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Abstract. Ataxia‑telangiectasia (A‑T) is an autosomal reces-
sive chromosome breakage disorder caused by mutations in 
the ATM serine/threonine kinase (ATM) gene. Typically, 
it presents in early childhood with progressive cerebellar 
dysfunction, accompanied by immunodeficiency and oculo-
cutaneous telangiectasia. In the present study, the clinical and 
genetic findings of a Chinese family affected with A‑T in two 
live siblings, the proband (II‑2) and his elder brother (II‑1), as 
well as a fetus (II‑3) were reported. General health, clinical 
neurological, electrophysiological (motor and sensory nerve 
conduction) and magnetic resonance imaging evaluations 
revealed that patients  II‑1 and II‑2 had similar symptoms 
of ataxia, dysarthria, conjunctival hyperemia and elevated 
serum α‑fetoprotein, whereas patient  II‑1 had earlier A‑T 
onset at 2 years old and more serious problems with move-
ment and intelligence. Targeted sequencing followed by 
Sanger sequencing revealed that these two patients carried 
the compound heterozygotes of a novel nonsense mutation 

c.5170G>T (p.Glu1724Ter) and a known nonsense mutation 
c.748C>T (p.Arg250Ter) in the ATM gene. Each mutation 
was inherited from an asymptomatic parent, which there-
fore confirmed the diagnosis of A‑T. Given this, proband's 
mother performed prenatal diagnosis in her third pregnancy. 
Unfortunately, the fetus had the same causal mutations as its 
siblings and the pregnancy was terminated. The findings of 
the present study expanded the mutation spectrum of the ATM 
gene and may help in understanding the genetic basis of A‑T, 
in order to guide genetic counseling and prenatal diagnosis.

Introduction

Ataxia‑telangiectasia (A‑T; OMIM no. 208900) is a rare 
neurodegenerative disease inherited in an autosomal reces-
sive manner with great phenotype heterogeneity (1,2). It is 
characterized by progressive cerebellar dysfunction, oculo-
cutaneous telangiectasias, immunodeficiency and cancer 
predisposition (1). The estimated incidence in live births is 
1 in 40,000 to 100,000 worldwide (2,3). The affected infant 
typically appears normal in the first 2‑3 years, then staggering 
(ataxia) occurs. The majority of patients are wheelchair bound 
by 10 years old (4). The duration of disorder is associated with 
the severity of cerebellar atrophy, but not all the patients with 
severe cerebellar atrophy are unable to walk (5). The mildest 
atrophy has been observed in young patients with an average 
age of 5 years (5). The clinical manifestations of ataxia and 
oculocutaneous telangiectasia, combined with a series of 
laboratory tests, are helpful for the diagnosis of A‑T (6,7). In 
most cases, A‑T patients have elevated α‑fetoprotein and carci-
noembryonic antigen expression, as well as abnormal levels 
of serum‑immunoglobulin. Although this disease cannot be 
cured at present, early diagnosis is important for symptom-
atic treatment, supportive care, genetic counseling and the 
avoidance of unnecessary and costly diagnostic tests.

It is well known that mutations in the ATM gene that result 
in complete inactivation or elimination of the ATM protein 
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will lead to A‑T (8,9). ATM protein has 3,050 amino acids and 
is a member of the phosphoinositide 3‑kinase‑related protein 
kinase super family. It serves important roles in regulating cell 
cycle, DNA alteration and restoration and cell death via phos-
phorylation of its substrates (10‑12). As a redox thiol‑sensitive 
protein kinase, ATM functions by activating multiple redox 
or phosphorylation sensitive mechanisms. During postnatal 
development, ATM is responsible for maintaining genomic, 
telomeric and chromosomal integrity under the conditions of 
genomic or redox stress (13‑15). At present, >900 phosphory-
lation sites encompassing >700 proteins have been uncovered 
to be the targets of ATM, and the majority of these targets are 
associated with the DNA damage regulation (16).

The present study described a Chinese family which had 
two affected siblings with A‑T and urgently required prenatal 
diagnosis of A-T on the third sibling. The clinical features of 
the two live patients were described and compared. Targeted 
sequencing was applied on the proband (the younger live 
sibling) for aiding A‑T diagnosis, which revealed one novel, 
likely pathogenic, mutation c.5170G>T, as well as one known 
pathogenic mutation c.748C>T. Further validations were 
conducted on the remaining family members. The present 
study suggested that genetic testing is of great importance for 
aiding clinical and prenatal diagnoses.

Materials and methods

Patients. The present study was approved by the Ethics 
Committee of Wuhan Children's Hospital (Wuhan, China). 
Informed written consent was obtained from the parents of 
the studied family. The proband (II‑2; age, 8) and his elder 
brother (II‑1; age, 13) from a family with Han ethnicity in 
southern China were introduced to our clinic center due to 
signs of development retrogression. Based on clinical diag-
nostic criteria, they were initially diagnosed as A‑T in our 
hospital. When the mother was pregnant again, she visited the 
clinic center for prenatal diagnosis.

Physical examination. Routine examination of general health 
as well as neurological evaluations were performed on two 
patients. Blood lymphocyte subsets (TBNK) was analyzed by 
flow cytometry (BD FACSCanto™ II system). α‑fetoprotein 
was evaluated by electrochemiluminescence with the 
commercial kit (Roche Diagnostics GmbH, Mannheim, 
Germany). Serum IgG, IgA, IgM, C3, and C4 were determined 
by rate nephelometry. Sensory function was assessed with the 
measure of vibrotactile perception. Motor coordination was 
evaluated by finger‑to‑nose test and rapid alternating move-
ment test. Reflex tests were conducted on knee, ankle and 
other joints. Muscular weakness was evaluated with common 
grading criteria (17).

Electrophysiological assessments. The motor and sensory 
nerve conduction assessments were performed by standard 
methods on the Natus Dantec™ Keypoint® G4 platform. The 
patients laid in a quiet, shielded room with room temperature of 
20‑22˚C and limb temperature of 32‑34˚C. Surface electrodes 
were used for stimulation and recording. Motor conduction 
velocity (MCV), distal motor latency (DML) and compound 
muscle action potential (CMAP) were measured by stimulating 

the nerve segments of the ankle to the fibulae capitulum for the 
peroneal nerve, ankle to popliteal fossa for the tibial nerve, 
wrist to elbow for the median nerve, and wrist to elbow for the 
ulnar nerve, and recording from the extensor digitorum brevis, 
abductor hallucis, abductor pollicis brevis, and abductor digiti 
minim respectively. Sensory nerve conduction velocity (SCV), 
amplitude (Amp) and sensory nerve action potential (SNAP) 
were investigated through stimulating posterior leg (the place 
with 10 cm apart from the recording electrode) for the sural 
nerve, the median nerve and the ulnar nerve of the wrist, and 
then antidromic recording at lower part of ankle for the sural 
nerve, second digit for the median nerve and fifth digit for the 
ulnar nerve. Normal values of electromyography were defined 
as the normal values used in the Johns Hopkins Hospital in 
the United States adjusted for the age under the guidance from 
Cornblath (18), i.e. parameters of nerve conduction velocity 
are similar between adult and children older than 3 years old.

Standard intensity and duration of stimulation were 
applied firstly. For the motor nerve conduction stimulation, 
the intensity was 20‑40 mA and the duration was 0.1 ms. If 
three consecutive stimulations leaded to stable waves with no 
more than 10% amplitude fluctuation, then the middle value 
of CMAP was recorded and used for calculating MCV. For 
the sensory nerve conduction stimulation, the intensity was 
20‑30 mA and the duration was 0.1 ms. The SNAP was gener-
ated by the equipment with the method of successive averages 
and recorded when there was no more than 10% amplitude 
fluctuation in the wave with stable shape. Then SNAP as well 
as the distance between stimulation and recording electrodes 
were used for calculating SCV.

Providing examinations failed with the aforementioned 
parameters, higher intensities and longer durations of stimu-
lation were adopted, that is, intensities of 60‑80 mA and a 
duration of 0.5 ms for the motor nerve conduction stimula-
tion, and intensities of 20‑40 mA and a duration of 0.5 ms for 
the sensory nerve conduction stimulation. If the SNAP wave 
fluctuated with >10% amplitude and unstable shape when the 
intensity increased to 40 mA and duration extended to 1.0 ms, 
then this examination was recorded as ‘‑’.

Magnetic resonance imaging (MRI) material. MRI was 
performed with a GE Signa Excite  1.5T HD Echospeed 
platform according to the manufacture's manual. Analyzed 
sequences included T1WI FSE [fast spin echo; repetition 
time (TR) = 500‑600 ms, echo time (TE) = 8‑12 ms), T2WI 
FSE (TR = 3,000‑4,000 ms, TE = 90‑110 ms), T2 FLAIR 
(fluid‑attenuated inversion recovery; TR = 8,000‑9,000 ms, 
TE = 100‑120 ms)] acquired in the axial, sagittal and coronal 
planes respectively. The parameters used in the DWI (diffusion 
weighted imaging) were as follows: TR = 5000 ms, TE = 82 ms, 
slice thickness = 6  mm, slice gap = 1  mm, field of view 
(FOV) = 24x24‑36x36 cm, matrix = 256x256, and number of 
excitations = 2‑4. The scanning results were confirmed by a 
board‑certified neuroradiologist.

Genetic analysis. Targeted sequencing of genes associated 
with hereditary ataxias, including KCNA1, CACNA1A, 
CACNB4, SLC1A3, SACS, ABCB7, ATM, APTX and TTPA, was 
conducted on the proband (II‑2), as described previously (19). 
Sanger sequencing of the identified pathogenic mutations was 
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conducted on the parents, brother and fetus  (II‑3). Sanger 
sequencing for the fetus was performed at the Wuhan Children's 
Hospital. Remaining genetic testing and validation procedures 
were carried out in BGI Genomics (Shenzhen, China).

Variant interpretation adhered to the Standards and 
Guidelines for the interpretation of sequence variants: A 
Joint Consensus Recommendation of the American College 
of Medical Genetics And Genomics (ACMG) and the 
Association for Molecular Pathology (AMP), 2015  (20). 
According to dbSNP database (www.ncbi.nlm.nih.gov/SNP/), 
HapMap database (ftp.ncbi.nlm.nih.gov/hapmap/), HGMD 
(www.hgmd.cf.ac.uk/), 1000  genomes project database 
(www.1000genomes.org/), Exome Sequencing Project 6500 
(evs.gs.washington.edu/EVS/), the Exome Aggregation 
Consortium (exac.broadinstitute.org/), local SNP databases 
of 100 normal Chinese (in‑house) and available literature, 
the frequency and novelty of the variants were consequently 
determined (21). PolyPhen‑2  (22) and SIFT programs (23) 
were used to evaluate the potential deleterious effect.

Results

The two live patients were from a Han family with unaffected 
parents. The 8‑year‑old proband (patient II‑2) was born at full 
term without suffocation. At 1 year of age, he was observed 
to have normal development and intelligence, but weak limbs 
and poor memory. Typical symptoms of ataxia were noticed at 
5 years old when he presented with slurred speech and evident 
regression of movement coordination, including unstable 
walking, trembling hands and clumsy action, as well as positive 
results in the finger‑to‑nose and rapid alternating movement 
tests. Conjunctival hyperemia was found in both eyes and 
hair was dry and dull. Proprioceptive sensibility was normal, 
but vibration sense was absent. The knee reflex was normal; 
however, the ankle reflex was not elicited. Muscle tensions of 
four limbs were normal, and muscle strength was graded as 
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Figure 1. T2‑weighted magnetic resonance imaging of the proband. Arrow 
indicates enlarged cerebellar sulci.
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level V. Some abnormal results were found in the electromyog-
raphy (EMG) examination (Tables I and II): i) The amplitude 
(AMP) of peroneal nerves and ulnar nerves was decreased on 
both sides; ii) the ulnar nerves were not elicited; and iii) the 
values of sensory conduction velocity  (SCV) and AMP of 
median nerves on both sides were smaller than the normal 
limits. In addition, brain MRI examinations showed that the 
proband had enlarged cerebellar sulci (Fig. 1). According to 
descriptions from the parents, the proband was not susceptible 
to infectious diseases. However, significantly elevated serum 
α‑fetoprotein (AFP; 170 IU/ml; normal range 0‑3.07 IU/ml) 
(Table III) and slightly decreased CD4+/CD8+ T lymphocyte 
ratio (Table  IV) was detected in the blood test, implying 
hepatic dysplasia and immunodeficiency in the patient. Other 
indicators in the blood test were normal or slightly decreased 
(Tables III and IV).

The proband's 13‑year‑old brother (patient II‑1) had all 
typical symptoms of ataxia, as the proband did, as well as 
some additional clinical features. Patient II‑1 presented earlier 
regression of movement coordination at 2 years old. The symp-
toms gradually progressed and as a result, he could not walk 
at 8 years old. Brain MRI showed cerebellar atrophy (data not 
shown), and intellectual retrogression was confirmed. Both eyes 
had conjunctival hyperemia and difficulties in seeing objects 
on the left, suggesting oculomotor apraxia. The head and neck 
had abnormally slow movement. Muscle strength of the upper 
and lower limbs were grade IV and III respectively. EMG 
results (Tables I and II) were similar in patients II‑1 and II‑2, 
but patient II‑1's sural nerve, rather than ulnar nerve, was not 
elicited on both sides. Furthermore, AMPs of the tibial nerve 
were decreased on both sides. As shown in Tables II and III, 
serum AFP (234.8 IU/ml; normal range 0‑3.07 IU/ml) was 
significantly increased and CD4+/CD8+ T lymphocyte ratio 
(0.29; normal range 0.96-2.05) was significantly decreased, 
implying severe immunodeficiency.

Targeted sequencing was performed on the proband. The 
generated data had a mean depth of 285.1‑fold and a coverage 
of 99.71% across the targeted regions (Table V). In total, four 
non‑synonymous and 10 synonymous variants were identi-
fied in nine genes associated with hereditary ataxias. Once 
filtered, two nonsense mutations c.748C>T (p.Arg250Ter) and 
c.5170G>T (p.Glu1724Ter) in the ATM gene were deemed to 
be pathogenic and likely pathogenic, respectively, according 
to the guidelines of ACMG/AMP (20). Both mutations were 
absent in 1000 Genomes Project database, Exome Sequencing 
Project 6500, The Exome Aggregation Consortium and local 
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Table V. Bioinformatics quality control matrices of the proband's 
targeted next generation sequencing data. 

Measure	 Result

Number of genes	 9
Length of target region (bp)	 65,439
Coverage of target region (%)	 99.71
Average depth of target region (‑fold)	 285.1
Proportion of target region with sequencing 	 97.50
depth of >30‑fold (%)	
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SNP database of normal Chinese. The mutation c.748C>T 
occurring in exon 7 converted arginine to stop codon at 
amino acid position 250, which has previously been reported 
as pathogenic  (24‑26). The c.5170G>T mutation located 
on exon 34 changed glutamic acid to stop codon at amino 
acid position 1,724. It is worth noting that no pathogenicity 
association between this mutation and A‑T has been identi-
fied in the previous literature. Further Sanger sequencing was 
performed on the extensive family members to verify whether 
the two mutations c.748C>T and c.5170G>T segregated with 
the disease. It was found that all three siblings (patient II‑1, 
II‑2 and II‑3) carried the same compound heterozygous muta-
tions of c.748C>T and c.5170G>T, which were inherited from 
their father and mother, respectively (Fig. 2). These results 

confirmed A‑T in all siblings and the parents decided to 
terminate the pregnancy (patient II‑3).

Discussion

Ataxia‑telangiectasia, characterized by progressive difficulty 
with coordinating movement, is a rare inherited disorder 
that affects the nervous and immune system, as well as other 
processes (1). A series of clinical criteria for A‑T diagnosis have 
been identified (7), but there are still limitations to prenatal 
diagnosis, and cases with variable phenotypes or late onset. By 
conducting targeted sequencing and Sanger sequencing on an 
A‑T family with variable clinical signs, novel nonsense ‘likely 
pathogenic’ and known nonsense ‘pathogenic’ mutations 

Figure 2. Segregation analysis of the two mutations in ATM. (A) Pedigree. Sanger sequencing verified the heterozygous ATM mutations. Arrow indicates the 
proband. (B) c.5170G>T (p.Glu1724Ter) in all the siblings and their mother, and (C) c.748C>T (p.Arg250Ter) in all the siblings and their father.
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were found in the ATM gene, which confirmed the A‑T in 
two patients and then aided the prenatal diagnosis of A‑T in 
the third child of this family. Therefore, genetic testing is of 
crucial importance for confirming A‑T, particularly in the 
initial phases of the disease.

The clinical features of patients II‑1 and II‑2 were similar 
with those of the A‑T patients in previous reports, such as a 
combination of progressive cerebellar ataxia, dysarthria, 
conjunctival hyperemia and elevated serum AFP levels (27‑29). 
However, it was found that the two patients distinguished them-
selves with onset, severity and development of the disease. For 
example, symptoms of A‑T had presented since 2 years old in 
patient II‑1, but at 5 years old in patient II‑2; at 8 years old, 
patient II‑1 was not able to walk, whereas patient II‑2 could 
walk slowly; further, patient II‑1 had obvious intellectual retro-
gression, while patient II‑2 had normal intelligence. According 
to the clinical examinations, it was speculated that the more 
severe symptoms in patient II‑1 might be explained by the 
following findings: i) Patient II‑1's sural nerve, rather than ulnar 
nerve, was not elicited in the EMG, therefore disrupting his 
walking ability; ii) while patient II‑2 had wide cerebellar sulci, 
the initial stage of cerebellar atrophy, patient II‑1 had cerebellar 
atrophy, thus causing more critical consequences; and iii) the 
indexes of serum AFP and CD4+/CD8+ T lymphocyte ratio in 
patient II‑1 were more severely shifted away from the normal 
ranges, indicating a more serious immunodeficiency. Taken 
together, these findings demonstrated that the phenotypes of 
A‑T were quite heterogeneous, especially in the initial phases 
of the disease, which presents difficulties in making accurate 
clinical diagnoses.

The majority of ATM mutations causing A‑T are nonsense 
and frameshift mutations, resulting in truncation of ATM 
protein (30‑33). Consistent with these previously findings, the 
present study detected two nonsense mutations. The muta-
tion c.748C>T has been reported to be pathogenic in A‑T 
patients (24‑26). To the best of knowledge, this is the first paper 
to identify c.5170G>T to be associated with A‑T pathogenicity. 
This mutation produces a truncated premature protein at amino 
acid position 1724, which is conserved in multiple species, 
including rhesus, mouse, dog, elephant, wild yak, and bonobo.

In conclusion, one novel mutation and one known 
disease‑inducing mutation of A‑T was identified. The 
present study not only expanded the mutation spectrum of 
ATM‑associated A‑T, but also contributed valuable guidance 
on the genetic diagnosis and the prenatal screening of A‑T.
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