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Abstract. Ketamine is a widely used general anesthetic and has 
been reported to demonstrate neurotoxicity and neuroprotection. 
Investigation into the regulatory mechanism of ketamine on 
influencing neural development is of importance for a better and 
safer way of relieving pain. Reverse transcription‑quantitative 
polymerase chain reaction and western blotting were used to 
detect the critical neural associated gene expression, and flow 
cytometry to detect the neural differentiation effect. Hence, 
in the present study the underlying mechanism of ketamine 
(50 nM) on neural differentiation of the mouse embryonic stem 
cell (mESC) line 46C was investigated. The results demonstrated 
that a low dose of ketamine (50 nM) promoted the differentiation 
of mESCs to neural stem cells (NSCs) and activated mamma-
lian target of rapamycin (mTOR) by upregulating the expression 
levels of phosphorylated (p)‑mTOR. Furthermore, inhibition of 
the mTOR signaling pathway by rapamycin or knockdown of 
mTOR suppressed neural differentiation. A rescue experiment 
further confirmed that downregulation of mTOR inhibited the 
promotion of neural differentiation induced by ketamine. Taken 
together, the present study indicated that a low level of ketamine 
upregulated p‑mTOR expression levels, promoting neural 
differentiation.

Introduction

Ketamine, an N‑methyl‑D‑aspartate (NMDA) receptor 
antagonist, is widely used in pediatric anesthesia, periop-

erative sedation, analgesia and other diagnostic procedures 
in pediatrics for children 0‑14  years old  (1). It is often 
consumed as a drug of abuse by the public, including preg-
nant women (2); the fetuses of such pregnant patients, who 
received non‑obstetric surgery, have an increasing incidence 
of exposure to ketamine through the placenta. Additionally, 
0.75‑2% of pregnant women require surgery associated with 
pregnancy or other medical issues (3,4). A series of experi-
ments have revealed that ketamine can induce neuroapoptosis 
and damage in the developing brain (5‑7). Repeated exposure 
to ketamine can be deleterious to neurodevelopment in 
infants (8). In contrast, increasing evidence also suggested 
that ketamine has neuroprotective function. Clinical studies 
have demonstrated that a single dose of ketamine mitigates 
postoperative cognitive dysfunction (8) and may offer specific 
protection towards post‑operative cognitive dysfunction (9). 
Ketamine may additionally prevent stress‑induced cognitive 
inflexibility in rats (10). Previous studies demonstrated that 
for traumatic brain injuries (TBIs), subarachnoid hemorrhage, 
malignant stroke and other neurological diseases, ketamine 
could inhibit the neuronal discharge across all injury modali-
ties (11,12). The neuroprotective function of ketamine has 
also been demonstrated in hypoxia‑ischemia and TBI, and as 
a fast‑acting antidepressant (13‑15). Dong et al (16) demon-
strated that the phosphoinositide 3‑kinase‑protein kinase 
B/Akt signaling pathway was involved in ketamine‑induced 
neurogenesis of cultured neural stem/progenitor cells 
(NSPCs). Furthermore, ketamine induces human neurotox-
icity in neurons differentiated from human embryonic stem 
cells (hESCs) via the reactive oxygen species‑mediated mito-
chondrial apoptosis pathway (17). These studies suggested 
that the effect of ketamine on neurodevelopment may be 
dose‑dependent. Additionally, the underlying mechanism of 
ketamine on neurodevelopment may also depend on different 
developmental stages; however, the molecular mechanism of 
ketamine regulating the early development of neural cells 
remains unclear.

Mouse ESCs (mESCs) derived from embryos at 
the pre‑implantation stage demonstrating an unlimited 
self‑renewal ability and capacity to generate different cell 
types are valuable for clinical research (18). Therefore, mESCs 
are an important as an in vitro model to study ontogenetic 
development. Previous studies identified that there are specific 
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critical genes regulating neural differentiation, for example, 
zing finger homeobox (Zfhx)1b has been reported to promote 
neural stem cell (NSC) colony formation by inducing Sex 
determining region Y‑box (Sox)1 expression (19). Sirtuin1 
could mediate alterations in DNA methylation to modulate 
embryonic stem cell differentiation (20). The microRNA‑134/
methyl‑CpG binding domain protein 3 axis could regulate 
the reprogramming and pluripotency of induced pluripotent 
stem cells, a type of ESC‑like cells, from neural progenitor 
cells (NPCs) (21); however, the neuroprotective function of 
ketamine in mESCs on NSC differentiation and its down-
stream mechanism remains elusive.

Mammalian target of rapamycin (mTOR) is a critical regu-
lator of growth and homeostasis (22‑24). A growing number 
of studies have demonstrated that the mTOR‑related signaling 
pathway is associated with the differentiation of NPCs and 
NSCs (25,26), and is important to regulate oligodendrocyte 
differentiation and remyelination  (27). mTOR also serves 
an important role in regulating cortical interneuron number 
and autophagy during brain development (28). Rapamycin, 
the mechanistic target of mTOR, has been associated with 
improvements in neurological deficits and increased brain 
water content (29). However, whether mTOR could regulate 
the neural differentiation of ESCs has been rarely evaluated. 
Besides, whether mTOR participates in ketamine regulatory 
signaling pathway or not, is also unclear.

In the present study, it was determined whether ketamine 
was able to influence the neural differentiation from the 
mESCs and the marker expression of sex‑determining region 
Y‑box (Sox)1 (30), N‑cadherin (N‑cad) (31) and Nestin (32). 
The present study suggested a safe dose of ketamine for 
clinical application and demonstrated that mTOR may be a 
potential target of better and safer therapeutics in the future.

Materials and methods

mESC culture. The mESC line 46C, containing the Sox1 
promoter and expressing green fluorescence protein (GFP), 
was employed to indicate the endogenous Sox1 expression 
during the neural differentiation at NPCs stage and gifted by 
Dr Xiaoqing Zhang (Tongji University, Shanghai, China) (33). 
Cells were cultured on feeder cells that are the irradiated 
mouse embryonic fibroblasts in KnockOut™ Dulbecco's 
modified Eagle's medium (Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA; cat. no. 10829018) with 15% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.), leukemia 
inhibitory factor (Merck KGaA, Darmstadt, Germany; 
cat. no. LIF2050) and β‑mercaptoethanol (β‑Me; 1:10,000, 
Sigma‑Aldrich; Merck KGaA) at 37˚C, under a 5%  CO2 
atmosphere. After 48 h, mESCs were digested into single cells 
using 0.05% trypsin (Gibco; Thermo Fisher Scientific, Inc.; cat. 
no. 2520056) and seeded on new feeder cells for passaging. 
The feeder cells that were able to secrete leukemia inhibitory 
factor to support the growth of the ESCs were made in our lab. 
Feeder cells were made from x‑irradiated day 13.5 embryonic 
fibroblasts. Day 13.5 embryonic fibroblasts were granted from 
Dr Liu lab in Tongji University.

Neural differentiation of mESCs to NSCs. The protocol was 
adapted from a previous study (34). The mESC line, 46C, 

was dissociated into single cells by trypsin and counted. 
Subsequently, 2x104  cells/ml mESCs were washed with 
Glasgow's minimum essential medium (GMEM; Gibco; 
Thermo Fisher Scientific, Inc.) in a 6 cm dish and re‑suspended 
in GMEM with 8% knockout serum replacement (Gibco; 
Thermo Fisher Scientific, Inc.), 1% sodium pyruvate, 1% 
L‑glutamine (Thermo Fisher Scientific, Inc.), 0.1 mM β‑Me. 
Cells were cultured in a 6 cm ultra‑low attachment petri dish 
and passaged every 2 days at 37˚C in a 5% CO2 atmosphere. 
The culture medium was changed every day. Clones exhibiting 
GFP fluorescence at the stage of NSC derived from 46C mESCs 
were detected with an IX73 + DP80 inverted fluorescence 
microscope (Olympus Corporation, Tokyo, Japan; magni-
fication, x20). During the neural differentiation, ketamine 
(final concentration 50 nM) was added into the medium. The 
control group consisted of cells treated only with physiological 
saline (0.9% NaCl). For the treatment with MK‑801, 10 µg/ml 
MK‑801 was used to treat cells during neural differentiation. 
Rapamycin (final concentration 50 µM) was added to the 
medium during the neural differentiation. The control group 
was treated with dimethyl sulfoxide, which was additionally 
used as the solvent for rapamycin. All the treating or control 
culture media was changed every day during the 7 days of 
neural differentiation from mESCs.

Reverse‑transcription quantitative polymerase chain 
reaction (RT‑qPCR). Total neural stem cell RNA was isolated 
by RNaiso plus (Takara Biotechnology Co., Ltd., Dalian, 
China), mRNA was reverse transcribed to cDNA at 37˚C for 
15 min using a RT reagent kit (Perfect Real Time; Takara 
Biotechnology Co., Ltd.). qPCR was performed using SYBR 
Green qPCR Mix (Takara Biotechnology Co., Ltd.). The 
primers are as follows: Nestin forward, 5'‑CCC​TGA​AGT​
CGA​GGA​GCT​G‑3' and reverse, 5'‑CTG​CTG​CAC​CTC​TAA​
GC​GA‑3'; N‑cadherin forward, 5'AGC​GCA​GTC​TTA​CCG​AA​
GG‑3' and reverse, 5'‑TCG​CTG​CTT​TCA​TAC​TGA​ACT​TT‑3'; 
Sox1 forward, 5'‑AAG​GAA​CAC​CCG​GAT​TAC​AAG​T‑3' and 
reverse, 5'‑GTT​AGC​CCA​GCC​GTT​GAC‑3'; and GAPDH 
forward, 5'‑AGG​TCG​GTG​TGAA​CGG​ATT​TG‑3' and reverse 
5'‑TGT​AGA​CCA​TGT​AGT​TGA​GGT​CA‑3'. The PCR ther-
mocycling conditions were as follows: Initial denaturation at 
95˚C for 5 min, followed by 40 cycles of denaturation at 95˚C 
for 5 sec, primer annealing at 60˚C for 20 sec, elongation at 
70˚C for 10 sec. In total, three independent experiments were 
performed. The relative gene expression was presented as 
2‑∆∆Cq using the relative quantification method and normalized 
to the expression of GAPDH (35).

Western blotting. Cells were lysed by radioimmunoprecipita-
tion assay lysis buffer (Beyotime Institute of Biotechnology, 
Haimen, China; cat. no.  P0013B) and quantified by a 
Bicinchoninic Protein Assay Kit (Beyotime Institute of 
Biotechnology; cat. no. P0009). A total of 40 µg protein was 
loaded for electrophoresis on 10% SDS‑PAGE gels. Proteins 
were transferred onto polyvinylidene fluoride membranes 
(Merck KGaA; cat. no. MH0323) and blocked with TBS and 
Tween 20 with 3% bovine serum albumin (Amresco, Inc., 
Framingham, MA, USA) for 1 h at room temperature and 
incubated with primary antibodies at 4˚C overnight. The anti-
bodies were as follows: mTOR (cat. no. 2972, Cell Signaling 
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Technology, Inc., Danvers, MA, USA, 1:1,000), p‑mTOR (cat. 
no. 5536, Cell Signaling Technology, Inc., 1:1,000), GAPDH 
(cat. no. 5174, Cell Signaling Technology, Inc. 1:1,500), p‑p70 
S6k antibody (cat. no. 9205, Cell Signaling Technology, Inc. 
1:1,000) and p70 S6k antibody (cat. no. 2708, Cell Signaling 
Technology, Inc. 1:1,000). The horseradish peroxidase‑conju-
gated secondary antibody used was anti‑rabbit IgG (cat. 
no. 7074; Cell Signaling Technology, Inc.; 1:2,500) and was 
incubated with the membranes for 2 h at room temperature. 
The bands were detected by an enhanced chemiluminescence 
western blotting substrate (Thermo Fisher Scientific, Inc.). 
Amersham Imager 600 (GE Healthcare, Chicago, IL, USA) 
was used for detecting the signaling. ImageJ_v1.8.0 software 
(National Institutes of Health, Bethesda, MD, USA) was used 
for densitometry.

Knockdown of mTOR. The pLKO.1‑puro vector (Addgene, 
Inc,, Cambridge, MA, USA; cat. no. 8453) containing mTOR 
short hairpin (sh)RNA was constructed to downregulate 
mTOR expression. The sequence of shRNA‑1 was: 5'‑AGT​
ACT​GTA​GCA​CCT​TGG​G‑3' and of shRNA‑2 was: 5'‑TCT​
TCT​CTC​TGT​AGT​CCC​G‑3'. The control vector used was the 
empty pLKO.1‑puro vector. The vectors (1 µg/6 cm dish) were 
transiently transfected into the cells during neural differen-
tiation from mESCs at day 3 using the Lipofectamine® 2000 
Transfection Reagent (Thermo Fisher Scientific, Inc.) and 
re‑transfected at day 5 in order to maintain the knockdown 

effect during the 7 days of neural transfection. Transfection 
efficiency was detected by RT‑qPCR at day 7.

Flow cytometry. The mESC line, 46C is a cell line with GFP 
expression, indicating endogenous Sox1 expression during 
the differentiation from mESCs to NSCs. Flow cytometry 
was performed to detect the quantitative proportion of 
GFP‑ Sox1‑positive cells to determine the differentia-
tion efficiency. Clones of NSCs were digested to a single 
cell suspension by 0.25% trypsin (Gibco; Thermo Fisher 
Scientific, Inc.; cat. no. 2520056) at 37˚C for 2 min. Cells 
were collected by centrifugation at 1,000 x g for 2 min at 
room temperature and re‑suspended with PBS to wash the 
cells. This step was repeated twice. The cell suspension in 
PBS was used for further analysis. A flow cytometer (BD 
Biosciences, Franklin Lakes, NJ, USA) was used to detect 
the GFP‑Sox1‑positive NSCs. The results were analyzed by 
using FlowJo software (version 7.6.1; FlowJo LLC, Ashland, 
OR, USA).

Statistical analysis. Each experiment was performed at 
least 3  times (n≥3). Statistical significance was detected 
by a Student's t‑test between two groups. For multiple 
groups, one‑way analysis of variance was used, followed by 
Tukey's honest significance test. Data are presented as the 
mean ± standard deviation. P<0.05 was considered to indicate 
a statistically significant difference.

Figure 1. Ketamine promotes neural differentiation. (A) GFP indicated the Sox1 expression of NPCs, suggesting the differentiation potential. Scale bar, 100 µm. 
(B) Detection of the NPCs markers expression by RT‑qPCR. (C) Flow cytometry analysis indicated more GFP‑Sox1‑positive cells in the ketamine‑treatment 
group. Data are presented as the mean ± standard deviation (n=3). *P<0.05, **P<0.01 vs. the ctrl. Ctrl, control; GFP, green fluorescence protein; NPC, neural 
progenitor cell; RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; Sox, sex‑determining region Y‑box.
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Results

Ketamine promotes neural differentiation. Neural differen-
tiation of mESCs to NSCs demonstrated that 50 nM ketamine 
added into the medium significantly promoted the neural 
differentiation detected on day 7 (Fig. 1A). Subsequently, the 
expression of NSCs markers was investigated demonstrating 
that Nestin, N‑cad and Sox1 were significantly upregulated in 

the ketamine‑treatment group compared with the control group 
(Fig. 1B). Flow cytometry further confirmed that the propor-
tion of GFP‑Sox1‑positive cells was significantly higher in the 
ketamine‑treatment group compared with the control group 
(Fig. 1C). These results indicated that ketamine may not only 
be an anesthetic; however, additionally regulates neural differ-
entiation. This suggested the potential influence of ketamine on 
individual neural differentiation at the early development stage.

Figure 2. Ketamine activates the mTOR signaling pathway. (A) Representative images of the expression of p‑mTOR in neural progenitor cells derived 
from ESCs as detected by western blotting; the ratio of p‑mTOR normalized to GAPDH/total mTOR is presented. (B) Ketamine‑treatment group 
demonstrated the upregulation of p‑70SK6. (C) Inhibtion of the NMDA signaling pathway by the NMDA receptor antagonist MK‑801 decreased the 
expression levels of p‑mTOR; the ratio of p‑mTOR normalized to GAPDH/total mTOR is presented. (D) 50 µM rapamycin markedly reduced the activa-
tion of the mTOR signaling, which attenuated the function of ketamine on regulating the level of p‑mTOR. Data are presented as the mean ± standard 
deviation (n=3). *P<0.05, **P<0.01 vs. the ctrl. Ctrl, control; ESC, embryonic stem cell; NMDA, N‑methyl‑D‑aspartate; mTOR, mammalian target of 
rapamycin; p, phosphorylated.
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Ketamine activates the mTOR signaling pathway. In order to 
detect the downstream targets of ketamine, western blotting 
was performed, which demonstrated the significant upregu-
lation of p‑mTOR (Fig. 2A) and of its downstream target, 

p‑70S6K compared with the control group (Fig. 2B), without 
influencing their total expression levels. Inhibition of the 
NMDA signaling pathway by the NMDA receptor antagonist 
MK‑801 significantly decreased p‑mTOR expression levels 

Figure 3. Inhibition of mTOR suppresses neural differentiation. (A) Representative images of neural differentiation in the rapamycin‑treatment and control 
groups. (B) Expression of NPCs markers of Nestin, N‑cad and Sox1 by RT‑qPCR. (C) Flow cytometry analysis of rapamycin‑treatment and control group. 
(D and E) Detection of the mTOR knockdown effect by shRNA, which suppressed neural differentiation. (F) Expression levels of NPCs markers, as measured 
by RT‑qPCR. (G) Flow cytometry analysis indicating less NPCs following transfection with shRNA. Scale bar, 100 µm. Data are presented as the mean ± stan-
dard deviation (n=4). *P<0.05, **P<0.01 and ***P<0.001 vs. the ctrl. Ctrl, control; N‑cad, N‑cadherin; NPC, neural progenitor cell; m‑TOR, mammalian target of 
rapamycin; p, phosphorylated; RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; shR, short hairpin RNA; Sox, sex‑determining region 
Y‑box.
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(Fig. 2C), which suggested that inhibition of NDMA signaling 
is not able to increase the mTOR expression level. Rapamycin 
(50 µM) was used to notably reduce the activation of mTOR 
signaling caused by ketamine. Subsequently, the cells were 
treated with ketamine and rapamycin together to perform 
the rescue experiments and it was identified that rapamycin 
was able to block the p‑mTOR expression level increased by 
ketamine (Fig. 2D).

Inhibition of the mTOR suppresses neural differentiation. 
The neural differentiation of mESCs was analyzed and 
rapamycin (50 µM) was added to the medium to investigate 
whether the number of NSCs was decreased compared 
with the control group on day 7 (Fig.  3A). Expression 
levels of Nestin, Sox1, N‑cad were significantly downregu-
lated by rapamycin compared with the control (Fig. 3B). 
Flow cytometry assay also indicated significantly fewer 
GFP‑Sox1‑positive cells following rapamycin treatment 
compared with the control (Fig.  3C). Transfection with 
mTOR‑shRNA during the differentiation of mESCs to 
NSCs (Fig. 3D) notably suppressed neural differentiation 
(Fig. 3E). The expression levels of the NSCs markers were 
significantly downregulated in response to mTOR silencing 
compared with in the control (Fig. 3F). Finally, the propor-
tion of GFP‑SOX1‑positive cells in the mTOR knockdown 
groups were significantly decreased compared with the 
control, as measured by flow cytometry (Fig. 3G). These 
results suggested that inhibition of mTOR signaling was 
able to significantly repress neural differentiation, which 

is contrary to the function of ketamine and suggested 
the possible regulatory mechanism of ketamine/mTOR 
signaling during neural differentiation.

mTOR mediates the function of ketamine‑regulated neural 
differentiation. Transfection with mTOR‑shRNA (Fig. 3D) 
demonstrated that shRNA‑2 induced more of a decrease of 
average mTOR expression and a more marked inhibitory effect 
on neural differentiation compared with shRNA‑1. Therefore, 
shRNA‑2 was selected for further study. Downregulation of 
mTOR significantly inhibited the promotion of neural differ-
entiation induced by ketamine, on day 7 (Fig. 4A). Expression 
levels of NSCs markers were significantly restored by mTOR 
knockdown in the ketamine‑treatment group (Fig. 4B). Flow 
cytometry also confirmed the rescue effect of mTOR down-
regulation following ketamine treatment (Fig.  4C). These 
results suggested that repression of mTOR blocked neural 
differentiation promoted by ketamine, which suggested the 
novel involvement of the ketamine/mTOR signaling pathway 
during neural differentiation.

Discussion

In the present study, it was revealed that ketamine activated 
mTOR to promote the neural differentiation of mESCs, 
providing the theoretical basis for the rational use of ketamine.

Ketamine, a widely used anesthetic, has potential neuro-
degenerative and long‑term cognitive deficits, affecting 
brain development  (7,36‑39). Methods of safe ketamine 

Figure 4. mTOR mediates the function of ketamine‑regulated neural differentiation. (A) Representative images of neural differentiation in rescue experiments. 
(B) Downregulation of mTOR restored neural progenitor cell marker expression levels, in the ketamine‑treatment group. (C) Flow cytometry assay also 
indicated that mTOR knockdown inhibited the neural differentiation promoted by ketamine. Scale bar, 100 µm. Data are presented as the mean ± standard 
deviation (n=3). *P<0.05 vs. respective ctrl; #P<0.05, ##P<0.01 vs. respective ketamine. Ctrl, control, cells transfected with the empty vector pLKO.1 and treated 
with 0.9% saline; mTOR, mammalian target of rapamycin; shR, short hairpin RNA; Sox, sex‑determining region Y‑box.
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application is an important research goal in clinical practice. 
The effects of ketamine are not only dependent on its dose, 
but also on the frequency of exposure (40‑43). Ketamine 
has a relative neuroprotective function by relieving pain and 
inhibiting inflammation (44). Ketamine serves an important 
role in regulating nerve development (16). In the present 
study, ketamine at 50 nM promoted neural differentiation 
and upregulated NSC marker expression levels. The process 
of neural differentiation occurs during early develop-
ment (45,46). The present results additionally demonstrated 
the positive effects of ketamine at a low dose, suggesting 
the safe clinical use in surgery for pregnant patients and 
children in the future.

ESCs have been extensively used for studying develop-
ment, particularly neural development (47-51). Numerous 
genes serve an important role in the differentiation into 
neural stem cells (52,53). A recent study demonstrated that 
fibronectin type III domain‑containing 5 facilitated neural 
differentiation by increasing the expression of brain derived 
neurotrophic factor (54). Zfhx1b gene expression has been 
confirmed to be notably upregulated via the fibroblast 
growth factor signaling pathway in mESCs cultured in a 
permissive neural‑inducing environment  (19). Ketamine 
was proposed to regulate mTOR activity by upregulating 
the expression levels of p‑mTOR in the present study. This 
was reversed by adding the mTOR inhibitor rapamycin 
or by downregulating mTOR. This suggested a potential 
molecular mechanism of ketamine regulation; however, 
further investigation is required.

In neural progenitors, insulin has been demonstrated 
to induce neurogenesis of NPCs by activating mTOR (26). 
mTOR is also needed for the of dendritic arbors develop-
ment and stabilization in the newly born olfactory bulb 
neurons (55). The mTOR signaling pathway was reported 
to mediate valproic acid‑induced neural differentiation of 
NSCs (56). Inhibition of the mTOR signaling pathway by 
rapamycin was observed to suppress neural differentiation 
in the present study. The promotion of neural differentiation 
caused by ketamine was also inhibited by silencing mTOR. 
The expression of Nestin, Sox1 and N‑cad was also restored 
by downregulating mTOR. The NMDA signaling pathway, 
was inhibited during the neural differentiation and the levels 
of p‑mTOR were also suppressed. This result indicated the 
regulatory function of ketamine via a non‑NMDA signaling 
pathway during neural differentiation. However, a limitation 
of the present study is that whether the NMDA receptor 
may influence neural differentiation remains unknown. 
mTOR complex 1 (mTORC1) was closely associated with the 
neuron‑associated biological process downstream target (57). 
The activity of p70S6K, the downstream target of mTORC1, 
was increased by ketamine, indicating that it may participate 
in the regulation of ketamine. These results determined 
that the ketamine/mTOR signaling pathway regulated the 
neural differentiation process of NSCs derived from mESCs; 
however, further investigation is required.

In summary, the present study revealed the ketamine/
mTOR signaling pathway on regulating the neural differentia-
tion and suggested a potential dose of ketamine. The ketamine/
mTOR signaling pathway needs to be further investigated for 
its potential use in clinic.
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