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Abstract. Ultrasonic microbubbles in combination with 
microRNA (miRNAs/miRs) exhibited promising effects 
on cancer treatments. The aim was to investigate the role of 
miR‑378 in hepatoma cells and the efficiency of it in combina-
tion with ultrasonic irradiation and SonoVue® microbubbles 
method for cell transfection. HuH‑7, Hep3B and SK‑Hep1 
cells were transfected with an miR‑378 mimic using only 
Lipofectamine® 3000 or combined with SonoVue micro-
bubbles and ultrasonic irradiation at 0.5 W/cm2 for 30 sec. 
mRNAs and protein levels of Cyclin D1, Bcl‑2, Bax, Akt, p53 
and Survivin were detected by reverse transcription‑quantita-
tive PCR and western blotting, respectively. Cell survival rate, 
proliferation, cell cycle and apoptosis were determined by Cell 
Counting Kit‑8, cell double cytochemical staining and flow 
cytometry, respectively. It was found that using a combina-
tion of ultrasonic irradiation and the SonoVue microbubbles 
method increased the effectiveness of miR‑378 transfection 
into hepatocellular carcinoma (HCC) cells, and increased 
the inhibition of cell survival and proliferation. Moreover, 
miR‑378 increased the rate of apoptosis and upregulated the 
expression of Bax and p53, and suppressed the cell cycle 
and downregulated the expression of Cyclin D1, Bcl‑2, Akt, 
β‑catenin and Survivin much more effectively in the HCC cell 
line by applying the combined method. Thus, miR‑378 was 
shown to be a suppressive factor to reduce proliferation and 
increase apoptosis in HCC cells. Additionally, the combination 
of ultrasonic irradiation and SonoVue microbubbles method 
was more efficient in the transfection of miRNA.

Introduction

The pathogenesis of hepatocellular carcinoma (HCC) has 
not yet been fully clarified and there is still a lack of targeted 
therapies for HCC (1,2). For patients with the disease, radical 
resection of HCC is the main treatment in its early stages, but 
>50% of post‑operative patients show metastasis and recurrence 
within 5 years (1,2). Targeted drugs for HCC are emerging, 
providing possible new therapies to prevent and cure malignant 
cancer (3). However, its therapeutic effects are still not satisfac-
tory, due to the side effects it has on normal cells (4). Thus, the 
current treatments for HCC still face several challenges.

Studies conducted to investigate HCC genes at molecular 
level indicate that a number of genes and proteins are closely 
related to the malignant characteristics of HCC staging, recur-
rence and metastasis, and these molecules may play important 
roles in the occurrence and development of HCC  (5,6). 
Thousands of microRNAs (miRNAs/miRs) exist in the human 
genome and each miRNA can directly regulate ~200 target 
genes, and nearly 33% of the protein‑coding genes in humans 
are controlled by miRNAs (5‑7). Therefore, miRNAs occupy 
an indispensable position in the spectrum of human gene, thus, 
studying gene therapy for the treatment of hepatoma from the 
aspect of miRNA regulation has great potential.

Continuous research and development of ultrasound 
molecular imaging and biomedical engineering, especially 
development of targeted contrast microbubbles carrying 
various drugs and genes, have laid a solid foundation for 
building up ultrasonic microbubble technology for thera-
peutic use (8‑11). Ultrasonic microbubbles are microbubbles 
composed of a core gas surrounded by a shell membrane 
with the size of 2‑8  µm or even smaller  (12). As lipids 
(represented by SonoVue®) have higher efficiency, fewer side 
effects and high stability, it has become the most widely 
used microbubbles in most studies (12‑15). The mechanism 
of ultrasound‑mediated targeted delivery mainly relies on 
cavitation and sonication effects of ultrasonic microbubbles 
generated under the irradiation of ultrasonic field strength (16). 
Ultrasound‑targeted microbubbles show various modifications 
in their shell membranes and they can carry a variety of drugs 
or genes and can bind to specific antigens or genes expressed 
by specific cells in the body, thus providing the possibility of 
ultrasound‑mediated targeted treatment (17).
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Currently, the delivery of nucleic acid via microbubbles 
and ultrasound method has attracted much attention due to the 
discovery of the potentials of miRNAs in modulating target 
genes (18). In view of these valuable prospects, the present 
study aimed to investigate the role of miR‑378 in hepatoma 
cells and the efficiency of combining ultrasonic irradiation and 
SonoVue microbubbles for cell transfection.

Materials and methods

Cell incubation. HuH‑7 cell line was purchased from the Japanese 
Collection of Research Bioresources Cell Bank, while Hep3B cell 
line was purchased from American Type Culture Collection and 
SK‑Hep1 cell line was purchased from The Cell Bank of Type 
Culture Collection of the Chinese Academy of Sciences. All 
the cell lines were cultured in DMEM (D0819; Sigma‑Aldrich; 
Merck KGaA) containing 10% FBS (F8192; Sigma‑Aldrich; 
Merck KGaA) and penicillin‑streptomycin reagent (V900929; 
Sigma‑Aldrich; Merck KGaA) in 5% CO2 at 37˚C.

Grouping and transfection. In order to explore the role of 
miR‑378 and the efficiency of the combined method for cell 
transfection, the cells were grouped as Blank, miR‑378 control, 
L group (HCC cells transfected with miR‑378) and LUS groups 
(HCC cells treated with miR‑378 mimic combined with ultra-
sonic irradiation and SonoVue microbubbles). Briefly, HuH‑7, 
Hep3B and SK‑Hep1 cells at 1x106 cells/ml in the LUS or 
miR‑378 control groups were plated in a 96‑well plate and 
then respectively transfected with 100 nmol/l miR‑378 mimic 
(Shanghai GenePharma Co., Ltd.), or miR‑378 mimic control 
vector (Shanghai GenePharma Co., Ltd.) in a mixture with 
Lipofectamine® 3000 (L3000015; Thermo Fisher Scientific, 
Inc.) and 2.5 µg/µl SonoVue microbubbles (Bracco Suisse 
SA) under the irradiation of ultrasonic transfer apparatus via 
ultrasound couplant (Anhui Deepblue Medical Technology 
Co., Ltd.) at the parameters of 0.5 W/cm2 for 30 sec. The cells 
in the L group were transfected with miR‑378 mimic using 
Lipofectamine 3000 only, while those in the Blank group 
were treated with medium only. All the cells were cultured 
for another 72 h after the transfection (19). The sequence of 
miR‑378 mimic was 5'‑AGG​CUC​UGA​CUC​CAG​GUC​C‑3'; 
The sequence of miR‑378 mimic control was 5'‑UUC​UCC​
GAA​CGU​GUC​ACG​UTT‑3'.

Reverse transcription‑quantitative (RT‑q)PCR. Total RNAs 
from HuH‑7, Hep3B and SK‑Hep1 cells at 1x106 cells/ml were 
obtained using TRIzol reagent (15596018; Thermo Fisher 
Scientific, Inc.) and further reverse‑transcribed into cDNAs 
following the instructions of PrimeScript RT reagent kit 
(Takara Biotechnology Co., Ltd.), with the conditions for 
reverse transcription being: 30˚C for 60 min; 30˚C for 60 min; 
and 95˚C for 60 min. The cells were then cultured for 72 h 
following the treatments for HuH‑7 cells. A total of 0.5 µl 
forward primer, 0.5 µl reverse primer, 3 µl cDNA template, 
5  µl 2X SYBR Green master mix (4913850001; Roche 
Diagnostics ) and 1 µl ddH2O were mixed together and reacted 
for 40 cycles in the following conditions: Initial denaturation 
at 95˚C for 60 sec, at 95˚C for 20 sec, at 65˚C for 30 sec, and 
at 72˚C for 40 sec in Bio‑Rad IQ5 thermocycler (Bio‑Rad 
Laboratories, Inc.). The sequences of primers used are listed 

in Table I. Relative expression of miR‑378, Cyclin D1, Bcl‑2, 
Bax, Akt, p53 and Survivin were normalized to that of U6 by 
2‑ΔΔCq method (20).

Cell Counting Kit (CCK)‑8. After 72  h, relative cell 
survival rates of HuH‑7, Hep3B and SK‑Hep1 cells were 
detected by CCK‑8 following the manufacturer's protocols 
(96992‑100TESTS‑F; Sigma‑Aldrich; Merck KGaA). Briefly, 
1x106 cells were collected and tested after the transfection of 
miR‑378 mimic. Optic density (OD) values were read on a 
microplate reader (Multiskan; Thermo Fisher Scientific, Inc.) 
at 450 nm and relative cell survival rates of cells were calcu-
lated according to the standard curve of OD. The experiment 
was conducted in triplicate.

Double cytochemical staining. Cells (~4x103‑1x106) were 
cultured in 96‑well plates. EdU solution (A10044; Thermo 
Fisher Scientific, Inc.) was diluted by culture medium at 
1,000:1 and 100 µl of 50 µm EdU medium was added to each 
well and maintained for 2 h. The cells were washed once or 
twice using PBS for 5 min. Then, 100 µl cell fixative (PBS 
containing 4% paraformaldehyde) was added to each well 
and maintained for 30 min at room temperature. A total of 
2 mg/ml glycine was added to each well for decolorization 
and then further incubated for 5 min on a shaker. PBS (100 µl) 
was added to each well for, held for 5 min and then 100 µl of 
penetrant (0.5% Triton X‑100 in PBS) was added to each well 
for 10 min. After rinsing in PBS, 1X Hoechst 33342 reaction 
solution (H3570; Thermo Fisher Scientific, Inc.) was diluted by 
deionized water at 100:1 and added to each well for a 30 min 
incubation at room temperature in the dark. The staining result 
was immediately observed by using a fluorescence microscope 
(BX53T, Olympus Corporation; magnification, x100) after 
washing the cells with PBS one to three times.

Evaluation of apoptosis. Briefly, 5x105  cells were resus-
pended in 1 ml cold PBS and collected into 100 ml binding 
buffer using an Annexin V‑FITC kit (Sigma‑Aldrich; Merck 
KGaA). A total of 10 µl FITC‑labeled Annexin V and 5 µl 
propidium iodide were added to the cells for 20 min at room 
temperature. Cell apoptosis was detected using flow cytometry 
(BD FACSVerse Z200; FCAP Array software v3.0, Becton, 
Dickinson and Company) after the cells were mixed with 
200 µl binding buffer and washed.

Determination of cell cycle. Followed by the detection of 
apoptosis rate, 1x106  cells were gathered and digested by 
0.25% trypsin to determine the cell cycle in each phase. 
After cell transfection, Vybrant™ DyeCycle™ Violet Stain 
(Thermo Fisher Scientific, Inc.) was used for flow cytometry 
(BD FACSVerse Z200; FCAP Array software v3.0, Becton, 
Dickinson and Company) to determine the phases in the cell 
cycle after incubation at 4˚C for 72 h.

Western blotting. Protein expression of Cyclin D1, Bcl‑2, Bax, 
Akt, p53 and Survivin were detected 72 h later. Cells (1x106) 
were obtained and lysed in order to extract total proteins 
using a mixture of RIPA lysate (R0278; Sigma‑Aldrich; 
Merck KGaA) with protease inhibitor (S8830; Sigma‑Aldrich; 
Merck KGaA). The total proteins (50 µg per lane) from each 
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sample was separated on 10% SDS‑PAGE at 120  V for 
~1.5 h. ReBlot Plus kit (2500; Sigma‑Aldrich; Merck KGaA) 
was used to strip antibodies. In brief, 1X Antibody Solution 
was added to the protein suspension and incubated at room 
temperature for 15  min, and then transferred to a PVDF 
membrane, which was then blocked by 5% milk (non‑fat) at 
room temperature for 1 h. Next, primary antibodies against 
Cyclin D1 (cat. no. ab16663), Bcl‑2 (cat. no. ab59348), Bax 
(cat. no. ab32503), Akt (cat. no. ab8805), p53 (cat. no. ab26), 
Survivin (cat. no. ab469), β‑catenin (cat. no. ab32572) and 
GAPDH (cat. no. ab8245; all purchased from Abcam) were 
diluted to 1:1,000 by 5% milk (non‑fat) and used to incubate 
with the PVDF membrane at 4˚C overnight. The membrane was 
then probed with a goat anti‑rabbit horseradish peroxidase 
conjugated‑secondary antibody (1:2,000; cat.  no.  ab6721; 
Abcam) at room temperature for 1 and washed by PBST (PBS 
with 0.1% Tween). A SignalFire™ ECL reagent (cat. no. 6883; 
Cell Signaling Technology , Inc.) was used for the detection 
of proteins. Image Lab™ Software (version 3.0) was used for 
densitometric analysis and quantification of the western blot 
data (Bio‑Rad Laboratories Inc.).

Statistics. Results from the present study were analyzed by 
GraphPad Prism v8.0 (GraphPad Software, Inc.). The mean 
value in each group was compared by one‑way ANOVA. 
Tukey's test was used as a post‑hoc test following ANOVA. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

miR‑378 inhibits the proliferation of HuH‑7 cells more 
efficiently using a combination of ultrasonic irradiation 
and SonoVue microbubbles method. To investigate the 

role of miR‑378 on the proliferation of HuH‑7, Hep3B and 
SK‑Hep1 cells, and the efficiency of transfection using 
ultrasonic irradiation in combination with SonoVue micro-
bubbles, cell survival rate was detected by performing 
CCK‑8 and cell proliferation rate was measured using 
double cytochemical staining. In the present study, the 
results revealed that the relative expression of miR‑378 in 
the L group was significantly increased compared with that 
in the Blank group (P<0.01), and in the LUS group this 
expression was significantly increased compared with that 
in the miR‑378 control and L groups (P<0.001; Fig. 1A‑C). 
Moreover, the relative cell survival rate (%) of HuH‑7, Hep3B 
and SK‑Hep1 cells in the L group was reduced compared 
with that in the Blank group, and was also reduced in the 
LUS group compared with that in the miR‑378 control and 
L groups (P<0.05 and P<0.01, respectively; Fig.  1D‑F). 
Furthermore, the cell proliferation rate (%) of Huh‑7 cells in 
the L and LUS groups demonstrated a similar trend to that 
of the cell survival rate (P<0.05 and P<0.01, respectively; 
Fig. 1G and H). Thus, these data suggested that miR‑378 
expression contributed to the suppression of the prolifera-
tion of HuH‑7 cells and that the combination of ultrasonic 
irradiation and SonoVue microbubbles method was more 
effective in the transfection of miRNA.

miR‑378 increases the apoptosis rate and arrests the cell cycle 
of HuH‑7 cells more efficiently using a combined method 
of ultrasonic irradiation and SonoVue microbubbles. Cell 
apoptosis and cell cycle of each phase were then evaluated. As 
expected, the apoptosis rate (%) of HuH‑7 cells in the L group 
was increased compared with that in the Blank group, more-
over, it was significantly elevated in the LUS group compared 
with that in the miR‑378 control and L groups (P<0.001; 
Fig. 2A and B). Furthermore, the percentage of HuH‑7 cells in 
the G1 phase in the L group was increased compared with that 
in the Blank group, but it was much higher in the LUS group 
than that in the miR‑378 control and L groups (P<0.05 and 
P<0.01, respectively; Fig. 2C and D). However, the S and G2 
phase in the L group were significantly lower than that in the 
miR‑378 control group, while the two phases in the LUS group 
were reduced compared with those in the miR‑378 control and 
L groups, and no significant difference between the L and LUS 
groups on S phase was observed (P<0.05, P<0.01 and P<0.001; 
Fig. 2C and D). Thus, miR‑378 expression could increase the 
rate of apoptosis and arrest the cell cycle of HuH‑7 cells in 
G1 phase more efficiently using a combination of ultrasonic 
irradiation and SonoVue microbubbles method. Similarly, the 
apoptosis rate (%) of Hep3B cells in the L group was increased 
compared with that in the Blank group and it was significantly 
higher in the LUS group compared with that in the miR‑378 
control and L groups (P<0.001; Fig. 2E and F). Moreover, the 
apoptosis rate (%) of SK‑Hep1 cells in the L group was higher 
than that in the Blank group and it was significantly increased 
in the LUS group compared with that in the miR‑378 control 
and L groups (P<0.001; Fig. 2G and H).

miR‑378 regulates genes related to apoptosis and proliferation 
of HuH‑7 cells. The present study also explored whether genes 
related to apoptosis and the proliferation of HuH‑7 cells could 
be affected by miR‑378 expression, and the efficiency of the 

Table I. Primers used in the study.

Primer name	 Sequence (5'‑3')

miR‑378	 F: CCTGACTCCAGGTCCT
	R : GAACATGTCTGCGTATCTC
Cyclin D1	 F: GTCTTCCCGCTGGCCATGAACTAC
	R : GGAAGCGTGTGAGGCGGTAGTAGG
Bcl‑2	 F: GCCTTCTTTGAGTTCGGTG
	R : CAGAGACAGCCAGGAGAAATC
Bax	 F: GCAAACTGGTGCTCAAGG
	R : CGCCACAAAGATGGTCAC
Akt	 F: TGGACTACCTGCACTCGGAGAA
	R : GTGCCGCAAAAGGTCTTCATGG
p53	 F: TAAAAGATGTTTTGAATG
	R : ATGTGTGTGATGTTGTAGATG
Survivin	 F: CCACTGAGAACGAGCCAGACTT
	R : GTATTACAGGCGTAAGCCACCG
U6	 F: GCTTCGGCAGCACATATACTAAAAT
	R : GAAGATGGTGATGGGATTTC

miR, microRNA.
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Figure 1. miR‑378 inhibits the proliferation of HuH‑7 cells much more efficiently using a combination of ultrasonic irradiation and the SonoVue microbubbles 
method. Relative expression of miR‑378 in (A) Huh‑7, (B) Hep3B and (C) SK‑Hep‑1 cells. Cell survival rate (%) was detected by Cell Counting Kit‑8 in 
(D) HuH‑7, (E) Hep3B and (F) SK‑Hep1 cells. (G) Cell proliferation rate (%) of Huh‑7 cells in Blank, miR‑378 control, L and LUS groups. (H) Double 
cytochemical staining of Hoechst 33342 (blue) and EdU (red) in each group. Bars indicate mean ± SD. *P<0.05 and **P<0.01, vs. Blank; ^^P<.0.1 and ^^^P<0.001 
vs. miR‑378 control; #P<0.05 and ##P<0.01 vs. L. L group, the hepatocellular carcinoma cells were transfected with miR‑378; LUS group, the hepatocellular 
carcinoma cells were treated with miR‑378 mimic combined with Ultrasonic irradiation and SonoVue microbubbles. miR, microRNA.
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Figure 2. miR‑378 increases the rate of apoptosis and arrests the cell cycle of HuH‑7 cells more efficiently using the combined method. (A) Rate of apoptosis 
of HuH‑7 cells in Blank, miR‑378 control, L and LUS groups detected by detection flow cytometry. (B) Apoptosis rate (%) in each group. (C) Cell cycle (%) of 
each phase in each group. (D) Cell cycle assessment using flow cytometry in each group. Flow cytometry was used to detect cell apoptosis in (E and F) Hep3B 
and (G and H) SK‑Hep1 cells. Bars indicate mean ± SD. *P<0.05 and ***P<0.001 vs. Blank; ^P<0.05, ^^P<0.01 and ^^^P<0.001 vs. miR‑378 control; #P<0.05, 
##P<0.01 and ###P<0.001 vs. L. L group, the hepatocellular carcinoma cells were transfected with miR‑378; LUS group, the hepatocellular carcinoma cells were 
treated with miR‑378 mimic combined with Ultrasonic irradiation and SonoVue microbubbles. miR, microRNA.
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combined transfection method. In the current study, the data 
revealed that the protein and mRNA expression levels of 
Cyclin D1, Bcl‑2, Akt and Survivin in the L group were lower 
than those in the miR‑378 control group, and the levels were 
significantly decreased in the LUS group compared with those 
in the L and miR‑378 control groups (P<0.01 and P<0.001; 
Fig. 3A‑C). On the other hand, the expression of Bax and p53 
exhibited a different trend, expression increased in the L and 
LUS groups compared with the miR‑378 control and Blank 
groups, with the highest expression found in the LUS group 
(P<0.05 and P<0.001; Fig. 3A‑C). In addition, β‑catenin expres-
sion was significantly reduced in the LUS group compared 
with that in the miR‑378 control and L groups (P<0.05 and 

P<0.001; Fig. 3D‑E). Taken together, these results indicated 
that miR‑378 expression led to a decrease in the expression 
of proliferation‑related genes and increased the expression 
of apoptosis‑related genes. Additionally, it was demonstrated 
that the use of combined ultrasonic irradiation and SonoVue 
microbubbles method for the transfection of miR‑378 was 
more effective.

Discussion

At present, miRNAs have been increasingly found to have 
important roles in the development of cancer. It has been 
shown that miR‑146a not only has a tumor‑suppressive effect, 
but also plays a critical role in the growth of HCC cells and 
that genetic variation of miR‑146a may be a risk factor for 
developing HCC  (21). The expression of miR143HG was 
significantly downregulated in HCC cells and tissues, and 
was associated with the staging and prognosis of patients with 
HCC (22). Furthermore, previous research has also suggested 
that the upregulation of miR‑21‑5p may be a functional regu-
lator of HCC apoptosis and could be a new tumor marker for 
early diagnosis of HCC (23). The current study examined 
the effects of miR‑378 overexpression on HuH‑7 cells and 
explored the efficiency of the combined transfection method of 
ultrasonic irradiation and SonoVue microbubbles. The results 
demonstrated that miR‑378 functioned as a suppressor in the 
proliferation of HuH‑7, Hep3B and SK‑Hep1 cells, and this 
effect of miR‑378 could be enhanced by using the combined 

Figure 3. miR‑378 regulates genes related to apoptosis and proliferation of HuH‑7 cells more efficiently. (A) Western blot images showing protein expression 
of Cyclin D1, Bcl‑2, Bax, Akt, p53 and Survivin in Blank, miR‑378 control, L and LUS groups. Histograms showing (B) relative protein and (C) mRNA 
expression levels in each group. (D) Western blotting was used to measure the expression of β‑catenin. (E) Relative expression of β‑catenin was quantified 
via western blotting. Bars indicate mean ± SD. *P<0.05, **P<0.01 and ***P<0.001 vs. Blank; ^^P<0.01 and ^^^P<0.001 vs. miR‑378 control; #P<0.05, ##P<0.01 and 
###P<0.001 vs. L. L group, the hepatocellular carcinoma cells were transfected with miR‑378; LUS group, the hepatocellular carcinoma cells were treated with 
miR‑378 mimic combined with Ultrasonic irradiation and SonoVue microbubbles. miR, microRNA.
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method. Thus, these results indicated that a combined 
transfection approach is useful and may have potential in gene 
therapy.

Overexpressed miR‑378 could be transfected into HuH‑7, 
Hep3B and SK‑Hep1 cells, which are representative of hepatoma 
cells. Furthermore, it was found that miR‑378 overexpression 
reduced the proliferation ability and increased the apoptosis 
rate of HuH‑7, Hep3B and SK‑Hep1 cells. The cell cycle is a 
process during which cells undergo a series of controls and 
regulations to maintain an orderly progression of cell growth 
and proliferation (24‑26). Cyclin/CDK is a promoter of the cell 
cycle (24‑26). Cyclin D1, a member of the Cyclin family and 
also a proto‑oncogene, promotes cell G1/S phase via CDK, 
thereby promoting cancer development (24‑26). p53 is a tumor 
suppressor gene located at 17p in human chromosomes and 
is normally expressed at low levels in the nucleus (27‑30). 
Mutated p53 genes have been found in various human tumors, 
including in HCC (27‑30). p53 proteins are involved in several 
cellular processes, including gene transcription, DNA repair, 
cell cycle, genome stabilization, chromosome segregation, 
senescence, apoptosis and angiogenesis  (27‑30). The p53 
signal transduction pathway is an important signaling pathway 
regulating G1/S phase (27‑30). The role of the Bcl‑2 family in 
apoptosis has received much attention (31), Bcl‑2 is an inhib-
itor of apoptosis protein, while Bax is an apoptosis‑promoting 
protein, these two factors are closely related to the regulation 
of apoptosis (31‑34). Specifically, Bax forms a heterodimer 
with Bcl‑2, thereby inhibiting the function of Bcl‑2 (35‑37), 
moreover, the susceptibility of cell apoptosis depends on the 
ratio of Bax/Bcl‑2, which also determines cell survival after 
receiving apoptosis signals, thus, the ratio plays an important 
role in tumor occurrence (35‑37). Akt is a serine/threonine 
protein kinase  (38‑40) and when cells are stimulated by 
growth factors, PI3K activates and produces PIP3 that binds to 
the PH domain of Akt to trigger the recruitment of Akt to the 
cell membrane (38‑40). This process is involved in resistance 
to apoptosis, glucose metabolism, protein synthesis and could 
promote cell growth and proliferation (38‑40). Survivin is one 
of the members of the IAP family with the lightest molecular 
weight (41,42) and it specifically binds to mitotic spindles 
during G2/M phase and can inhibit caspase‑3, caspase‑7, 
caspase‑8 and cytochrome C, which are the key factors in 
apoptosis signaling pathways, therefore it can promote cancer 
development  (41,42). In the present study, expression of 
Cyclin D1, Bcl‑2, Akt and Survivin were reduced in HuH‑7 
cells transfected with miR‑378, while Bax and p53 expression 
was elevated, suggesting that the proliferation of HuH‑7 cells 
was downregulated and apoptosis was increased by the over-
expression of miR‑378.

Several researchers have investigated the role of miR‑378 
in hepatoma. An et al (43) reported that in a Chinese popula-
tion, mutant miR‑378 was related to the prognosis of HCC. 
Similarly, Hyun et al (44) revealed that the activation of hepatic 
stellate cells and the liver fibrosis process could be suppressed 
by miR‑378. In addition, Zhou et al (45) found that miR‑378 
could be overexpressed by metformin to reduce proliferation 
of HCC. Thus, miR‑378 may be a suppressor in the process of 
hepatoma.

Interestingly, in the present study it was found that when 
miR‑378 was transfected into HuH‑7, Hep3B and SK‑Hep1 

cells by the combined method of ultrasonic irradiation and 
SonoVue microbubbles, the suppressive effect of miR‑378 was 
more significant. Ran et al (19) indicated that interference of 
the target gene by short interfering RNA using the combined 
method of ultrasonic irradiation and SonoVue microbubbles 
was more efficient than using the lipidosome method for cell 
transfection. Li et al (46) also showed that SonoVue and ultra-
sound irradiation may have promising effects in breast cancer 
therapy by delivering the target genes effectively.

Generally, traditional viral transfection and lipofection 
methods limit the functionality of target genes in target cells, 
due to their low safety and poor transfection efficiency (47,48). 
However, SonoVue differs from traditional gene vector 
microbubbles and can overcome such limitations (49). When 
SonoVue microbubbles are irradiated by ultrasound, they 
can produce continuous compression or expansion, leading 
to the rupture of microbubbles with accompanied cavitation 
effect (50). Thus, the permeability of the target tissue or cell 
membrane is increased, which promotes the entry of the gene 
into the target cells (50).

In conclusion, miR‑378 is shown to be a suppressive factor 
in HCC, as it suppresses the proliferation and increases the 
apoptosis of HCC cells. Moreover, the combination of ultrasonic 
irradiation and SonoVue microbubbles method is more efficient 
in the transfection of miRNA. Therefore, the present findings 
contribute to the current gene therapy for hepatoma, however, 
the feasibility of such a method should be further explored.
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