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Abstract. Cervical cancer is the 4th most common malig-
nant tumor type affecting women worldwide; however, its 
molecular mechanisms are not fully understood. Previous 
studies have indicated that microRNAs (miRs) serve crucial 
roles in the cellular functions of tumors. miR‑96 is involved 
in the tumorigenesis of many cancer types. The aim of the 
present study was to investigate the role and mechanism of 
miR‑96 in the progression of cervical cancer. The present 
results suggested that overexpression of miR‑96 significantly 
enhanced the proliferative, migratory and invasive abilities of 
cervical cancer cells, while inhibiting miR‑96 had the opposite 
effects. Additionally, activation of the Akt/mTOR signaling 
pathway was enhanced by miR‑96 overexpression, while it was 
inhibited by the miR‑96 inhibitor. Moreover, it was identified 
that miR‑96 may directly target caveolin‑1 (CAV‑1) to decrease 
its expression level. Furthermore, overexpression of CAV‑1 
could reverse the increase in cell proliferation, migration and 
invasion induced by miR‑96, as well as the upregulation of 
the Akt/mTOR signaling pathway. In conclusion, the present 
results suggested that miR‑96 may have an oncogenic role in the 
progression of cervical cancer by targeting CAV‑1. Therefore, 
miR‑96 may be a potential target for cervical cancer therapy.

Introduction

Cervical cancer is the 4th most common malignant tumor in 
women worldwide, with ~530,000 incident cases and 270,000 
mortalities each year (1). Infection with high risk human papil-
lomaviruses (HPV) is a major risk factor for cervical cancer, 
while environmental factors such as smoking have also be 

shown to be correlated with cervical cancer occurrence (2). 
HPV‑positive status can be detected in the majority of patients 
with cervical cancer and cervical malignant lesions, however 
~15% of patients are HPV‑negative and cannot be detected by 
the HPV test kit (3). As the initial stage of cervical cancer 
is usually asymptomatic, many patients are diagnosed at an 
advanced stage, and thus the effect of surgical resection is 
limited (4). Therefore, it is important to identify novel targets 
in order to develop new therapeutic strategies for cervical 
cancer treatment.

Previous studies have indicated that microRNAs 
(miRNAs/miRs) serve crucial roles in the cellular features 
of tumors (5,6). miRNAs are potential regulators of tumori-
genesis and cancer development in various cancer types, 
including cervical cancer (5,7‑9). miRNAs are expected to be 
used as a complementary treatment for cancer types due to 
the ability of miRNAs to target various physiological activities 
of cells, including proliferation, apoptosis and survival (10,11). 
Moreover, several miRNAs have been identified to act as 
epigenetic drugs in glioblastoma, including miR‑124, miR‑101, 
miR‑221 and miR‑222 (12). Additionally, miRNAs not only act 
as cancer therapeutic targets, but also as promising biomarkers 
for diagnosis and prognosis  (13). It has been previously 
demonstrated that miRNAs can be combined with chemo-
therapy agents for cancer therapy (14). The combination of 
miR‑205 and gemcitabine can significantly inhibit the growth 
of gemcitabine‑resistant pancreatic cancer cells (15), and the 
combination of miR‑34a and paclitaxel improves anticancer 
activity in mice (16). An oncogenic role of miR‑96 has been 
revealed in various cancer types such as breast cancer, hepa-
tocellular carcinoma and prostate cancer (17‑20). He et al (21) 
reported that miR‑96 serves as a tumor suppressor in bladder 
cancer, while Ma et al (22) showed that miR‑96 increases the 
proliferation and tumorigenicity of HeLa cells. However, the 
specific role of miR‑96 in the metastasis of cervical cancer 
remains unknown.

Caveolin‑1 (CAV‑1) is an integral membrane protein that 
serves as major structural component of caveolae. CAV‑1 is 
involved in cell adhesion and signal transduction, and has been 
shown to be involved in tumorigenesis (23‑25). Zhou et al (26) 
reported that miR‑124 regulates the progression of bladder 
cancer by targeting CAV‑1. Furthermore, CAV‑1 serves a role 
in clear cell renal cell carcinoma as a target of miR‑124‑3p (27). 
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However, the role of CAV‑1 in the progression of cervical 
cancer is not fully understood.

The aim of the present study was to investigate the role of 
miR‑96 in the progression of cervical cancer. It was identi-
fied that overexpression of miR‑96 promoted the proliferation, 
migration and invasion of the cervical cancer SiHa (HPV+) 
and C33A (HPV‑) cell lines, and also enhanced the Akt/mTOR 
signaling pathway. Moreover, the present results suggested 
that miR‑96 may bind to CAV‑1 mRNA, which indicates its 
possible oncogenic role in cervical cancer.

Materials and methods

Cell culture and transfection. The human cervical cancer 
SiHa (HPV+), C33A (HPV‑) and CaSki (HPV+) cell lines 
were obtained from the Cell Bank of the Chinese Academy 
of Sciences. Cells were cultured in RPMI‑1640 medium 
(Thermo Fisher Scientific, Inc.) supplemented with 10% 
FBS (Gibco; Thermo Fisher Scientific, Inc.), penicillin 
(100 U /ml; Sigma‑Aldrich; Merck KGaA) and strepto-
mycin (100 mg/ml; Sigma‑Aldrich; Merck KGaA) at 37˚C 
in an atmosphere of 5% CO2. The pCMV‑MIR‑miR‑96 
(5'‑UUU​GGC​ACU​AGC​ACA​UUU​UUG​CU‑3') vector was 
synthesized by Guangzhou RiboBio Co., Ltd., and was 
transfected into SiHa and C33A cells using Lipofectamine® 
2000 (Invitrogen; Thermo Fisher Scientific, Inc.); the blank 
pCMV‑MIR plasmid (Guangzhou RiboBio Co., Ltd.) was 
used as the negative control (NC). Another group of SiHa 
or C33A cells was co‑transfected with pCMV‑MIR‑miR‑96 
and pcDNA‑3.1‑CAV‑1 (Guangzhou RiboBio Co., Ltd.) 
or pcDNA‑3.1‑CAV‑1 alone using Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.). The miR‑96 
inhibitor (5'‑AGC​AAA​AAU​GUG​CUA​GUG​CCA​AA‑3'; 
Guangzhou RiboBio Co., Ltd.) was transfected into CaSki 
cells using Lipofectamine® 2000 (Invitrogen; Thermo 
Fisher Scientific, Inc.); miR control was used as the negative 
control. Transfection complexes were added to the medium 
at a final concentration of 50 nM. The cells were harvested 
for further experiments 24 or 48 h later.

Reverse transcription‑quantitative PCR. After 24 h of trans-
fection, cells were collected and extracted using a miRNA 
Purification kit (CoWin Biosciences) followed by RT with 
a miRNA cDNA Synthesis kit (cat.  no. CW2141; CoWin 
Biosciences). RT was conducted at 42˚C for 50 min and 85˚C 
for 5 min. qPCR was then performed using a SYBR‑Green 
miRNA qPCR assay kit (cat.  no.  CW2142; CoWin 
Biosciences) according to the manufacturer's instructions. 
qPCR thermocycling conditions were as follows: initial 
denaturation at 95˚C for 10 min, followed by 40 cycles of 
95˚C for 15 sec and 60˚C for 1 min, and final extension at 
72˚C for 50 sec. Data were normalized using the endogenous 
U6. The primers used in this study were synthesized from 
Guangzhou RiboBio Co., Ltd. The U6 primer was 5'‑CTC​
GCT​TCG​GCA​GCA​CA‑3' (sense). The miR‑96 primer was 
5'‑TTT​GGC​ACT​AGC​ACA​TTT​TTG​CT‑3' (sense). The 
anti‑sense primers of miR‑96 and U6 were obtained from 
the universal primers included in the SYBR‑Green miRNA 
qPCR assay kit. The 2‑ΔΔCq method was performed to analyze 
the RT‑qPCR data (28).

Cell Counting Kit‑8 (CCK‑8) assay. Cells transfected with 
plasmids for 24 h were collected and seeded in a 96‑well 
plate at a density of 1x103  cells per well at 37˚C in a 5% 
CO2 atmosphere. At 0, 24, 48 and 72 h, 10 µl CCK‑8 reagent 
(Beijing Solarbio Science & Technology Co., Ltd.) was added 
to each well before the experiment according to the manufac-
turer's instructions, and incubated at 37˚C for 1.5 h. Then, the 
optical density value was measured using a microplate reader 
at a wavelength of 450 nm, according to the manufacturer's 
protocol.

Colony formation assay. Cells were seeded into 60 mm dishes 
(500 cells/dish) following 24 h of transfection, and cultured for 
1‑2 weeks until visible colonies formed. The cells were fixed 
with 4% paraformaldehyde at room temperature for 30 min 
then stained with 0.1% crystal violet at room temperature for 
30 min, and the number of colonies was counted. Images were 
obtained using a camera.

Transwell assay. Transwell chambers (8‑µm pore; EMD 
Millipore) in 24‑well plates were performed for the assessment 
of cell migration and invasion abilities in vitro. Cells trans-
fected with plasmids for 24 h were suspended in serum‑free 
medium, then 1x105 cells were placed into the upper chamber 
pre‑coated with or without Matrigel (BD Bioscience) for 1 h at 
37˚C. Then, 500 µl RPMI‑1640 medium containing 10% FBS 
(Gibco; Thermo Fisher Scientific, Inc.) was added to the lower 
chamber and was cultured for 24 h. The remaining cells in the 
upper chamber were removed with a cotton swab. Following 
washing with PBS, the cells were fixed with 4% polyformal-
dehyde for 30 min at room temperature and stained with 0.1% 
crystal violet for 20 min at room temperature. The number of 
migrated or invaded cells was counted and captured under a 
light microscope at magnification, x100 (Nikon Corporation).

Western blot analysis. After 48 h of transfection, RIPA lysis 
buffer (CoWin Biosciences) was used to extract cell proteins. 
Proteins were quantified using a bicinchoninic acid assay kit 
(Beijing Leagene Biotech Co., Ltd.). Protein samples (20 µg) 
were resolved by 10% SDS‑PAGE gel and transferred onto 
a PVDF membrane (EMD Millipore). Then, the membrane 
was blocked with 5% dried skimmed milk for 1 h at room 
temperature and probed with primary antibodies (1:1,000) 
at 4˚C overnight. Antibody binding was detected with horse-
radish peroxidase‑conjugated secondary antibodies (1:1,000; 
ProteinTech Group, Inc.) for 1 h at room temperature and then 
chemiluminescence (Enhanced Chemiluminescence kit; CoWin 
Biosciences) was performed. GAPDH was used as the internal 
control, and the relative expression of proteins was normalized 
to GAPDH The densitometry was quantified using ImageJ 
software (v.1.48; National Institutes of Health). The primary 
antibodies used were as follows: Akt (cat. no. 10176‑2‑AP; 
ProteinTech Group, Inc.); phosphorylated(p)‑Akt (Ser473; 
cat.  no.  66444‑1‑Ig; ProteinTech Group, Inc.); mTOR 
(cat.  no.  20657‑1‑AP; ProteinTech Group, Inc.); p‑mTOR 
(Ser2448; cat.  no.  2971; Cell Signaling Technology, Inc.); 
Cyclin D‑1 (cat.  no.  60186‑1‑lg; ProteinTech Group, Inc.); 
P70S6K (cat. no. 14485‑1‑AP; ProteinTech Group, Inc.); CAV‑1 
(cat. no. 16447‑1‑AP; ProteinTech Group, Inc.); and GAPDH 
(cat. no. 10494‑1‑AP; ProteinTech Group, Inc.).
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Dual‑luciferase reporter assay. The potential target gene of 
miR‑96 was predicted using the online software StarBase 
(v2.0; http://starbase.sysu.edu.cn/starbase2/index.php)  (29). 
The wild‑type (wt) or mutated (mut) CAV‑1 3' untranslated 
regions (UTRs) were cloned into the pmirGLO plasmids 
(Promega Corporation). Cells were co‑transfected with the 
pmirGLO‑CAV‑1‑wt (2 µg) or pmirGLO‑CAV‑1‑mut (2 µg) 
plasmid and pCMV‑MIR‑miR‑96 using Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.), and the blank 
plasmid was used as the negative control. After transfec-
tion for 48 h, the luciferase activity was examined using a 
Dual‑Luciferase Reporter assay system (Promega Corporation) 
according to the manufacturer's protocol. The firefly luciferase 
expression was normalized to Renilla luciferase activity.

Statistical analysis. Data are presented as the mean ± SD from 
three independent experiments. GraphPad Prism 7.0 software 
(GraphPad Software, Inc.) was used for statistical analyses. 

Group comparisons were analyzed with a Student's t‑test or 
one‑way ANOVA analysis followed by the Newman‑Keuls 
method. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Overexpression of miR‑96 enhances the proliferation of 
cervical cancer cells. To investigate the functional role of 
miR‑96 in the progression of cervical cancer, the pCMV‑
MIR‑miR‑96 vector was transfected into SiHa and C33A 
cells, which had an initial low miR‑96 expression level, to 
overexpress miR‑96; the blank pCMV‑MIR vector was used 
as the NC (Figs. 1A and S1A). Additionally, due to the innate 
high miR‑96 expression level in CaSki cells, CaSki cells were 
transfected with miR‑96 inhibitor to downregulate miR‑96 
(Figs. 1B and S1A). It was identified that the overexpression 
of miR‑96 significantly increased the viability of SiHa cells 

Figure 1. Overexpression of miR‑96 promotes cell proliferation in cervical cancer. (A) Relative expression levels of miR‑96 in SiHa and C33A cells transfected 
with pCMV‑MIR‑miR‑96 vector. (B) Relative expression level of miR‑96 in CaSki cells transfected with miR‑96 inhibitor. A Cell Counting Kit‑8 assay was 
performed to detect the viability of (C) SiHa, (D) C33A and (E) CaSki cells transfected with pCMV‑MIR‑miR‑96 or miR‑96 inhibitor. (F) A colony formation 
assay was used to examine the clonogenic capacities of SiHa and C33A cells transfected with the pCMV‑MIR‑miR‑96 plasmid or NC. (G) A colony formation 
assay was performed to examine the clonogenic capacity of CaSki cells transfected with the NC or miR‑96 inhibitor. Scale bar=15 mm. *P<0.05 and **P<0.01. 
Data are presented as the mean ± SD. miR‑96, microRNA‑96; NC, negative control; OD, optical density.
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compared with the NC group (Fig. 1C). Moreover, the viability 
of C33A cells was also promoted by miR‑96 overexpression 
(Fig. 1D), whereas the miR‑96 inhibitor significantly inhibited 
the viability of CaSki cells (Fig. 1E). In addition, the colony 
formation assay results indicated that miR‑96 overexpression 
significantly increased the clonogenic capacities of both SiHa 
and C33A cells, while the miR‑96 inhibitor had the opposite 
effect on CaSki cells (Fig. 1F and G).

miR‑96 overexpression increases the migratory and invasive 
abilities of cervical cancer cells. The present results suggested 
that overexpression of miR‑96 significantly increased cell 
migration in both SiHa and C33A cells (Fig. 2A). Furthermore, 
a significant decrease in cell migration was demonstrated in 
CaSki cells transfected with the miR‑96 inhibitor (Fig. 2B). 
Moreover, miR‑96 overexpression also increased the number 
of invaded cells compared with the NC group (Fig. 2C), while 
the miR‑96 inhibitor reduced the invasive ability of CaSki 
cells (Fig. 2D).

miR‑96 increases activation of the Akt/mTOR signaling 
pathway in cervical cancer cells. The Akt/mTOR signaling 
pathway serves an essential role in cellular processes, including 
cell proliferation, migration, survival and apoptosis. It was 
identified that there was a significant increase in the levels of 
p‑Akt and p‑mTOR in SiHa and C33A cells transfected with 
the pCMV‑MIR‑miR‑96 vector, while the total expression of 
Akt and mTOR was not affected (Fig. 3A‑C). In addition, the 
expression levels of the downstream proteins cyclin D1 and 
P70S6k were significantly increased by miR‑96 overexpres-
sion in both SiHa and C33A cells (Fig. 3A‑C). Moreover, it was 

demonstrated that the miR‑96 inhibitor significantly inhibited 
the Akt signaling pathway by suppressing the expression 
levels of p‑Akt and p‑mTOR in CaSki cells (Fig. 3A and D). 
Therefore, the present results suggested that the Akt/mTOR 
signaling pathway may be involved in the oncogenic role of 
miR‑96 in cervical cancer.

miR‑96 directly targets CAV‑1 in cervical cancer cells. 
Using the bioinformatics database, the present study identi-
fied that miR‑96 has a conserved binding site in the 3'UTR 
of CAV‑1 mRNA (Fig.  4A). In order to investigate this 
further, the pCMV‑MIR‑miR‑96 vector or control vector was 
co‑infected with CAV‑1 3'UTR‑wt or CAV‑1 3'UTR‑mut into 
SiHa and C33A cells. It was identified that miR‑96 overex-
pression could significantly decrease the luciferase activity 
of the CAV‑1 3'UTR‑wt, while the luciferase activity of the 
CAV‑1 3'UTR‑mut was unaffected by miR‑96 overexpression 
(Fig. 4B and C), suggesting that CAV‑1 may be a target of 
miR‑96. Moreover, overexpression of miR‑96 significantly 
decreased the protein expression level of CAV‑1 compared 
with the NC group (Fig. 4D). Collectively, the present results 
indicated that miR‑96 may directly target CAV‑1 and inhibit 
its expression in cervical cancer.

miR‑96 increases cell proliferation, migration and invasion by 
targeting CAV‑1. To further investigate the molecular mecha-
nism of miR‑96, SiHa and C33A cells were either transfected 
with pcDNA‑3.1‑CAV‑1 vector alone (Fig. S1B and C) or 
co‑transfected with pCMV‑MIR‑miR‑96. The CCK‑8 results 
suggested that the overexpression of CAV‑1 significantly 
inhibited the viabilities of SiHa and C33A cells compared 

Figure 2. Overexpression of miR‑96 enhances cell migration and invasion in cervical cancer. (A) Cell migration was detected using a Transwell assay after 
SiHa and C33A cells were transfected for 24 h with NC or pCMV‑MIR‑miR‑96. (B) Migration of CaSki cells transfected with miR‑96 inhibitor. (C) Invasion 
of SiHa and C33A cells was assessed using a Transwell assay. (D) Invasion of CaSki cells transfected with miR‑96 inhibitor or NC. Original magnification, 
x100. *P<0.05. Data are presented as the mean ± SD. miR‑96, microRNA‑96; NC, negative control.



Molecular Medicine REPORTS  22:  543-550,  2020 547

Figure 3. Overexpression of miR‑96 promotes the activation of the Akt/mTOR signaling pathway in cervical cancer. (A) After 48 h transfection, western 
blot analysis was performed to detect the protein expression level of Akt/mTOR signaling pathway‑associated proteins. Quantitative analysis of western blot 
analysis results in (B) SiHa, (C) C33A and (D) CaSki cells. *P<0.05. Data are presented as the mean ± SD. miR‑96, microRNA‑96; NC, negative control; 
p‑, phosphorylated.

Figure 4. miR‑96 directly targets CAV‑1 and negatively inhibits its expression in cervical cancer. (A) Conserved binding site in the CAV‑1 mRNA 3'UTR. 
Dual‑luciferase reporter assays in (B) SiHa and (C) C33A cells co‑infected with CAV‑1‑wt 3'‑UTR or the CAV‑1‑ mut 3'‑UTR, with pCMV‑MIR‑miR‑96 
or pCMV‑MIR. (D) Protein expression level of CAV‑1 in cells transfected with pCMV‑MIR‑miR‑96 or pCMV‑MIR. *P<0.05. Data are presented as the 
mean ± SD. miR‑96, microRNA‑96; NC, negative control; CAV‑1, caveolin 1; 3'UTR, 3'untranslated region; wt, wild‑type; mut, mutant.
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with control cells, suggesting an inhibitory effect of CAV‑1 on 
cell proliferation (Fig. 5A and B). Moreover, co‑transfection 
of CAV‑1 and miR‑96 decreased cell viability compared with 
miR‑96 alone (Fig. 5A and B). The Transwell assay results 
suggested that the overexpression of CAV‑1 inhibited the 
migratory and invasive abilities of both SiHa and C33A cells. 

Furthermore, the increased migratory and invasive abilities of 
SiHa and C33A cells induced by miR‑96 were also abolished 
by CAV‑1 overexpression, as indicated by the co‑transfection of 
miR‑96 and CAV‑1 (Fig. 5C and D). The western blot analysis 
results suggested that the overexpression of CAV‑1 inhibited 
the activation of the Akt signaling pathway (Fig. 5E and F). 

Figure 5. miR‑96 promotes cell proliferation, migration and invasion in cervical cancer by targeting CAV‑1. (A) SiHa and (B) C33A cells were co‑transfected 
with miR‑96 and CAV‑1, or transfected with miR‑96/CAV‑1 alone, and then a Cell Counting‑Kit 8 assay was used to detect cell viability. Following transfection 
for 24 h, a Transwell assay was performed to assess (C) cell migration and (D) invasion. Original magnification, x100. (E) Protein expression levels of the Akt 
signaling pathway‑associated proteins in SiHa cells. (F) Quantitative analysis of western blot analysis. *P<0.05. Data are presented as the mean ± SD. miR‑96, 
microRNA‑96; NC, negative control; CAV‑1, caveolin 1; OD, optical density; p‑, phosphorylated. 
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Further, the upregulation of p‑Akt and p‑mTOR induced 
by miR‑96 was also demonstrated to be rescued by CAV‑1 
co‑transfection in SiHa cells (Fig. 5E and F). Collectively, the 
present results suggested that miR‑96 enhances cell prolif-
eration, migration and invasion by targeting CAV‑1, which 
modulates the Akt/mTOR signaling pathway in cervical 
cancer (Fig. 6).

Discussion

Previous studies have demonstrated that miR‑96 is associ-
ated with tumorigenesis by acting as an oncogene or a tumor 
suppressor, depending on the tissue type (18,21). The present 
results suggested that miR‑96 was associated with the growth 
and metastatic potential of HPV+ and HPV‑ cervical cancer 
cells. Overexpression of miR‑96 was identified to facilitate 
the proliferative, migratory and invasive abilities of SiHa and 
C33A cells. Moreover, Ma et al (22) showed that miR‑96 could 
promote the proliferation of Hela cell by silencing protein 
tyrosine phosphatase non‑receptor type 9, which is in concor-
dance with the results of the present study. Therefore, miR‑96 
may serve an oncogenic role in the progression of cervical 
cancer, and it may be used as a potential target for cervical 
cancer therapy.

The role of CAV‑1 in cancer biology is controversial, with 
some previous studies suggesting that CAV‑1 plays a negative 
regulatory role in tumor metastasis (24,25). Overexpression of 
CAV‑1 inhibits the migration of HeLa cells via its caveolin 
scaffolding domain to regulate cell signaling (30). However, 
a recent study showed that silencing CAV‑1 can inhibit 
the proliferation of lung adenocarcinoma H522 cells, but 
overexpression of CAV‑1 is associated with a worse overall 

survival (25). Moreover, previous studies have suggested that 
the expression level of CAV‑1 is tissue‑type dependent, as 
CAV‑1 is downregulated in ovarian cancer and colon cancer, 
but upregulated in bladder cancer and breast cancer (25,31). 
Furthermore, the function and expression level of CAV‑1 may 
be correlated with the grade and stage of cancer (25,32,33). 
CAV‑1 often acts as a tumor suppressor with decreased expres-
sion levels during the early stage of cancer progression, but 
enhances tumor aggressive and metastatic functions in the 
advanced stage of cancer (25,32,33). Therefore, CAV‑1 may 
serve a role as a tumor promotor and as a tumor suppressor in 
cancer progression. The present results suggested that CAV‑1 
acts as a tumor suppressor in cervical cancer, and that CAV‑1 
overexpression may inhibit cell proliferation, migration and 
invasion. Moreover, it was demonstrated that miR‑96 can 
directly bind to CAV‑1 mRNA and negatively regulate its 
expression in cervical cancer cells. Furthermore, overexpres-
sion of CAV‑1 could reverse the increase in cell proliferation, 
migration and invasion induced by miR‑96. Collectively, the 
present results indicated that miR‑96 increased the growth and 
metastatic potential of cervical cancer by targeting CAV‑1.

In the present study, it was identified that the overexpres-
sion of miR‑96 upregulated the Akt/mTOR signaling pathway 
in cervical cancer cells. The Akt/mTOR signaling pathway 
serves essential roles in cancer cell activity, and is an impor-
tant therapeutic target in cancer treatment (34). Yang et al (35) 
reported that miR‑96 mimics activate the Akt/GSK‑3β/
β‑catenin signaling pathway in hepatocellular carcinoma, 
which is involved in the carcinogenic effect of miR‑96. 
Moreover, Song et al (36) showed that miR‑96 may inhibit the 
expression of Forkhead Box O1 (FOXO1) via the upregulation 
the Akt/FOXO1/Bim signaling pathway in papillary thyroid 
carcinoma cells. Therefore, the present results indicated that 
the Akt/mTOR signaling pathway may be involved in the 
oncogenic role of miR‑96 in cervical cancer. The effect of 
miR‑96 on the transport of CAV‑1 and the association between 
the miR‑96/CAV‑1/Akt signaling pathway should be further 
investigated in future studies.

In summary, the present results suggested that miR‑96 
exerted a carcinogenic effect by targeting CAV‑1 in both 
HPV+ and HPV‑ cervical cancer cells, and that the Akt/mTOR 
signaling pathway may be involved in this process. Therefore, 
miR‑96 may function as a potential target in cervical cancer 
therapy. However, the present study only investigated the role 
of miR‑96 in the biological function of HPV+ and HPV‑ cervical 
cancer cells, thus further study is required to investigate the 
role of miR‑96 in the progression of cervical cancer in vivo.
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