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Abstract. celastrol and triptolide, chemical compounds 
isolated from Tripterygium wilfordii hook (also known 
as thunder god vine), are effective against rheumatoid arthritis 
(ra). celastrol targets numerous signaling pathways involving 
nF-κB, endoplasmic reticulum ca2+-aTPase, myeloid differ-
entiation factor 2, toll-like receptor 4, pro-inflammatory 
chemokines, dna damage, cell cycle arrest and apoptosis. 
Triptolide, inhibits nF-κB, the receptor activator of nF-κB 
(ranK)/ranK ligand/osteoprotegerin signaling pathway, 
cyclooxygenase-2, matrix metalloproteases and cytokines. The 
present review examined the chemistry and bioavailability of 
celastrol and triptolide, and their molecular targets in treating 
ra. clinical studies have demonstrated that T. wilfordii has 
several promising bioactivities, but its multi-target toxicity 
has restricted its application. Thus, dosage control and struc-
tural modification of T. wilfordii are required to reduce the 
toxicity. in this review, future directions for research into these 
promising natural products are discussed.

Contents

1. introduction
2. Metabolism and bioavailability
3. Molecular targets of celastrol
4. Molecular targets of triptolide
5. adverse effects of T. wilfordii
6. conclusions

1. Introduction

rheumatoid arthritis (ra) is a complicated disease caused 
by environmental and genetic factors that involves a hyperac-
tive immune system and synovial inflammation in multiple 
joints, which if left untreated irreversibly destroys joints and 
leads to severe disability (1). The common drugs used to treat 
ra, including methotrexate, cannot prevent the disease and 
cause severe complications in many patients (2); therefore, the 
development of safer, cost-effective therapeutics is required.

ra involves the action of pro-inflammatory cytokines 
and chemokines produced by synoviocytes and infiltrating 
immune cells (3), including interleukin (il)-1, il-2, il-3, 
il-4, il-6, il-8, il-17, interferon (iFn)-α and iFn-β, tumor 
necrosis factor (TnF)-α, transforming growth factor β, granu-
locyte-macrophage colony-stimulating factor and macrophage 
inflammatory protein (MiP)-3α (2,4-7). These cytokines 
and chemokines are able to activate nF-κB, upregulate the 
expressions of cyclooxygenase-2 (coX-2) and nitric oxide 
synthase, and promote the production of prostaglandin e2 
(PGe2) and nitric oxide. Moreover, these changes contribute 
to synovial inflammation accompanied by arthrosis, swelling, 
hyperplasia, angiogenesis, bone destruction and arthritic 
decay (8,9). natural products that target these molecules are 
less likely to induce adverse effects may be used as therapeutic 
agents owing to their high therapeutic potential (2,10-13). For 
example, bioactive natural compounds extracted from plants, 
such as polyphenolic compounds, commonly exert multiple 
therapeutic effects (14-17).

Tripterygium wilfordii hook (also known as thunder 
god vine) is a common plant species, which has been used 
for a variety of purposes in traditional chinese medicine 
(TcM) (18). Previous studies in the TcM literature suggest 
that T. wilfordii can treat several autoimmune and inflamma-
tory conditions including RA, and improvements to its efficacy 
and safety have been made (14,19).

currently, >380 secondary metabolites have been isolated 
from T. wilfordii, and ≥350 of these are structurally diverse 
terpenoids with a wide range of pharmacological activities, 
including anti‑inflammatory, immunosuppressive and anti-
neoplastic effects (20). it has been shown that two diterpenoid 
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tri-epoxides, celastrol and triptolide (Fig. 1), are primarily 
responsible for the anti‑inflammatory and immunosuppres-
sive effects of T. wilfordii preparations (21,22). Furthermore, 
these two compounds are the most abundant and most phar-
macologically active of the metabolites found in T. wilfordii 
extracts (23).

The present study critically reviews the chemistry, bioavail-
ability, bioactivities, multi-target toxicities and molecular 
targets of celastrol and triptolide for the treatment of ra 
(Fig. 2; Table i). The present review also discussing future 
directions for research into the aforementioned promising 
natural products.

2. Metabolism and bioavailability

oral administration of triptolide is recommended for to treat 
inflammation, autoimmune diseases and tumors (24). In rats, 
triptolide at a dose of 1 mg/kg exhibits a bioavailability of 
81.6% after intravenous injection and 63.9% after oral admin-
istration (25). Moreover, it achieves a maximum concentration 
of 293.19±24.43 ng/ml within ~10 min. Triptolide distributes 
into the liver, followed by plasma, kidney, lung, spleen, heart 
and testicular tissue, and is quickly excreted through the 
biliary, urinary and fecal routes with a half-life of 0.42 h (26). 
Moreover, the metabolism and bioavailability of triptolide is 
not fully understood as clinical trials investigating the use of 
triptolide to treat ra have not been performed (27,28).

celastrol has low aqueous solubility (13.25±0.83 µg/ml 
at 37˚C) and poor intestinal absorption, which results in low 
oral bioavailability and limits its clinical application (29). 
To overcome these constraints, the compound can be deliv-
ered using solid lipid nanoparticles, liposomes, micelles or 
nanostructured lipid carriers (30,31).

3. Molecular targets of celastrol

Celastrol inhibits activation of NF‑κB by targeting inhibitor 
of NF‑κB (IκB) kinase. nF-κB regulates the transcription of 
numerous genes that are involved in immune, inflammatory 
and anti-apoptotic responses (32). Furthermore, the function 
of nF-κB is regulated by rapid degradation of its endogenous 
inhibitory molecule iκB. Inflammatory stimuli, such as cyto-
kines, initiate a signaling cascade that leads to the activation 
of two iκB kinases (iKK), iKK-1 and iKK-2, which then phos-
phorylate iκB at two n-terminal serine residues (33). The iKK 
complex is expressed in fibroblast‑like synoviocytes (FLS) and 
is activated by il-1 and TnF-α (34-36). These studies demon-
strated that celastrol suppresses nF-κB activation by inhibiting 
iKK activity, possibly by targeting cysteine 179 in the activa-
tion loop of iKK (34,35,37). Moreover, celastrol inhibits the 
activation of nF-κB by targeting iκB kinase, which is not 
specific in the RA (38). It has been revealed that the nF-κB 
signaling pathway is involved in a number of diseases, 
including ra, systemic lupus erythematosus and ankylosing 
spondylitis (32,34-37). Moreover, myeloid differentiation 
factor 2 (Md2) and Toll-like receptor 4 (Tlr4) are associated 
with ra, thus it is likely that celastrol targets Md2 (39).

Celastrol inhibits endoplasmic reticulum (ER) Ca2+‑ATPase. in 
ra, ca2+ signaling mediates the expression of pro‑inflammatory 

cytokines through autoreactive T- and B-lymphocytes after autoan-
tigen stimulation (40). Various pumps maintain ca2+ homeostasis, 
among which is the er ca2+-aTPase, which can be inhibited 
by celastrol (41). Therefore, celastrol may alter ca2+ signaling 
pathways to downregulate inflammatory response genes (42) and 
promote ca2+-mediated autophagic cell death (43,44), as shown 
by studies in ra-FlS. Thus, it is speculated that resistance of 
FlS to apoptosis may be a characteristic of ra.

Celastrol induces DNA damage, cell cycle arrest and 
apoptosis. celastrol blocks ra-FlS at G2/M phase (45), 
which may be a potential mechanism for its ability to 
inhibit proliferation and induce apoptosis. it has also been 
demonstrated that celastrol inhibits cell cycle progression 
by blocking the association of cyclins with cyclin-dependent 
kinases (33). Furthermore, celastrol leads to an increase in cell 
division cycle protein 2 homolog (cdc2) phosphorylation and 
downregulation of cdc2 and cyclin-b1, which may reduce the 
number of cdk1-cyclin-b1 complexes and arrest cells at the 
G2/M phase (45). celastrol also increases phosphorylation of 
cdc25, which may contribute to G2/M phase arrest (46).

it has been shown that celastrol activates cleaved caspases 3 
and 9, as well as cleaved poly (adP-ribose) polymerase, 
downregulates Fasr and increases the Bax/Bcl-2 ratio (46). 
Therefore, celastrol may induce apoptosis in ra-FlS, 
which express a variety of death-inducing surface receptors 
of the TnF receptor family such as Fas/cd95, TnF-related 
apoptosis-inducing ligand-receptor (Trail-r1), Trail-r2 
and TnF receptor 1 (47).

Celastrol targets MD2 and inhibits TLR4 activation. Tlr4 
exists as a complex with a co-receptor, Md2, in the plasma 
membrane of various immune cells (48). celastrol blocks 
the most upstream step in Tlr4 activation (49), and thus 
it likely targets Md2. Moreover, celastrol may function 
similar to the anti-inflammatory phytochemicals sulfora-
phane and caffeic acid phenethyl ester, which interfere with 
the interaction between lipopolysaccharide (lPS) and the 
Tlr4/Md2 complex (50,51). Furthermore, it is speculated 
that celastrol may have intracellular targets, including Md2 
and Tlr4 (48,49).

Celastrol modulates pro‑inf lammatory chemokines. 
chemokines are a superfamily of cytokines that are associated 
with cell migration and recruitment to sites of inflamma-
tion (5). chemokines are categorized into four groups, cXc, 

Figure 1. Molecular structures of celastrol and triptolide.
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cX3c, cc and c, based on the location of conserved cysteine 
residues (21). In inflammatory disorders such as RA, chemo-
kines bind to their receptors leading to leukocyte trafficking 
into the joints, where leukocytes exacerbate inflammation and 
lead to pannus formation and tissue damage (4). Moreover, 
several chemokines have been implicated in ra and experi-
mental arthritis, including T cell specific protein RANTES 
[ranTeS; also known as c-c motif chemokine 5 (ccl5)], 
monocyte chemotactic protein-1 (McP-1; also known as 
ccl2), MiP-1α (also known as ccl3) and growth-related 
oncogene/keratinocyte chemoattractant (Gro/Kc) (51-53). 
it has been revealed that treating arthritic rats with celastrol 
significantly reduces expression levels of RANTES, MCP‑1, 
MiP-1α and Gro/KC, as well as the pro‑inflammatory cyto-
kines TnF-α and il-1β (54), and this may inhibit leukocyte 
migration into joints (55).

4. Molecular targets of triptolide

Triptolide inhibits the NF‑κB pathway. The nF-κB family 
comprises rel domain-containing proteins that regulate 
inflammatory and immune responses (56). In resting cells, 
these proteins are retained in the cytosol by a group of 
inhibitory proteins, such as iκBα (57). upon activation, iKKs, 
including iKK-1 and iKK-2, phosphorylate iκBα, which is 
subsequently ubiquitinated and destroyed by the proteasome. 
This liberates nF-κB to translocate into the nucleus, where it 
activates several genes associated with ra (56). it has been 
shown that triptolide regulates iKK-1 and iKK-2 activities 
induced by various stimuli (57). The purified T. wilfordii 
component PG490 inhibits both iKK-1 and iKK2 activities 
with similar potency (58). as nF-κB transcription factors 
upregulate the expression of several genes involved in 

Figure 2. Schematic of the molecular targets of celastrol and triptolide in the treatment of ra. arrows indicate activating effects; horizontal lines indicate 
inhibitory effects. celastrol targets numerous signaling pathways associated with ra, including those involving nF-κB, endoplasmic reticulum ca2+-aTPase, 
MD2, TLR4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide inhibits NF‑κB, ranKl/ranK/oPG signaling, coX-2, 
matrix metalloproteases and cytokines. aP-1, activating protein-1; c/eBPα, ccaaT/enhancer binding protein-α; cdc, cell division cycle protein; coX-2, 
cyclooxygenase-2; er, endoplasmic reticulum; iκB, inhibitor of nF-κB; iKK, iκB kinase; il, interleukin; lPS, lipopolysaccharide; MaPK, mitogen-activated 
protein kinase; Md2, myeloid differentiation factor 2; MeK, MaPK/erK kinase; MMP, matrix metalloproteinase; oPG, osteoprotegerin; p, phosphory-
lated; ParP, poly (adP-ribose) polymerase; Pdcd5, programmed cell death protein 5; PGe2, prostaglandin e2; ra, rheumatoid arthritis; ranK, receptor 
activator of nF-κB; ranKl, ranK ligand; Tlr4, Toll-like receptor 4; VeGF, vascular endothelial growth factor.
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inflammatory responses, the targeting of components of 
nF-κB signaling is a major therapeutic strategy for treating 
autoimmune diseases (59).

Similar to nF-κB, activating protein-1 (aP-1) transcription 
factors, comprising Jun and Fos family proteins, regulate cell 
proliferation, transformation and death, and may be potential 
therapeutic targets for the control of inflammation (60‑62). 
Triptolide also inhibits mitogen-activated protein kinase 
(MaPK)/aP-1 signaling pathways, effectively suppressing MaP 
kinases, including JnK, p38 and erK activities (59). Therefore, 
triptolide is a promising candidate immunomodulatory drug 
for autoimmune disorder therapy (63,64).

Triptolide alters RANKL/RANK/OPG signaling. osteoclasts 
are the primary bone resorptive cells, and are located mainly 
in the synovial inflammatory tissue; RANKL stimulates 
osteoclast-mediated bone destruction in ra by binding to 
its receptor ranK (65). under physiological conditions, 
osteoblasts and activated T cells express ranKl, which 
binds to ranK on osteoclasts to trigger osteoclast matura-
tion and bone resorption. osteoblasts counteract the action 
of osteoclasts in the balance between bone formation and 
destruction; osteoblasts express osteoprotegerin (oPG), 
which ‘mops up’ ranKl and prevents it from binding 
to ranK, thus inhibiting bone resorption (66). However, 

Table i. Molecular targets, signaling pathways and potential biological effects of celastrol and triptolide in the treatment of 
rheumatoid arthritis.

a, celastrol   

Molecular targets Signaling pathways Potential biological effects (refs.)

iκB kinase nF-κB nF-κB function is regulated via rapid degradation (32-39)
  of its endogenous inhibitory molecule iκB
ca2+-aTPase ca2+ signaling alter ca2+ signaling pathways to downregulate (40-44)
  inflammatory response genes
cyclins with cdKs dna damage, cell cycle arrest inhibit cell cycle progression by blocking the (33,45-47)
 and apoptosis association of cyclins with cyclin-dependent kinases
Md2 or Tlr4  interaction between lPS and Block the most upstream step in Tlr4 activation,  (48-51)
 the Tlr4/Md2 complex maybe targets Md2.
Pro‑inflammatory Reduces expression levels of Inhibit leukocyte migration into joints (4,5,51‑55)
chemokines ranTeS, McP-1, MiP-1α and
 Gro/Kc, as well as the
 pro‑inflammatory cytokines
 tumor necrosis factor-α and il-1β

B, Triptolide   

Molecular targets Signaling pathways Potential biological effects (refs.)

iκB kinase nF-κB rapid degradation of its endogenous inhibitory (56-64)
  molecule iκB
ranKl ranKl/ranK/oPG signaling reduce the number of osteoclasts in areas of bone (65-68)
  destruction by downregulating ranKl and ranK,
  and upregulating oPG
coX-2 and matrix nF-κB downregulate coX-2 and PGe2, and alleviate (69-79)
metalloproteinases  LPS‑induced inflammation
cytokines cytokines pathway inhibit cytokines 80-83
VEGF Infiltration of the synovial Inhibit several downstream effects of IL1‑β,  (5,84-86)
 membrane including cell adhesion of human FlS, upregulate
  several angiogenic activators and activate MaPK
  signaling

Md2, myeloid differentiation factor 2; Tlr4, Toll-like receptor 4; ranK, receptor activator of nF-κB; ranKl, ranK ligand; oPG, 
osteoprotegerin; coX-2, cyclooxygenase-2; il, interleukin; iκB, inhibitor of nF-κB; ranTeS, regulated upon activation, normally T cell 
expressed and secreted chemokine protein; VeGF, vascular endothelial growth factor; MaPK, mitogen-activated protein kinase; PGe2, prosta-
glandin e2; Gro/Kc, growth-related oncogene/keratinocyte chemoattractant; McP-1, monocyte chemotactic protein-1; MiP-1α, macrophage 
inflammatory protein‑3α. lPS, lipopolysaccharide.
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under pathological conditions such as ra, this balance 
is shifted toward bone destruction (67). in mice with 
collagen‑induced arthritis, triptolide significantly reduces 
the number of osteoclasts in areas of bone destruction by 
downregulating ranKl and ranK, and upregulating 
oPG (68).

Triptolide inhibits COX‑2 and matrix metalloproteinases 
(MMPs). it has been revealed that injury, tumorigenesis and 
invasion from the joint into multiple organs upregulate coX-2 
via nF-κB to produce prostaglandins, which induce inflam-
mation and increase capillary permeability (69). Moreover, 
triptolide downregulates coX-2 and PGe2, thus alleviating 
LPS‑induced inflammation (70).

MMPs participate in tumorigenesis, tumor metastasis 
and inflammatory diseases such as RA (57,71‑75). In human 
synovial fibroblasts and mouse macrophages, triptolide 
inhibits il-1α-induced phosphorylation of MMP-1 and 
lPS-induced phosphorylation of MMP-3. By inhibiting 
MMP-3 and MMP-13, triptolide slows the degradation of 
extracellular matrix and cartilage degeneration in mice with 
collagen-induced arthritis, as well as in primary human 
osteoarthritis and bovine chondrocytes (26,76-79).

Triptolide inhibits cytokines. antigen-presenting cells produce 
il-12 and il-23, which are heterodimeric cytokines sharing 
a p40 subunit; these cytokines stimulate the generation and 
functions of T helper (Th)1 and Th17 cells, respectively. 
These cytokines are involved in the pathogenesis of several 
autoimmune disorders, including ra and systemic lupus 
erythematosus (80). Triptolide downregulates p40, in 
part, by activating the expression and phosphorylation of 
ccaaT/enhancer binding protein-α (c/eBPα) via the kinases 
erK1/2 and aKT-glycogen synthase kinase 3β (81). This 
phosphorylation allows c/eBPα to bind antagonistically to 
the p40 promoter (81). Furthermore, programmed cell death 5 
enhances the ability of triptolide to induce FlS apoptosis in 
ra, and therefore may be a potential therapeutic target in 
ra (29,82,83).

Triptolide targets vascular endothelial growth factor (VEGF). 
VeGF-driven angiogenesis promotes ra progress by allowing 
inflammatory cell infiltration of the synovial membrane (5). 
Triptolide prevents the formation of new blood vessels in vitro 
and in vivo, and it inhibits several downstream effects of il-1β, 
including cell adhesion of human FlS in ra and human 
umbilical vein endothelial cells (HuVecs) (84). Furthermore, 
triptolide upregulates several angiogenic activators, including 
TnF-α, il-17, VeGF, VeGFr, angiopoietin (ang)-1, ang-2 
and Tie2, and activates the MaPK signaling pathway involving 
phosphorylated (p)-erK, p-p38 and p-JnK (85). Moreover, 
triptolide disrupts tube formation in HuVecs on Matrigel, 
and suppresses VeGF-induced chemotactic migration of 
HuVecs and human FlS in ra (86).

5. Adverse effects of T. wilfordii

T. wilfordii is a chinese herb that has been traditionally 
used in clinics for ra treatment (3). numerous preclinical 
studies have demonstrated that extracts from T. wilfordii roots 

inhibit the expression levels of ra-related inflammatory 
factors secreted by macrophages, lymphocytes, synovial 
fibroblasts and chondrocytes (87‑91). Moreover, T. wilfordii 
suppresses lymphocytes and synovial fibroblast proliferation 
by inducing apoptosis (46). The anti-angiogenesis property of 
synovial fibroblasts has been shown in a previous study (83). 
although T. wilfordii has several promising bioactivities 
in vivo and in vitro, its multi-target toxicity has restricted 
its clinical application (88). data from the china Food and 
drug administration catalogue at least 633 instances of 
adverse reactions (53 severe) involving reproductive organ, 
liver and renal toxicity. Furthermore, clinical studies have 
concluded that T. wilfordii can damage the digestive system, 
including liver injury and stomachache, as well as the 
endocrine and reproductive systems (30,32,92). Moreover, 
271 patients with ra have reported digestive tract symptoms 
and irregular menstruation. as a compound of T. wilfordii, 
triptolide-induced toxicity was shown to be dependent on 
dosage and administration times (30,93). To avoid toxicity, 
previous studies have attempted to alter the dosage and struc-
ture, and to assess its compatibility with other drugs (34). For 
example, Freag et al (94) developed self-assembled celastrol 
phytosomal nanocarriers (celastrol-PHY) to improve celas-
trol solubility and oral bioavailability; these were confirmed 
through an in vitro release study and a pharmacokinetic study 
in rabbits (94). Structural modification and alternation of trip-
tolide can produce derivatives of triptolide with lower toxicity 
and relative higher activity. apart from structural alterations, 
the development of novel triptolide delivery systems is a valu-
able strategy to improve water solubility, and the efficiency of 
absorption and metabolism, and to reduce toxicity (95).

6. Conclusions

celastrol and triptolide from T. wilfordii are effective against 
ra; they target numerous signaling pathways, proteases and 
cytokines. The present review examined the chemistry and 
bioavailability of celastrol and triptolide, and their molecular 
targets in treating ra, which may be potential effective drugs. 
However, owing to the strong toxicity of T. wilfordii, novel 
approaches are required for the safe application of this TcM. 
These may include investigating new triptolide formulations or 
its combination with other drugs. Furthermore, defining early 
toxicity markers, investigating dosage ranges for different 
target organs and establishing a toxicity warning system are 
required.
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