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Abstract. Epilepsy is a common, serious neurological disorder 
worldwide. Although this disease can be successfully treated 
in most cases, not all patients respond favorably to medical 
treatments, which can lead to pharmacoresistant epilepsy. 
Drug‑resistant epilepsy can be caused by a number of mecha-
nisms that may involve environmental and genetic factors, 
as well as disease‑ and drug‑related factors. In recent years, 
numerous studies have demonstrated that genetic variation is 
involved in the drug resistance of epilepsy, especially genetic 
variations found in drug resistance‑related genes, including 
the voltage‑dependent sodium and potassium channels genes, 
and the metabolizer of endogenous and xenobiotic substances 
genes. The present review aimed to highlight the genetic vari-
ants that are involved in the regulation of drug resistance in 
epilepsy; a comprehensive understanding of the role of genetic 
variation in drug resistance will help us develop improved 
strategies to regulate drug resistance efficiently and determine 

the pathophysiological processes that underlie this common 
human neurological disease.
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1. Introduction

Epilepsy is one of the most common neurological diseases 
worldwide and is considered a major public health 
problem (1,2). The International League Against Epilepsy 
(ILAE) has established that the term ‘epilepsy’ refers to a 
disease of the brain that meets any of the following conditions: 
i) At least two non‑induced seizures, or reflexes, that occur 
≥24 h apart; ii) one non‑induced seizure, or reflex, and a risk of 
further seizures similar to the general recurrence risk (≥60%) 
following two non‑induced seizures that occur over the next 
10 years; or iii) the diagnosis of an epilepsy syndrome (3,4). 

Epilepsy is considered to be resolved when an individual with 
epilepsy has remained seizure‑free for 10 years and without 
antiepileptic drug treatment for ≥5 years (4).

For the most accurate study of epilepsy, the ILAE (5,6) has 
organized and classified seizures and several epilepsy types 
as focal, generalized and of unknown onset, based on certain 
characteristics, including seizure type, electroencephalography 
(EEG) features, imaging studies, age‑related features and 
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triggering factors, such as comorbidities and prognosis (6,7); 
this classification involved the work of epileptologists, 
neurophysiologists and epilepsy researchers (6).

A previous study demonstrated that epileptic seizures are 
associated with several mechanisms that involve the glutamate 
excitotoxicity process, microglial activation, mitochondrial 
dysfunction, degenerative processes, and the presence of reac-
tive oxygen species and oxidative stress (8). In addition, it has 
previously been reported that certain regulatory processes are 
involved at the transcriptional level; for example, the nuclear 
transcription factor erythroid‑derived 2‑like 2 was revealed 
to serve a role in epileptic seizures  (9,10). A recent study 
conducted by our group used microarray analysis in children 
with epilepsy to demonstrate that those with epilepsy overex-
pressed genes that were related to the transcriptional factor 
cAMP‑response element binding protein (CREB) compared 
with normal children, in addition to significantly altered 
expression levels of genes involved in energy metabolism, 
redox balance and the immune response (11). The differential 
gene expression, particularly genes related to CREB, observed 
in children before and after the administration of valproic 
acid indicated that the activity of antiepileptic drugs (AED) 
is dependent on target genes. These data suggested a role for 
genetics in epilepsy development and highlighted the impor-
tance of studying the genetic mechanisms associated with drug 
resistance. This would provide an improved understanding 
of the impact of pharmacological treatment on epilepsy and 
in the patient's daily activities, of which both are influenced 
by: i) The patient's response to treatment; ii) the relationship 
between the number and type of seizures, and the modified 
transportation of proteins or their receptors due to the drug's 
activity and the presence of genetic variations; iii) the possible 
influence of the phenotypic characteristics of the patient in 
response to the treatment; iv) the impact of the presence of 
the genetic variants in the functionality of the transporting 
proteins and AED target proteins; v) the interference of the 
potential alterations in the target protein on the mechanism of 
action of the AED due to the presence of the variant; vi) the 
influence of the inflammatory and immunological response; 
vii)  the predisposition to some of the different aspects of 
epilepsy, including refractoriness or decreased sensitivity to 
the AED effect; and viii) the result following the combination 
of several of these or other mechanisms (12‑15). In accordance 
with the last point, the objective of the present review was to 
focus on describing the findings of genetic alterations involved 
in pharmacoresistant epilepsy.

2. Pharmacoresistant epilepsy

The term pharmacoresistant epilepsy refers to a type of epilepsy 
that does not respond to at least two AEDs, which were chosen and 
used in monotherapy or combination therapy (bi‑ or polytherapy) 
and fail to fully control seizures for an adequate period (16). In 
2011, the ILAE proposed to standardize the definition of phar-
macoresistant epilepsy as the presence of seizures in a period 
of 6 months, even under proper therapeutic regimens (either 
monotherapy or in combination) (16). Two studies performed 
in 2000 and 2012 reported that people with epilepsy (PWE) 
responded differently to AED treatment, since 47‑49.5% of the 
patients required one AED to control the seizures, 13‑13.3% 

required a second AED, and 3.7‑4% needed a third AED, which 
was administered either alone or in combination (17,18). To 
summarize, Kwan and Brodie (17) observed that in a prospec-
tive study of 525 PWE (age, 9‑93 years), 333 of them (63%) 
remained seizure‑free during AED administration and seizures 
that did occur were more persistent in patients with symptom-
atic and cryptogenic epilepsy (40%) compared with those with 
idiopathic epilepsy (26%). Moreover, among 470 previously 
untreated patients, 222 of them (47%) became seizure‑free 
during treatment with their first AED, 67 patients (14%) became 
seizure‑free during treatment with a second or third AED and 
12 patients (3%) were controlled with two AEDs administered 
together (17). Brodie et al  (18) subsequently discovered that 
patients have differential responses to AEDs; out of 1,098 PWE 
(ages, 9‑93 years) studied, 749 of them (68%) were seizure‑free 
with AED monotherapy, but in 272 patients (25%), freedom from 
seizures was never attained. Moreover, <2% of patients became 
seizure‑free with the use of up to six or seven AEDs (18). In addi-
tion to the above findings, epidemiological studies conducted 
among children and adults have discovered that 20‑40% of 
PWE present with pharmacoresistant epilepsy (19‑22), which 
negatively impacts their quality of life because it is also associ-
ated with increases in psychiatric comorbidities and the risk of 
premature death and social discrimination (23).

It is important to highlight that pharmacoresistant epilepsy 
may also cause serious socioeconomic problems. For instance, 
Argumosa and Herranz (24) evaluated the economic cost of 
controlled and uncontrolled epilepsy in Spain (participants 
were <14 years old) and reported that the mean annual cost 
of controlled epilepsy was $2,002.36 USD, whereas the cost 
of uncontrolled epilepsy was $5,348.50 USD; thus, uncon-
trolled epilepsy was 2.7 times more expensive compared with 
controlled epilepsy. Given the elevated costs of treatment, 
alternative therapeutic approaches, such as the ketogenic 
diet (25), high doses of steroids (26) and brain surgery (27) 
have all been implemented The ketogenic diet has proved 
beneficial in PWE in which pharmacological and/or surgical 
treatment is not effective; this diet is centered around a very 
high‑fat and low‑carbohydrate intake, reducing carbohydrates 
to <10% of used energy (90% of the total caloric intake comes 
from fat, 6% from protein and 4% from carbohydrates). These 
proportions trigger a systemic shift from glucose metabolism 
towards the metabolism of fatty acids, which yields ketone 
bodies that serve as the energy source to replace glucose in 
the brain (28). In patients with pharmacoresistant epilepsy, a 
ketogenic diet has been observed to improve the quality of life 
and decreases seizure frequency in ~30% of patients (25). In a 
significant number of patients with pharmacoresistant epilepsy, 
curative epilepsy surgery cannot be offered since there are 
multiple epileptogenic zones; for these patients, neurostimula-
tion techniques, such as vagus nerve stimulation, deep brain 
stimulation and responsive neurostimulation, are viable treat-
ment options that should be considered in every patient with 
this type of epilepsy that is unsuitable for surgery (27,29). 
These techniques provide palliative care, resulting in a 
10‑80% reduction in seizure occurrence (29). Furthermore, 
if all the aforementioned treatment approaches fail to control 
the seizures, cannabidiol (Epidiolex®) can be prescribed; this 
is a pharmaceutical product approved by the U.S. Food and 
Drug Administration that consists of 99% cannabidiol derived 
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from cannabis  (30,31). A previous study reported that out 
of 43 Mexican children with pharmacoresistant epilepsy, a 
decrease in the number of epileptic seizures were observed in 
81.3% of patients and 20.9% patients displayed a reduction in 
the number of AEDs with the use of cannabidiol. Significant 
adverse effects related to appetite or sleep were only observed 
in 42% of patients following the use of cannabidiol (31).

3. Genetic variations associated with pharmacoresistant 
epilepsy

Previous studies have suggested that pharmacokinetic and phar-
macodynamic mechanisms form the physiopathological basis 
of pharmacoresistant epilepsy (Table I) (22,32,33). Advances 
in genomic technologies have facilitated the genome‑wide 
discovery of common and rare variants and have increased 
our understanding of genetics in epilepsy (34); however, the 
mechanisms underlying pharmacological resistance have 
not been fully elucidated (35). Some of the most important 
genes associated with the physiopathology of epilepsy were 
associated with the neuronal acetylcholine receptor, neuronal 
potassium channels (KCNs), voltage‑dependent sodium 
channels (SCNs), calcium channels and γ‑aminobutyric acid 
(GABA) receptors (32,36,37). Table II summarizes some of 
the genetic variants that occur in the main genes linked to 
epilepsy from recent studies.

In the particular case of pharmacoresistant epilepsy, the 
most frequently studied polymorphisms are those associated 
with multidrug resistance genes (MDR): ATP‑binding cassette 
subfamily B member 1 (ABCB1 or MDR1) and ATP‑binding 
cassette subfamily C member 2 (ABCC2 or MRP2); SCN α 
subunits 1, 2 and 3 (SCN1, SCN2 and SCN3); and metabolizers 
of endogenous and xenobiotic substances, cytochromes P450 
families 2 and 3 (CYP2 and CYP3). Additional details related 
to the findings of these studies are found in Table III.

4. The role of genetic variants in the diagnosis and 
treatment of pharmacoresistant epilepsy

Currently, a patient's medical history and EEG results are used 
to diagnose the type of seizure, but they must be interpreted 
with caution so that diagnostic errors are not made; this suggests 
the use of complementary studies (38). Emerging genomic 
technologies, high‑throughput screening and chip technolo-
gies have accelerated our understanding of the genetic makeup 
of epilepsy (34); for instance, the identification of mutations or 
polymorphisms in specific genes, such as those that encode ion 
channels, aforementioned, that are mainly expressed in brain 
neurons, specific neurotransmitter receptors and molecules 
that have functions in intercellular communication (39). For 
example, a study by Wang et al (40) investigated the genetic 
etiology of epilepsy in a cohort of 120 children with unex-
plained epilepsy using whole‑exome sequencing (WES); it 
was found that the pathogenic variant c.1174G>A in the KCN 
subfamily D member 3 (KCND3) gene may be responsible for 
a broader phenotypic spectrum than was previously thought, 
including infantile epileptic encephalopathy. In addition, this 
study discovered that the glutamate receptor, ionotropic gluta-
mate ionotropic receptor NMDA‑type subunit 1 (GRIN1) and 
hyperpolarization‑activated cyclic nucleotide‑gated potassium 

channel 1 (HCN1), were candidate gene variants (c.2530C>T 
and c.1138A>T for GRIN1 and HCN1, respectively) for 
the Dravet and Dravet‑like phenotypes  (40). In intractable 
epilepsy and other mental disabilities, WES identified de novo 
variants in the Bernardinelli‑Seip congenital lipodystrophy 2 
(BSCL2) gene in two patients (41), of which one of the variants 
(c.985C>T) has been observed in other populations of epilepsy 
and developmental regression, regressive autism spectrum 
disorder, motor stereotypies, lower limb hypertonia and frontal 
lobe syndrome (41). As it was discovered that BSCL2 serves a 
role in neuronal function, it was suggested to be a potential 
candidate gene for epileptogenesis (41).

In pyridoxine‑dependent epilepsy (PDE), despite seizure 
control, ≥75% of patients experience intellectual disability 
and developmental delay, which emphasizes the importance 
of early diagnosis. Genetic tests are increasingly being 
used as first‑level tests for epileptic encephalopathies, which 
aim to provide a general description of the mutations in the 
aldehyde dehydrogenase 7 family member A1 that causes 
PDE (42). Epilepsy with myoclonic‑atonic seizures (EMAS) 
accounts for 1‑2% of all childhood onset epilepsies  (43). 
EMAS has been demonstrated to have an underlying genetic 
component and several genes have been associated with this 
disease, such as SCN1A, SCN2A, CHD2, STX1B, SLC2A1, 
SLC6A1, POLG1, NRXN1, PIGN, CSNK2A1, GABRG2 
and GABRB3; however, the genetic basis for this disorder 
remains unknown and the diagnostic potential of genetic tests 
remains low. This could be explained by the lack of several 
of the genes that may be associated with EMAS in the most 
commonly ordered epilepsy panels, although some have 
recently been added (43‑47). Furthermore, a study conducted 
by Ortega‑Moreno et al (48) analyzed a multigenic panel of 
87 PWE and developmental delay, including classified and 
unclassified epileptic encephalopathies, epileptic spasms, 
severe myoclonic epilepsy of infancy, Lennox‑Gastaut 
and Landau‑Kleffner syndromes; they found mutations in 
various genes, such as potassium voltage‑gated channel 
subfamily Q member 2 (KCNQ2), syntaxin binding protein 1, 
UDP‑N‑acetylglucosaminyltransferase subunit, cyclin 
dependent kinase‑like 5 (CDKL5), protocadherin 19, SCN1A, 
CHD2, SLC2A1, synaptic Ras GTPase activating protein 1, 
aristaless related homeobox, DNA polymerase gamma, cata-
lytic subunit and GRIN1. Although a high proportion of these 
patients had unclassified epilepsies, the results supported the 
use of the multigene epilepsy panel because it offered rapid 
testing with a good diagnostic efficiency (48).

It is hypothesized that genetic variants may also contribute 
to the efficacy of drug treatments for epilepsy; for example, 
adverse or toxic reactions, teratogenic risk in pregnancy, 
as well as long‑term outcomes have been observed among 
PWE (49‑63). Consistent with the findings in numerous other 
disorders with complex genetic backgrounds, the associated 
genetic variants that have been successfully verified are 
limited. Nevertheless, it is likely that new techniques and 
improved research approaches will increase this number 
in the near future  (49). In recent studies, the association 
between genetic polymorphisms, treatment responses in 
epilepsy and AEDs reactions (toxic, adverse or those related 
with its efficacy) have been investigated; it was reported that 
polymorphisms in the human leukocyte antigen (HLA) gene 
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were associated with severe cutaneous adverse AED reac-
tions (50), and polymorphisms in a number of other genes, 
including ABCB1, ABCC2, GABRA6, GABRG2, CYP2C9, 
CYP3A4, UDP‑glucuronosyltransferase (UGT)1A1, UGT1A4, 
UGT1A6, UGT2B7, SCN2A and SCN1A, have been associated 
with the concentration, response and efficacy of some of the 
most commonly used AEDs in clinical practice, including 
carbamazepine, oxcarbazepine, phenytoin, lamotrigine and 
valproic acid (51‑63). Esmaeilzadeh et al (50) reported an 
association between HLA polymorphisms and severe cuta-
neous adverse reactions (SCARs) induced by drugs; in this 
study, 61 patients with diverse SCARs were recruited, and 
it was found that the hypersensitivity to different AEDs, 
including phenytoin, carbamazepine, valproic acid, topi-
ramate and lamotrigine, was associated with HLA‑A gene 
polymorphisms. Berghuis  et al  (64) recruited 1,328 adult 
PWE who had received oxcarbazepine (n=1,031) and carba-
mazepine (n=297) and performed a genome‑wide association 
study to demonstrate the association between genetic factors 
and sodium levels and AED metabolism. The authors did not 
observe significant associations between sodium levels and 
other clinical variables, but in relation to carbamazepine 
metabolism, they observed a significant association with the 
intronic rs2234922 polymorphism in the epoxide hydrolase 1 
gene. Furthermore, the same authors reported in 2017 that 
carbamazepine and oxcarbazepine induced hyponatremia in 
those with epilepsy (65); in this study, 1,782 adult patients 
who carbamazepine (n=1,424) and oxcarbazepine (n=358) 
were recruited; using an electronic database designed for 
pharmacogenomics studies, it was found that sodium levels 
were significantly associated with serum levels of carbamaze-
pine (P<0.001) and oxcarbazepine (P=0.001), whilst age, sex 
and the number of concomitantly used AEDs did not influ-
ence this association. Serum levels of carbamazepine [Odds 
Ratio (OR)=1.2; 95% CI=1.12‑1.28; P<0.001] and oxcarbaze-
pine (OR=1.06; 95% CI=1.02‑1.1; P=0.001) were significantly 
associated with hyponatremia. The co‑treatment and the 
sequential use of carbamazepine and oxcarbazepine were also 
related to severe hyponatremia (65). McCormack et al (66) 
recruited patients with maculopapular exanthema (MPE) 

associated with AED use (all aromatic AEDs: n=259 
European and n=116 Han Chinese patients; carbamazepine: 
n=95 European and n=85 Han Chinese patients; lamotrigine: 
n=118 European and n=16 Han Chinese patients; phenytoin: 
n=52 European and n=22 Han Chinese patients) and 1,321 
controls and performed a genome‑wide association to analyze 
the association between AED use and MPE. It was found that 
within the European population, variations in HLA‑A*31:01 
were significantly associated with carbamazepine‑induced 
MPE (OR=5.5; 95% CI=3‑10; P=1.47x10‑10). Regarding 
phenytoin use, a significant association was identified between 
the rs78239784 polymorphism and an intronic variant of 
the complement factor H‑related 4 gene in the European 
population (OR=8.8; 95% CI=4‑19; P=2.94x10‑10)  (66). 
Bai et al (67) observed that VPA induced obesity in PWE, 
as following the recruitment of 225 Chinese Han patients 
with epilepsy receiving VPA treatment, 19.6% were found to 
be obese. The authors also found genotypic associations of 
rs1194197 in the CD36 gene and rs10865710 in the peroxi-
some proliferator‑activated receptor γ gene following weight 
gain. In another study conducted by Li et al (68), associations 
between the rs1137101 polymorphism in the leptin receptor 
(P<0.001), the rs1800497 polymorphism in the ankyrin repeat 
kinase domain‑containing 1 (P=0.017) and the rs10789038 
polymorphism in AMP protein kinase (P=0.02) with valproic 
acid‑induced weight gain were observed in 212 PWE (68). 
Wang et al (69) discovered that some polymorphisms were 
associated with the adverse effects of valproic acid in Chinese 
PWE by direct sequencing; following the recruitment of 254 
Chinese PWE that received valproic acid monotherapy, a corre-
lation was identified between CYP2C9 and acyl‑coenzyme A 
synthetase 2A (ACSM2A) gene polymorphisms with serum 
alanine aminotransferase and aspartate aminotransferase 
levels (P<0.03) indicating that these gene polymorphisms can 
be used to identify liver dysfunction (69).

The therapeutic effect of valproic acid among children 
with focal epilepsy (89 children) was also studied, and the 
results identified 66 single nucleotide polymorphisms (SNPs) 
that were involved in the metabolism and transport of valproic 
acid target receptors (54); however, among the children with 

Table I. Mechanisms associated with pharmacoresistant epilepsy.

Mechanism	D escription

Pharmacokinetics 	 Impairment of the AED to achieve optimal concentration levels at the action site, where it is mainly 
	 influenced by the liposolubility, absorption, metabolism and elimination of the drug.
Pharmacodynamics 	A ll the factors that alter the action of the AED in their action sites (synapses, ion channels and 
	 receptors). There are at least three hypotheses that try to explain the pharmacodynamics: i) Alterations 
	 involving transporters (i.e. P‑glycoprotein and the multiple drug resistance gene); ii) modifications 
	 of pharmacological targets due to genetic alterations related to the disease (i.e. genetic alterations in 
	 receptors or ion channels, structural alterations, autoimmunity and pharmacological interactions);
	 iii) the intrinsic gravity model of epilepsy, in which a continuous severity of the disease is proposed 
	 and will be determined due to the medication response (i.e. etiology of epilepsy, type of seizures, 
	 electroencephalography or imaging studies, environmental influences or failure of AED).

Adapted from Refs. 22,83,84. AED, antiepileptic drug.
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Table II. Variations in the main genes associated with the physiopathology of epilepsy.

Author, year	 Gene	O bservations	 (Refs.)

Trivisano et al, 2015	C holinergic receptor	A  mutation has been described in benign familial infantile 	 (85)
	 nicotinic α2 subunit	 seizures (c.1126 C>T).
Wang et al, 2014; 	 Cholinergic receptor	 The novel mutation c.823 A>T has been identified in 	 (86,87)
Villa et al, 2019	 nicotinic α4 subunit	 non‑familial nocturnal frontal lobe epilepsy.
		  The c.754T>C mutation is involved in autosomal dominant
		  nocturnal frontal lobe epilepsy.
Goldberg‑Stern et al, 2009; 	 KCNQ2 	 The novel mutation c.63‑66delGGTG was associated 	 (88‑90)
Chen et al, 2018;		  with the diagnosis and prognosis of BFNS.
Allen et al, 2014		  Two mutations, c.811C>T and c.875T>C, were 
		  with early infantile encephalopathies.
Allen et al, 2014; 	 KCNQ3 	 The novel mutation c.914A>T was related to BFNS and was	 (90‑92)
Piro et al, 2019;		  associated with a specific electroclinical pattern and favorable
Miceli et al, 2015		  neurodevelopmental outcomes.
		  The mutation c.989G>T was associated with intellectual
		  disability in BFNS and the mutation c.989G>A was also
		  associated with this type of epilepsy.
Lehman et al, 2017	 KCNQ5	 Three mutations, c.1343G>T, c.434T>G and c.1021C>A, 	 (93)
		  were associated with epileptic encephalopathy and caused
		  intellectual disability.
Krepischi et al, 2010	 SCN1A 	 The deletion in 2q24, del(2)(q24.2q24.3), was associated	 (94)
		  with Dravet syndrome.
Liang et al, 2017	 SCN2A	 The novel mutation c.1270G>A was associated with	 (95)
		  early‑onset epileptic encephalopathy and Rett‑like features.
Davidsson et al, 2008	 Gene cluster	 The deletion in 2q24, del(2)(q24.3q31.1), was associated	 (96)
	 (SCN1A‑SCN2A‑	 with severe epilepsy of infancy (Dravet syndrome) and was
	 SCN3A‑SCN7A‑	 correlated with dysmorphic features and brain abnormalities.
	 SCN9A)
Zaman et al, 2018	 SCN3A	 Mutations have been associated with early infantile epileptic	 (97)
		  encephalopathy.
Yang et al, 2019; 	 GABAA 	 The presence of various variants was associated with multiple	  (98‑107)
Butler et al, 2018;		  seizure types, including focal seizures, generalized
Orenstein et al, 2018;		  tonic‑clonic seizures, myoclonic seizures, epileptic spasm and
Zhang et al, 2017;		D  ravet's syndrome, Ohtahara syndrome and West syndrome.
Hernandez et al, 2017;		  De novo variants in GABRA2 (c.875C>A and c.1003A>C), 
Farnaes et al, 2017;		  GABRA5 (c.880G>C) and GABRB3 (c.5G>A, c.509T>G, 
Iqbal et al, 2018;		  c.914C>T and c.863C>A) were associated with severe early
Bhat et al, 2018;		  onset epilepsy.
Le et al, 2017;		  The de novo mutation c.789G>A in GABRA1 was associated
Ishii et al, 2017		  with West syndrome.
		  Mutational analysis of GABRG2 found an association between
		  the presence of a single polymorphic site in exon 3 (AAC>AAT)
		  and the absence epilepsy and generalized tonic clonic seizures.
		  Variants in GABRG2 (588C>T) and GABRD (659G>A)
		  were associated with juvenile myoclonic epilepsy and
		L  ennox‑Gastaut syndrome
		  The mutation 965C>A and the polymorphism 15A>G in
		  GABRA1 were associated with Lennox‑Gastaut syndrome.
		  The de novo mutation c.695G>A in GABRB3 was associated
		  with Dravet syndrome
		  The de novo mutation c.859A>C in GABRB2 was associated
		  with early myoclonic encephalopathy.
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focal seizures, the selected genetic polymorphisms were not 
significantly associated with the response to valproic acid. 
Nonetheless, three variants of GABRA6 (rs9313892, rs4921195 
and rs424740) demonstrated the potential to be associated 
with the response to valproic acid (54). In addition, although 
polymorphisms in the SCN1A gene are thought to influence 
the efficacy of carbamazepine and phenytoin, Manna et al (70) 
found that the rs3812718 variant in SCN1A was not associated 
with the response to carbamazepine in patients with focal 
epilepsy. It has been reported that disorders related to changes 
in the KCNQ2 gene included both benign seizure disorders 
and early onset epileptic encephalopathies (EOEE), especially 
the latter, which includes patients who present refractory 
seizures following standard AED treatment and development 
delay (71‑73). Kuersten et al (74) conducted a systematic review 
(52 studies including data from 217 patients), in which they 
analyzed AEDs in KCNQ2‑related epilepsies; it was discov-
ered that seizures associated with KCNs could be controlled 
upon treatment with carbamazepine, lamotrigine, oxcarbaze-
pine, phenytoin, valproic acid, levetiracetam, topiramate, 
phenobarbital, piracetam, vigabatrin, clonazepam, diazepam 
and midazolam in patients with benign infantile or neonatal 
seizures (n=133 patients, including 74 who were seizure‑free 
with monotherapy, 4 who were unsuccessfully treated with 
monotherapy, 11 who were seizure‑free with polytherapy, 
4 patients with no response to polytherapy or any treatmet and 
40 showed seizure cessation spontaneously without AEDs). 
Moreover, the results also demonstrated that moderate control 
of seizures was achieved with the use of carbamazepine, 
oxcarbazepine, lamotrigine, lacosamide, phenytoin, pheno-
barbital, valproic acid, topiramate, levetiracetam, retigabine, 
zonisamide, sultiame, ethosuximide, acetazolamide, clonaz-
epam, diazepam, clobazam, nitrazepam and midazolam in 
patients with EOEE (n=84, including 48 who were seizure‑free 

with monotherapy, 12 that did not respond to monotherapy, 
20 who were seizure‑free following polytherapy and 4 patients 
exhibited seizure reduction without AED). Phenobarbital was 
the most common prescribed monotherapy in the majority 
of patients with benign seizures and EOEE (n=65 in benign 
seizures and n=35 in patients with EOEE); however, the use of 
sodium channel blockers, such as carbamazepine, lamotrigine, 
oxcarbazepine and phenytoin, led to seizure cessation in the 
majority of patients with benign seizures and EOEE (n=21 
benign seizures and n=45 with EOEE). With regards to the 
genetics, 25.6 and 67.9% of patients with benign seizures and 
EOEE, respectively, were reported to have de novo mutations, 
including missense, frameshift, splice site, deletion and trun-
cation mutations. However, sparse systemic data are available 
on the response of treatment in KCNQ2‑related epilepsy in 
larger cohorts (74), which limit our ability to comment on the 
efficacy of personalized medicine approaches to treat the large 
number of newly discovered genetic channelopathies. 

The effects of SNPs in three KCN genes, including KCNA1 
(rs112561866, rs2227910 and rs7974459), KCNA2 (rs3887820) 
and KCNV2 (rs7029012, rs10967705 and rs10967728), and 
their association with the susceptibility to epilepsy and 
their ability to respond to AEDs (carbamazepine for partial 
epilepsy and valproic acid for generalized epilepsy) was 
analyzed in a pharmacogenetic cohort of 595 patients (75). 
The results suggested that KCNA1, KCNA2 and KCNV2 did 
not influence the susceptibility of the disease or the capacity to 
respond to drugs (75). Mutations in the SCN2A gene have also 
been associated with neonatal seizures and a wide number of 
epileptic syndromes (76,77). Recently, an association between 
rs17183814 in SCN2A and the function of oxcarbazepine was 
demonstrated in a cohort of 218 patients; the results indicated 
that the presence of the SNP was associated with higher 
oxcarbazepine maintenance doses in patients with lower 

Table II. Continued.

Author, year	 Gene	O bservations	 (Refs.)

Butler et al, 2018; 	 GABAB 	 The de novo variant c.902C>T was associated with	 (99,108)
Yoo et al, 2017		  intractable seizures and developmental delay.
		N  umerous variants in GABBR2 were associated with
		R  ett syndrome.
Epi4K Consortium, 2016; 	 CACNA1A	 Various mutations (c.2137G>A, c.5422G>C, c.4118C>T	 (109‑114)
Liu et al, 2018;		  and c.301G>C) were associated with epileptic
Hayashida et al, 2018;		  encephalopathies.
Byers et al, 2016;		  Two novel mutations, c.2128 G>A and c.410A>G, were
Epperson et al, 2018;		  associated with Rett syndrome and absence epilepsy.
Du et al, 2017
Heron et al, 2007	 CACNA1H 	O ne hundred variants in exons 3‑8 and 12‑35 were 	 (115)
		  detected in patients with various epileptic phenotypes, 
		  including childhood and juvenile absence, juvenile
		  myoclonic and myoclonic astatic epilepsies, febrile
		  seizures and temporal lobe epilepsy.

BFNS, benign familial neonatal seizures; CACNA, calcium voltage‑gated channel subunit α; GABAA, γ‑aminobutyric acid receptor; GABR, 
GABA receptor; KCNQ, potassium voltage‑gated channel subfamily Q member; SCNA, sodium voltage‑gated channel α subunit.
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Table III. Genes associated with pharmacoresistant epilepsy.

Author, year	 Gene	 Main observations 	 (Refs.)

Yoshida et al, 2018	 BAF chromatin remodeling	 Japanese patients with epileptic encephalopathy. 	 (116)
	 complex subunit BCL11A
Kurian et al, 2018	 PCDH19	 Mutations were determined in pediatric patients 	 (117)
		  with pharmacoresistant early childhood epilepsy.
Ko et al, 2018	 SCN1A, CDKL5, KCNQ2, 	 Mutations were determined in Asian patients with 	 (118)
	 SCN2A and SCN8A	 epileptic syndromes.
Wang et al, 2018; 	 SCN1A and CYP3A4	 Polymorphisms were associated in Chinese children	 (58,119,120)
Feng et al, 2018;		  and adults with drug‑resistant generalized epilepsy
Margari et al, 2018		  treated with valproic acid monotherapy. Also,
		  polymorphisms in the SCN1A gene were
		  associated with pharmacoresistance in Italian pediatric
		  patients with epilepsy.
Ajmi et al, 2018	 ABCB1	 Polymorphisms increased the risk of developing drug	 (121)
		  resistance in Tunisian epileptic patients.
Abou El Ella et al, 2018	 GABR γ2 subunit	 Polymorphisms were associated with 	 (122)
		  pharmacoresistance in Egyptian children with
		  idiopathic generalized epilepsy.
Skalski et al, 2017	 MDR1	 Polymorphisms were not associated with	 (123)
		  pharmacoresistance in Polish patients with
		  refractory epilepsy.
López‑Garcia et al, 2017	 CYP2D6, CYP2C9, 	 Polymorphisms were associated with refractory 	 (124)
	 CYP2C19 and CYP3A4	 epilepsy in Mexican pediatric patients.
Lv et al, 2017	 CACNA1A	 Mutations were identified in Chinese patients with	 (125)
		  refractory progressive myoclonic epilepsy.
Kozera‑Kępniak et al, 2017	N uclear receptor	 Polymorphisms were associated with 	 (126)
	 subfamily 1 group I	 pharmacoresistance in Polish epileptic patients.
	 member 2
Wang et al, 2017	 SCN8A	 Mutations were identified in Chinese family with 	 (127)
		  epilepsy.
Parrini et al, 2017	 KCNA, KCNB, GABR 	 Mutations were identified in Italian children diagnosed	 (128)
	 and PNPO	 with several types of pharmacoresistant epilepsy.
Kimizu et al, 2017	 SLC35A1	 A mutation was identified in a female Japanese	 (129)
		  pediatric patient with hepatic encephalopathy.
Shen et al, 2017	 GABRG2	 Mutations were identified among Caucasian patients 	 (130)
		  with epileptic encephalopathy.
Zhang et al, 2017; 	 CDKL5, KCNQ2, KCNT1, 	 Mutations were identified in Chinese patients	 (131,132)
Miao et al, 2017	 KCNB1 SCN2A, SCN8A	 diagnosed with pharmacoresistant epilepsy.
	 and SLC2A1
Perucca et al, 2017	 SCN1A	 A variant was identified in an Australian patient with	 (133)
		  pharmacoresistant temporal lobe epilepsy.
Guo et al, 2016	A dvanced glycosylation	 Variants were discovered in Chinese patients and	 (134)
	 end‑product specific	 associated with pharmacoresistant temporal lobe
	 receptor	 epilepsy.
Stasiołek et al, 2016	 MDR1	 Variants were identified in Polish children diagnosed	 (135)
		  with refractory epilepsy.
Abo El Fotoh et al, 2016	 SCN1A and CYP3A5	 Polymorphisms were associated with	 (136)
		  pharmacoresistance in pediatric patients with
		  refractory idiopathic and symptomatic epilepsy.
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Table III. Continued.

Author, year	 Gene	 Main observations 	 (Refs.)

Xue and Lu, 2016	 ABCB1 and ABCC2	 Variants were identified in Chinese patients with refractory	 (137)
		  symptomatic epilepsy and associated with pharmacoresistance.
Moen et al, 2016	 Potassium channel	A  mutation was discovered in an Arab family with two	 (138)
	 tetramerization domain	 children with pharmacoresistant progressive myoclonic
	 containing 7, Sonic	 epilepsy.
	 hedgehog signaling
	 molecule, Smoothened,
	 frizzled class receptor,
	 Wnt16 and Wnt2
Hildebrand et al, 2016	 Genes related to the	 Mutations were found in Caucasian patients with gelastic	 (139)
	 Shh way	 epilepsy.
Hardies et al, 2016	 Synaptojanin 1	A uthors analyzed patients from three Caucasian families	 (140)
		  who had been treated for refractory seizures and progressive
		  neurological diseases. Variants that abolished enzymatic
		  activity were identified.
Lionel et al, 2016	 Mediator complex	 A variant was identified in a pediatric patient with refractory	 (141)
	 subunit 23	 epilepsy.
Balestrini et al, 2016	 TBC1 domain family	 Mutations were analyzed in patients with pharmacoresistant	 (142)
	 member 24	 epilepsy from 30 independent families. Pathogenic mutations
		  were identified in the first conserved motif, some of which
		  were associated with epileptic syndromes.
Fahrner et al, 2016; 	 Dynamin 1‑like	 A mutation was determined in two American pediatric	 (143,144)
Vanstone et al, 2016		  patients with epileptic encephalopathy and a variant was
		  determined in a Canadian female pediatric patient diagnosed
		  with epileptic encephalopathy.
Janssen et al, 2016	DNA  polymerase γ	 Mutations were found in Belgian patients with refractory	 (145)
	 catalytic subunit	 epilepsy and status epilepticus.
Li et al, 2016	 GRIN2D	A  mutation was found in children with epileptic 	 (146)
		  encephalopathy (one patient was African American and had
		E  uropean descent and the other patient was from Tunisia).
Segal et al, 2016; 	 SCN1A, PCDH19, 	 Mutations were found in American children with 	 (147,148)
Palmer et al, 2016	 SLC6A1 and SLC9A6	 pharmacoresistant epilepsy along with significant clinical
		  abnormalities. An SLC6A1 mutation was specifically
		  discovered in an American female pediatric patient with
		D  oose syndrome.
Inui et al, 2016	 Eukaryotic translation	 A mutation was found in Japanese patients with epileptic	 (149)
	 elongation factor 1 α2	 encephalopathy.
Horta et al, 2015	 Major histocompatibility	 Variants were found in patients with pharmacoresistant 	 (150)
	 complex, class II, DR β1	 temporal lobe epilepsy.
Damiano et al, 2015	L amin B2	A  mutation was found in 10 patients with epilepsy who were	 (151)
		  members of an Arab‑Palestinian family with a history of
		  pharmacoresistant autosomal progressive myoclonic
		  epilepsy with early‑onset ataxia. 
Bene et al, 2015; 	 SCN1A and SCN8A	 Mutations were identified in a Hungarian pediatric patient	 (152,153)
Berghuis et al, 2015		  with Dravet syndrome. A mutation in the SCN8A gene
		  was discovered in a Norwegian patient with epileptic
		  encephalopathy.
Damaj et al, 2015	 CACNA1A	A  mutation was determined in Franco‑Canadian families 	 (154)
		  with members diagnosed with epileptic encephalopathy.
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Table III. Continued.

Author, year	 Gene	 Main observations 	 (Refs.)

Guo et al, 2015	 KCNJ10	 Variants were determined in Chinese patients with 	 (155)
		  refractory genetic generalized epilepsy.
Liu et al, 2015	 Kelch‑like ECH	 Variants were determined in patients with	 (156)
	 associated protein 1,	 pharmacoresistant temporal lobe epilepsy and
	 nuclear factor,	 associated with pharmacoresistance.
	 erythroid 2‑like 2
Emich‑Widera et al, 2014	 ABCB1; also known	 A variant was determined in Polish pediatric patients 	 (157)
	 as MDR1	 with refractory partial epilepsy.
Venkateswaran et al, 2014	 GRIN2A	A  mutation was found in a female Canadian pediatric 	 (158)
		  patient with refractory epilepsy.
Picard et al, 2014	 DEP domain	 Mutations were identified in Caucasian individuals 	 (159)
	 containing 5, GATOR1	 diagnosed with dominant nocturnal temporal lobe
	 subcomplex subunit	 epilepsy.
Martin et al, 2014	 KCNQ2, SCN2A	 Mutations were identified in Caucasian patients with 	 (160)
	 and KCNT1	 severe early‑onset epilepsy.
Seven et al, 2014; 	 MDR and MRP2	 Variants were identified among Turkish pediatric	 (161,162)
Escalante‑Santiago et al, 2014		  patients with refractory partial and generalized
		  epilepsy. Variants in this genes were also identified
		  in 22 Mexican children diagnosed with refractory
		  partial complex epilepsy
Seven et al, 2014	 CYP2C9, CYP2C1	 Polymorphisms were determined in Turkish 	 (163)
	 and CYP2D6	 pediatric patients with partial epilepsy or refractory
		  generalized epilepsy and associated with
		  pharmacoresistance.
Ma et al, 2014	 SCN1A, SCN2A and	 Variants were analyzed in Chinese patients with 	 (164)
	 ABCC2	 refractory partial or generalized epilepsy and
		  associated with pharmacoresistance.
He et al, 2013	 C‑C motif chemokine	 A variant was determined in Chinese children with	 (165)
	 ligand 2	 refractory partial and generalized epilepsy and
		  associated with pharmacoresistance.
Serino et al, 2013	 KCNQ2	A  mutation was found in an Italian pediatric patient	 (166)
		  with epileptic encephalopathy.
Emich‑Widera et al, 2013	 CYP3A5 and MDR1	A  variant was found in Polish children diagnosed	 (167)
		  with refractory epilepsy.
Veeramah et al, 2013	 CDK, chloride	 Mutations were identified in the families of	 (168)
	 voltage‑gated	A merican children diagnosed with epileptic
	 channel 1, SCN,	 encephalopathy.
	 KCNH
Fragaki et al, 2013	 Glutamate receptor, 	 A mutation was identified in the family of two French 	 (169)
	 metabotropic 6	 pediatric patients with refractory epilepsy.
Subenthiran et al, 2013; 	 ABCB1 and ABCC2	 Variants were associated with pharmacoresistance in	 (170,171)
Qu et al, 2012		  Malaysian (49.7%), Chinese (26.8%) and Indian
		  (23.5%) adult patients with epilepsy with complex
		  partial seizures treated with carbamazepine. 
		  Variants were also found in Chinese patients with
		  partial idiopathic or refractory cryptogenic epilepsy
		  and associated with pharmacoresistance.
Dimova et al, 2012	 PCDH19	 A mutation was identified in one female pediatric 	 (172)
		  patient with refractory epilepsy.
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Table III. Continued.

Author, year	 Gene	 Main observations 	 (Refs.)

Sayyah et al, 2011	 ABCB1	 Variants were identified in Iranian children and adults diagnosed	 (173)
		  with refractory idiopathic, cryptogenic and symptomatic
		  epilepsy and associated with pharmacoresistance.
Lakhan et al, 2011	 CYP2C9 and	 Variants were determined in Indian patients with refractory	 (174)
	 CYP2C19	 idiopathic and symptomatic epilepsy.
Kumari et al, 2011	 SCN2, GABR	 Variants were identified in Indian patients diagnosed with	 (175)
		  refractory epilepsy and associated with pharmacoresistance.
Kwan et al, 2011	 ABCC2, ABCC5	 Polymorphisms were analyzed in Chinese patients with 	 (176)
	 and ABCG2	 refractory epilepsy.
Kim et al, 2011	 SLC6A11	 Variants were found in Korean patients with refractory	 (177)
		  idiopathic, symptomatic and cryptogenic epilepsy and
		  associated with pharmacoresistance.
Meng et al, 2011	 SLC6A11	 Variants were found in Chinese patients with drug‑resistant 	 (178)
		  focal and generalized epilepsy and treated with
		  carbamazepine monotherapy.
Alpman et al, 2010	 MDR1	 Variants were determined in Turkish pediatric patients with	 (179)
		  refractory generalized or partial epilepsy.
Maleki et al, 2010	 ABCB1	 Variants were determined in Iranian pediatric and adults	 (180)
		  with refractory idiopathic and symptomatic epilepsy and
		  associated with pharmacoresistance.
Di Bonaventura et al, 2009	L eucine rich glioma	A  mutation was determined in an Italian family with refractory	 (181)
	 inactivated 1	 autosomal dominant lateral temporal lobe epilepsy.
Jang et al, 2009	 SCN1A, SCN1B	 Variants were determined in Korean patients with refractory	 (182)
	 and SCN2A	 symptomatic and idiopathic epilepsy.
Vahab et al, 2009; 	 ABCB1	 Variants were determined in Indian pediatric patients with	 (183,184)
Kwan et al, 2009		  refractory epilepsy, in Chinese patients with refractory
		  idiopathic, symptomatic or cryptogenic epilepsy and were
		  associated with pharmacoresistance.
Kauffman et al, 2009	 SLC6A4	A  variant was determined in adult Argentine patients with	 (185)
		  drug‑resistant mesial temporal lobe epilepsy and associated
		  with pharmacoresistance.
Lakhan et al, 2009	 SCN1A and SCN2A	A  variant was determined in Indian patients with drug‑resistant	 (186)
		  epilepsy and associated with pharmacoresistance.
Bahi‑Buisson et al, 2008	 CDKL5	 Mutations were identified in female Caucasian patients with	 (187)
		R  ett syndrome with refractory epilepsy.
Kwan et al, 2008	 SCN1A, SCN2A	 Variants were identified in Chinese patients with refractory	 (188)
	 and SCN3A	 symptomatic, idiopathic and cryptogenic epilepsy and
		  associated with pharmacoresistance.
Elia et al, 2008	 CDKL5	 Mutations were analyzed in Italian children with profound	 (189)
		  mental retardation and seizures (myoclonic or tonic spasms)
		  that were refractory to treatment. A total of three de novo
		  missense mutations were identified in the gene.
Abe et al, 2008	 SCN1A	 A variant was identified in Japanese drug‑responsive	 (190)
		  epileptic patients and associated with pharmacoresistance.
Shahwan et al, 2007; 	 ABCB1	 Variants were determined in Irish and in Chinese adult 	 (191‑193)
Kwan et al, 2007;		  patients with refractory epilepsy.
Hung et al, 2007		A   logistic model revealed that the interaction of the
		  polymorphisms was associated with drug‑resistant epilepsy
		  after adjusting for etiology and type of epilepsy in Chinese
		  patients. 	
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body weights and lower oxcarbazepine maintenance doses in 
patients who were overweight (51). In a cohort of 201 patients 
treated with valproic acid, an association was reported 
between the presence of the SNP rs230416 in SCN2A and the 
response to the drug (78). Similarly, another study reported 
an association between the SNPs in SCN2A (rs2304016) and 
SCN3B (rs3851100) and AED responsiveness in a cohort of 
595 patients who were treated with valproic acid for gener-
alized epilepsy and carbamazepine for partial epilepsy; the 
results demonstrated that none of these SNPs were signifi-
cantly associated with a response to the AED (79).

Previous studies have indicated that to improve the efficacy 
and safety of epilepsy treatments, it is necessary to conduct 
studies to identify the following: i) The possible influence of some 
of the phenotypic characteristics of patients in response to the 
treatments; ii) the relationship between the number and type of 
seizures; iii) the differences in drug transporting protein activity 
or receptor activity caused by the genetic variations; iii)  the 
impact of the presence of a genetic variant on the functionality of 
transporting proteins and AED target proteins; iv) the effects of 
potential alterations in target proteins, owing to a genetic variant, 

in the mechanisms of action of an AED; and v) factors that may 
contribute to susceptibility and treatment outcomes.

5. Clinical implications of genetic variants in pharmaco­
resistant epilepsy

Personalized medicine is treatment of patients with therapy 
aimed at targeting their specific pathophysiology; however, 
currently, this has limited applications in clinical prac-
tice. Advancements in genetic epilepsy models and deep 
phenotyping techniques have the potential to revolutionize 
translational research, and will bring precision medicine to 
the forefront of clinical practice (80). In a needs assessment 
aimed at identifying the clinical challenges faced by physi-
cians in diagnosing and treating children with epilepsy in 
Germany, Spain and the United States, it was reported that 
the main challenges were the application of guidelines in 
clinical practice, the identification of epilepsy and epileptic 
events, the integration of genetic tests into clinical practice, 
the integration of non‑pharmacological treatments, the tran-
sition from pediatric to adult care and the participation and 

Table III. Continued.

Author, year	 Gene	 Main observations 	 (Refs.)

Leschziner et al, 2007	 ralA binding protein 1	 Variants were genotyped in English patients with drug‑resistant	 (194)
		  epilepsy associated with pharmacoresistance. A total of six
		  SNPs were genotyped displaying an association between
		  rs329017 and the risk of pharmacoresistance
Seo et al, 2006; 	 ABCB1	 Variants were genotyped in patients with epilepsy and 	 (195,196)
Hung et al, 2005		  associated with pharmacoresistance. Haplotype analysis
		  indicated that drug‑resistant patients tended to display
		C  GC/CGC, CGC/TGC, CGC/TTT and TGC/CGT
		  combinations.
Mills et al, 2005	 PNPO	 Mutations in Asian families with epileptic encephalopathy	 (197)
		  were determined.
Buono et al, 2004	 KCNJ10	A  variant was detected in Caucasian patients diagnosed with	 (198)
		  refractory mesial temporal lobe epilepsy and associated with
		  pharmacoresistance.
Siddiqui et al, 2003	 ABCB1	 A variant was identified in English patients with refractory	 (199)
		  epilepsy and associated with pharmacoresistance.
Gambardella et al, 2003	 GABAB receptor 1	A  variant was determined in Italian patients with temporal lobe	 (200)
		  epilepsy and associated with pharmacoresistance.

ABCB1, ATP binding‑cassette subfamily B member 1; ABCC2, ATP binding‑cassette subfamily C member 2; ABCC5, ATP binding‑cassette 
subfamily C member 5; ABCG2, ATP binding‑cassette subfamily G member 2; CACNA1A, calcium voltage‑gated channel subunit α 1A; 
CYP2C1, cytochrome P450 family 2 subfamily C member 1; CYP2C19, cytochrome P450 family 2 subfamily C member 19; CYP2C9, cyto-
chrome P450 family 2 subfamily C member 9; CYP2D6, cytochrome P450 family 2 subfamily D member 6; CYP3A5, cytochrome P450 
family 3 subfamily A member 5; CYP3A4, cytochrome P450 family 3 subfamily A member 4; GABA, γ‑aminobutyric acid receptor; GABR, 
γ‑aminobutyric acid type A receptor; GRIN2, glutamate ionotropic receptor NMDA‑type subunit 2; KCNA, potassium voltage‑gated channel 
subfamily A; KCNB, potassium voltage‑gated channel subfamily B; KCNH, potassium voltage‑gated channel subfamily H; KCNJ10, potassium 
inwardly rectifying channel subfamily J member 10; KCNT1, potassium sodium‑activated channel subfamily T member 1; MDR1, ABC trans-
porter B family member 1; PNPO, pyridoxamine 5'‑phosphate oxidase; SCN2A, sodium voltage‑gated channel α subunit 2; SCN3A, sodium 
voltage‑gated channel α subunit 3; SCN8A, sodium voltage‑gated channel α subunit 8; SCN1B, sodium voltage‑gated channel β subunit 1; 
SLC35A1, solute carrier family 35 member A2; SLC6A1, solute carrier family 6 member 1; SLC6A4, solute carrier family 6 member  4; 
SLC6A11, solute carrier family 6 member 11; SLC9A6, solute carrier family 9 member 6.
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commitment of caregivers (80). These findings may support 
neuropediatricians who wish to specialize in epileptology to 
address these identified challenges based through precision 
medicine treatments (80). As we continue to gain an improved 
understanding of the true complexity underlying the physio-
pathology of genetic epilepsy and the identification of factors 
that are involved in phenotypic variations, it will be easier to 
address and understand genotype‑phenotype correlations (81).

Previous studies on genetic epilepsy syndromes have 
provided insight into the mechanisms of epileptogenesis, and 
have suggested roles for a number of genes with different 
functions, including ion channel proteins and those associated 
with the synaptic vesicle cycle and energy metabolism (82). 
In addition, advanced genomic technologies, high‑throughput 
sequencing and molecular diagnostics are increasingly 
improving our understanding of the genetic architecture in 
epilepsy, and molecular confirmation may influence the treat-
ment prescribed for some monogenic epilepsies. Moreover, 
it is of crucial importance that genetic methods that are able 
to analyze all known genes at a reasonable cost be devel-
oped to discover novel therapeutic options and to implement 
individualized precision medical treatment regimens (82).

6. Conclusions and future perspectives

Genetic variations in the most common genes that encode 
channels, transporters, drug‑metabolizing enzymes and recep-
tors have been discussed in this Review with regards to their 
association with drug‑resistant epilepsy, including: Sodium 
voltage‑gated channels SCN1A, SCN2A, SCN3A, SCN8A 
and SCN1B); potassium voltage‑gated channels (KCNA1, 
KCNA2, KCNB1, KCND7, KCNH5, KCNJ10, KCNQ2 and 
KCNT1); calcium voltage‑gated channel subunit α1 H; ATP 
binding‑cassette transporters (ABCB1, ABCC2, ABCC5 and 
ABCG2); mitochondrial transporter family members (SLC2A1, 
SLC6A1, SLC6A4, SLC6A11, SLC9A6, SLC25A22 and 
SLC35A2); drug‑metabolizing enzymes (CYP2C1, CYP2C9, 
CYP2C19, CYP2D6, CYPP3A4 and CYP3A5); CDKL5; and 
GABA receptors (GABRA1 and GABBR1). These data may 
prove useful for future studies of drug resistance in epilepsy and 
may contribute to the generation of new diagnostic methods. 
In addition, these methods could subsequently support the 
development of improved treatment regimens, including novel 
pharmacological targets and pharmacological therapeutics. 
Overall, these findings may also improve the application of 
more personalized therapies, which would lead to the reduc-
tion in treatment and medical care costs, and increase the 
quality of life for patients and caregivers.
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