the target plate (immobiline 
dryStrips; 13 cm, pH 3-10 nl) with air drying, and then 0.5 µl 
supersaturated α-cyano-4-hydroxycinnamic acid matrixes 
(Sigma-aldrich; Merck KGaa) prepared in 50% acetonitrile 
with 0.1% trifluoroacetic acid were spotted and naturally 
dried. All MALDI‑MS and MS/MS data were acquired in the 
positive reflectron ion mode on a 4800 Plus MALDI TOF/TOF 
Analyzer (AB Sciex LLC). Samples were irradiated by a 
355-nm nd:YaG laser (355 nm), and the acceleration voltage 
was 2 kV. The scanned area for MS was 800-4,000 da, and the 
parent ion with signal:noise ratio >50 was selected for MS/MS 
analysis. Data from MALDI‑MS and MS/MS were subjected 
to a database Search from ncBi or uniprot (ncBi prefer-
entially) using Mascot version 2.2 software (Matrix Science), 
and a Mascot score was calculated. The MS/MS spectra were 
subjected to similarity searches using the BlaSTX algorithm. 
The parameter settings were trypsin digestion, fixed modifica-
tion of carbamidomethyl, dynamical modification of oxidation 
(M), unrestricted protein mass, peptide mass tolerance for 
monoisotopic data of ±100 ppm, fragment mass tolerance of 
±0.4 da, peptide charge state of 1+, and one maximum missed 
cleavage.

High‑throughput sequencing. rna sequencing of the 
biofilms and planktonic bacteria were performed at Genergy 
Biotechnology co., ltd. Total rna was isolated and examined 
by nanodrop spectrophotometer (nanodrop Technologies; 
Thermo Fisher Scientific, Inc.) and 1% agarose gel electro-
phoresis (Tanon Science and Technology co., ltd.). an rna 
library was then constructed and sequenced on the illumina 
HiSeq 2500 platform (illumina, inc.). The data are available 
at national center for Biotechnology information under 
the accession numbers SrX1604658 (biofilm conditions; 
http://www.ncbi.nlm.nih.gov/sra/?term=SRX1604658) and 
SRX1604659 (planktonic conditions; http://www.ncbi.nlm.
nih.gov/sra/SRX1604659/).

Bioinformatics analyses. The raw reads were evaluated using 
RSeQC 2.3.2 (http://rseqc.sourceforge.net/) (21), and sequence 
alignment was conducted with TopHat 2.0.10 (http://ccb.jhu.
edu/software/tophat/index.shtml) (22). The remaining reads 
were used for the following analyses.

The mrna expression levels were detected based on 
Cufflinks 2.2.1 (http://cole‑trapnell‑lab.github.io/cufflinks/) 
software (23). Differentially expressed mRNAs were defined 
based on strict criteria [q value ≤0.05, and log2(fold change) 
≥1] using the Cuffdiff program (23). Functional annota-
tion of differentially expressed genes was carried out using 
various bioinformatics procedures, including Gene ontology 
(Go) (24) and Kyoto encyclopedia of Genes and Genomes 
(KeGG, Kolmogorov-Smirnov value <0.05) (25).

RT‑qPCR. The mrna levels of differential proteins identi-
fied through 2-d electrophoresis and function-associated 
genes identified by high‑throughput sequencing and bioin-
formatics analyses were detected via rT-qPcr according a 
previously described method (26). in brief, total rna was 
isolated from biofilms and planktonic cells (1x106 cells) of 

the a3313 strain using a Takara MiniBeST universal rna 
extraction kit (Takara Biotechnology co., ltd.). The rna 
quality and concentration were determined by a nanodrop 
2000c spectrophotometer (Thermo Fisher Scientific, Inc.). 
The rna was reverse-transcribed into cdna using a 
PrimeScript rT reagent kit (Takara Biotechnology co., 
Ltd.; 42˚C for 15 min). The 16S rRNA housekeeping gene 
was amplified as the internal control. The specific primers 
are listed in Table Si. The SYBr Green Pcr method was 
performed using an SYBr Premix ex Taq kit (Takara 
Biotechnology co., ltd.). The qPcr reaction was carried out 
under the following conditions: 95˚C for 30 sec, 40 cycles of 
95˚C for 3 sec and 60˚C for 30 sec. Relative mRNA expres-
sion ratios of selected genes were calculated with the 2-ΔΔcq 
method (27). The experiment was performed with three 
replications.

Western blot analysis. The levels of differentially expressed 
proteins identified through 2‑D electrophoresis, described 
above, were measured by western blotting. Briefly, cells 
were lysed in riPa buffer (Sigma-aldrich; brand of Merck 
KGaa), and the protein concentration was measured 
using BCA Protein Assay Kit (Thermo Fisher Scientific, 
inc.). Protein samples (20 µg) were separated using 12% 
SDS‑PAGE and transferred onto a polyvinylidene fluoride 
membrane (Ge Healthcare), and the membrane was blocked 
with 100 mM Tris, 150 mM nacl, 0.05% Tween-20 (TBST), 
containing 5% dry milk powder for 2 h at room temperature. 
Then, the blocked membrane was incubated with sera from 
primary antibodies [hypothetical protein BabS19_i16470 
(1:1,000; cat. no. orb309412; Biorbyt ltd.); chaperone 
protein dnaJ (1:1,000; cat. no. Pa3-018; invitrogen; Thermo 
Fisher Scientific, Inc.); elongation factor Tu (1:1,000; 
cat. no. ab210089; Abcam); Chaperonin Cpn60/TCP‑1 (1:1,000; 
cat. no. 3094r-100; BioVision, inc.); polyprenyl synthetase 
(1:1,000; cat. no. ab80647; abcam); periplasmic binding 
protein (1:1,000; cat. no. M30934-1; Wuhan Boster Biological 
Technology, ltd.); enolase (1:1,000; cat. no. sc-271384; 
Santa Cruz Biotechnology, Inc.); acetyl‑CoA carboxylase, 
a subunit (1:1,000; cat. no. MaB6898; r&d Systems, inc.); 
tryptophanyl-trna synthetase (1:1,000; cat. no. ab31536; 
abcam); aspartate-semialdehyde dehydrogenase (1:1,000; 
cat. no. eM1708-10a; Jingke Huaxue; exosporium protein B 
(1:1,000; cat. no. ab92932; abcam); enoyl-(acyl carrier protein) 
reductase (1:1,000; cat. no. abx109426; abbexa ltd.); omp16 
(1:1,000; cat. no. ab93127; abcam)] for 2 h at room tempera-
ture and then incubated with horseradish peroxidase-labeled 
secondary antibodies (1:5,000; cat. no. 29139; invitrogen; 
Thermo Fisher Scientific, Inc.) in blocking buffer for 1 h 
at room temperature. after washing with 0.05% Tween-20 
(TBST), the membranes were incubated with daB substrate 
(Tiangen Biotech co., ltd.) for 10 min at room temperature. 
outer membrane protein 16 was used as a loading control. 
The western blot bands were visualized using the Millipore 
ecl Western Blotting detection System (eMd Millipore).

Statistical analysis. all experiments were repeated three 
times except for high-throughput sequencing, and the results 
were presented as the mean ± standard deviation. Statistical 
analyses were performed using GraphPad 6.0 (GraphPad 
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Software, inc.). P-values were calculated using Student's t-test. 
P<0.05 was considered to indicate a statistically significant 
difference. 

Results

Biofilm observation. Biofilm formation was observed under a 
phase-contrast light microscope. a large number of bacteria 
adhered to the coverslips and formed a community (Fig. 1). 
The structure of biofilms on coverslips was observed under a 
scanning electron microscope. The biofilms formed flake or 
microcolony clusters on the coverslips. colonies were wrapped 
together by the mucus they secreted, forming an uneven, dense 
membrane structure (Fig. 2).

Comparative proteomics. a total of 1,930 protein spots 
were detected in all gels. The representative 2-d electro-
phoresis images of 20 differentially expressed protein spots 
(7 upregulated and 13 downregulated protein spots) between 
biofilms and planktonic cells are presented in Fig. 3. Most 
proteins were distributed in the range of isoelectric point 
4‑7. MALDI MS and MS/MS analysis identified 20 protein 
spots corresponding to 18 individual proteins, including 
6 upregulated (including catalase, extracellular solute-binding 
protein and ubiquinol-cytochrome c reductase iron-sulfur 
subunit) and 12 downregulated ones (including elongation 
factor Tu, enolase, isocitrate dehydrogenase and chaperonin 
Cpn60/TCP‑1; Table I).

RT‑qPCR and western blot analysis. The mrna and 
protein expression levels of the 18 identified proteins in 2‑D 
electrophoresis were detected by rT-qPcr and western 
blot analyses, respectively. rT-qPcr analysis revealed 
that all of the 18 genes were downregulated in biofilms 
compared with planktonic cells, including elongation factor 
Tu (fold change = ‑100.0), enolase (fold change = ‑8.6), isoci-
trate dehydrogenase (fold change = ‑9.9), and Chaperonin 
Cpn60/TCP‑1 (fold change = ‑12.5; Fig. 4A). The consistency 
rate with the 2-d electrophoresis results at the transcriptional 
level was 66.67% (12/18). Thus, the proteins of the 12 genes 
that had consistent expression trends in 2-d electrophoresis 
and rT-qPcr were further detected by western blot analysis. 
The results showed that 9 proteins were significantly downreg-
ulated and 3 were upregulated in biofilms (Fig. 5). Therefore, 
the 9 downregulated proteins were considered differentially 
expressed proteins between biofilms and planktonic cells 
of the a3313 strain. The fold changes of the 18 mrnas are 
shown in Table ii. 

High‑throughput sequencing and bioinformatics analyses. 
a total of 22,039,653 and 37,506,048 reads were generated 
from biofilms and planktonic cells, respectively. after 
pre-processing, 16,624,091 and 34,222,222 aligned reads were 
obtained from biofilms and planktonic cells respectively.

Based on the thresholds of q value ≤0.05 and log2(fold 
change) ≥1, 157 differentially expressed mRNAs were identi-
fied. These mRNA species were grouped in three categories 
defined by Go, including biological processes (including 
protein glycosylation, nitrogen compound metabolic process, 
and cell wall organization), cellular compartment (such as 

integral component of membrane, plasma membrane, and 
cytoplasm), and molecular function (including dna binding, 
ATP binding, and oxidoreductase activity; Fig. 6A). In addi-
tion, these differentially expressed mRNAs were significantly 
involved in six pathways (annotated by KeGG), including 
rna degradation, sulfur metabolism, butanoate metabolism, 
aminoacyl‑tRNA biosynthesis, aminobenzoate degradation, 
and selenocompound metabolism (Fig. 6B).

Confirmation of function and pathway‑associated genes. 
rT-qPcr was performed to confirm 14 function and 
pathway‑associated genes identified by bioinformatics anal-
yses, including BAbS19_I10210 [log2(fold change) = 2.67], 
BAbS19_I13070 [log2(fold change) = 2.51], BAbS19_I02060 
[log2(fold change) = 1.92], BAbS19_I03220 [log2(fold 
change) = 2.79], and the results demonstrated that all of the 
14 genes were upregulated in biofilms, in accordance with the 
sequencing results (Fig. 4B). For instance, the fold changes for 
the genes above (BabS19_i10210, BabS19_i13070, BabS19_
i02060, and BabS19_i03220) were 13.9, 1.4, 2.3 and 9.9, 
respectively (Table iii). These genes were considered differen-
tially expressed genes between biofilms and planktonic cells 
of a3313 strain.

Discussion

Bacteria can produce an extracellular matrix that helps them 
adhere to inert or biological surfaces. Bacteria that colonize 
different surfaces and invade susceptible hosts to cause infec-
tions predominantly grow in biofilms (28). Biofilm formation 
is a developmental process characterized by altered expression 
of structural and regulatory genes (28). Most bacteria grow 
in biofilms, and only a small portion grow in planktonic 
mode (29). There have been previous studies regarding 
the differences between biofilms and planktonic cells for 
bacteria, including Lactobacillus plantarum (30), swine 
Brodetella bronchiseptica (31), Porphyromonas gingivalis (32) 
and Clostridium perfringens (33). nevertheless, the majority of 
the studies focus only one aspect, either proteomic analysis or 
transcriptomic analysis. in the present study, the differences in 
both protein and gene expression levels in B. abortus cultured 

Figure 1. Observation of Brucella abortus strain isolate A3313 biofilm by crystal 
violet staining under a phase‑contrast light microscopy. Magnification, x200.
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under either biofilm or planktonic conditions were analyzed. A 
total of 9 downregulated proteins under conditions of biofilm 
growth were identified by proteomics, and 14 upregulated genes 
were identified in biofilm via high‑throughput sequencing. 

Bacteria in biofilms exhibit persistence in spite of 
sustained host defense (8); however, little is known regarding 
the host immune response to biofilm infections. The protein 
expression in biofilms grown in vivo is difficult to study due 
to the difficulty of extracting bacterial proteins from in vivo 
biofilms (10). The present study separated proteins via 2‑D 
electrophoresis and analyzed with MALDI‑TOF/TOF‑MS 
to identify the differentially expressed protein spots, which 
included elongation factor Tu, enolase, chaperone protein dnaJ 
and periplasmic binding protein.

among the differentially expressed protein spots, elon-
gation factor Tu had a higher fold change. it was also found 
to have the greatest fold change in mrna expression, 
which suggested the potential role of elongation factor Tu in 
B. abortus. elongation factor Tu is one of the most abundant 

proteins in bacterial cells, involved in critical steps in protein 
biosynthesis and forming structural filaments in vitro (34). 
it has been observed on the surface of several pathogenic 
bacteria, including Burkholderia pseudomallei and the 
closely-related Pseudomonas aeruginosa (35,36). it has also 
been demonstrated that elongation factor Tu may play a role 
as a bacterial virulence factor. Barel et al (37) reported that 
elongation factor Tu can facilitate invasion of host cells by 
Francisella tularensis via interaction with nucleolin. notably, 
it also acts as a biofilm component in Serratia aureus (38). 
Thus, it was hypothesized that elongation factor Tu may be 
associated with virulence in B. abortus biofilm.

Enolase is an enzyme involved in the glycolytic pathway, 
catalyzing the reversible conversion of 2‑phosphoglycerate to 
phosphoenolpyruvate (39). enolase was previously regarded 
as a soluble glycolytic enzyme, present in cytosol exclu-
sively (39). enolase has been found to be a multifaceted 
protein with sub‑cellular localizations and diverse biological 
functions (40,41). it acts as a plasminogen receptor on the cell 

Figure 3. 2‑D electrophoresis patterns of Brucella abortus a3313 from whole cell lysate proteins. B. abortus was cultured in biofilm or planktonic conditions, 
and the proteins were separated via 2‑D electrophoresis. The proteins were separated in the first dimension by IEF and in the second dimension by SDS‑PAGE. 
Molecular weight markers are shown in the left lane (kDa). (A) Protein pattern in the biofilm culture. (B) Protein pattern in the planktonic culture. 2‑D, 
two‑dimensional; IEF, isoelectric focusing; pI, isoelectric point.

Figure 2. Scanning electron microscope images of Brucella abortus strain isolate A3313 biofilm. Magnifications, (A) x1,500 and (B) x4,000.
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Figure 4. Differential expression of mRNAs between Brucella abortus cultured under planktonic or biofilm conditions. The relative expression levels of (A) 18 
genes encoding proteins identified by 2‑D electrophoresis and (B) 14 genes identified via high‑throughput sequencing. 2‑D, two‑dimensional. *P<0.05 vs. control 
(planktonic cells). e11-22, hypothetical protein BabS19_i16470; e15-1, polyprenyl synthetase; e21, exsB protein; J12, chaperonin cpn60TcP-1; e13-1, elon-
gation factor Tu; e20-2, aspartate-semialdehyde dehydrogenase; c24-1, enoyl-(acyl carrier protein) reductase; e12-1, dnaJ, chaperone protein dnaJ; e12-3, 
isocitrate dehydrogenase; E17, Enolase; E18, Acetyl‑CoA carboxylase, alpha subunit; C24‑2, putative sulfite oxidase subunit YedY; E11‑1, Bacterial protein 
export chaperone SecB; E13‑2, Antifreeze protein, type I; E15‑2, Lactatemalate dehydrogenase; E15‑5, Phosphoribosylformylglycinamidinecyclo‑ligase; 
e16-3, Periplasmic binding protein; e19-2, tryptophanyl-trnasynthetase.

Figure 5. Analysis of differential protein expression in Brucella abortus cultured under planktonic or biofilm conditions. Western blot analysis of 12 proteins 
showed that 9 proteins were downregulated and 3 were upregulated between biofilms and planktonic cells. Omp16, outer membrane protein 16. *P<0.05 vs. 
control (planktonic cells).
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Table II. RT‑qPCR identification of the mRNA expression levels of 18 proteins identified in 2‑D electrophoresis.

Protein spot Protein  FCa FCb 

e11 hypothetical protein BabS19_i16470 -10.0 -6.84
e21 exsB protein -20.0 -1.82
c24 enoyl-(acyl carrier protein) reductase -12.5 -1.76
J12 chaperonin cpn60TcP-1 -12.5 -3.16
e20 aspartate-semialdehyde dehydrogenase -9.1 -1.88
e13 elongation factor Tu -100 -4.32
e15 polyprenyl synthetase -14.3 -2.39
e12 dnaJ, chaperone protein dnaJ -3.5 -5.55
e17 enolase -8.6 -1.95
e18 acetyl-coa carboxylase, a subunit -7.0 -1.95
e16 Periplasmic binding protein -1.1 -2.19
e19 tryptophanyl-trnasynthetase -5.3 -1.90
e4 catalase -33.3 2.41
e6 extracellular solute-binding protein -22.6 1.78
e7 ubiquinol-cytochrome c reductase iron-sulfur subunit -25.0 1.70
e8 chaperonin cpn10 -14.3 1.68
e9 Tetracycline resistance protein TetB -12.5 1.67
e10 ribosomal protein l9 -33.3 1.51

aexpression level was determined by rT-qPcr; bexpression level was determined by 2-d electrophoresis. rT-qPcr, reverse transcription-quan-
titative polymerase chain reaction; 2‑D, two‑dimensional; FC, fold change.

Figure 6. Functional and pathway analysis of differentially expressed genes in Brucella abortus biofilm. The significant (A) GO terms (BP, CC and MF) and 
(B) pathways [significant (red); not significant (blue)] enriched by differentially expressed genes. The horizontal axis represents significant GO terms and 
pathways, and the vertical axis represents the percentage of genes. GO, Gene Ontology; BP, biological process; MF, molecular function; CC, cellular compart-
ment; KS, Kolmogorov-Smirnov.
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surface of various microorganisms and pathogens, and 
serves an important role in bacterial colonization, persis-
tence and host tissue invasion (42,43). it has been reported 
that in Candida albicans, enolase expresses on the surface 
of biofilm‑forming cells and contributes to the adhesion of 
Candida albicans to different substrates with potential impli-
cations for biofilm adhesion and formation (44). Importantly, 
enolase has been cloned in B. abortus a19 and exhibits critical 
roles in the colonization and invasion of this pathogen (45). 
Specially, Han et al (45) also find that enolase protein can bind 
to B. abortus-positive sera, indicating that enolase may serve 
as a useful diagnostic marker for brucellosis.

dnaJ chaperone is a prototypical member of the Hsp40 
family, which is important for numerous cellular functions, 
such as membrane lipid composition and cell division (46,47). 
Grudniak et al (48) demonstrated that this chaperone was 
involved in the biofilm formation of Escherichia coli. Periplasmic 
binding proteins have been introduced into bacteria to func-
tion in synthetic signal transduction pathways that respond to 
extracellular ligands and act as biologically active enzymes (49). 
as for the other differentially expressed proteins, their roles 
in biofilm formation have not been reported to the best of the 
authors' knowledge. Given their differential expression between 
biofilm and planktonic cells, it can be hypothesized that they 
may be associated with the biofilm characteristics of B. abortus. 

From high‑throughput sequencing, 14 function‑ and 
pathway‑associated genes were identified. For instance, 
BabS19_i19580 was enriched in functions related to phos-
phoenolpyruvate carboxykinase activity [Go:0004612] 
and gluconeogenesis [Go:0006094]. in most organisms, 
phosphoenolpyruvate carboxykinase can catalyze the 
formation of phosphoenolpyruvate via the phosphorylation 
and decarboxylation of oxaloacetate, which is the first step 
in the gluconeogenic pathway (50). a previous study by 
li et al (51) suggested that gluconeogenesis serves a key role 
in the development of Saccharomyces cerevisiae biofilms. 
It was found that during the attachment period of biofilms, 
the expression of gluconeogenesis pathway-associated genes 
was upregulated, which was consistent with the findings of 
the present study. Viadas et al (52) found that the expres-
sion level of phosphoenolpyruvate carboxykinase gene was 
increased in B. abortus with bvrr mutant compared with 
wild type cells. notably, phosphoenolpyruvate carboxykinase 
has been reported to be an acid-induced virulence factor in 
Agrobacterium tumefaciens (53). Therefore, it was proposed 
that phosphoenolpyruvate carboxykinase serves an important 
role in the virulence of B. abortus through the functions 
described above.

Binding protein-dependent transport systems have been 
found to be closely associated with structure, organization, 
mechanism and evolutionary origin (54). numerous binding 
protein‑dependent transport systems have been identified in 
Gram-negative bacteria (54). The major role of the binding 
protein systems is to recapture substrates that leak from the 
cell and retain them near the cell (55). in the present study, 
BabS19_i14970 (binding-protein-dependent transport systems 
inner membrane component) was differentially expressed 
between biofilm and planktonic bacteria and enriched in an 
integral component of membrane (Go:0016021), indicating an 
important role in biofilm function.

despite the identification of differentially expressed 
proteins and genes between biofilm and planktonic cells, no 
common protein or gene was identified, which may be attrib-
uted to several reasons. First, the detectability and abundance 
of proteomic and genomic analyses were different. Second, 
only 9 differentially expressed proteins were validated in 
proteomics, which may affect the consistency between 
proteomic and genomic analyses. Third, the thresholds used 
in proteomic and genomic analyses were different. of note, 
there were certain common genes between proteomic and 
genomic analyses when significant differences were disre-
garded. Finally, there were differences in expression between 
transcriptional and protein levels due to post-transcriptional 
and posttranslational modifications. Furthermore, there is 
a limitation in the present study in that only one isolate was 
used for the analysis. Further isolates of B. abortus will be 
applied in future studies to further investigate the differen-
tially expressed proteins and genes between the two culture 
conditions.

in conclusion, differential expression analysis at the 
protein and genomic levels suggested that the proteins and 
genes differentially expressed in B. abortus biofilms may 
serve important roles in bacterial defense, colonization, inva-
sion, and virulence.
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