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Abstract. The present study investigated the molecular 
changes and related regulatory mechanisms in the response 
of skeletal muscle to exercise. The microarray dataset 
‘GSE109657’ of the skeletal muscle response to high‑intensity 
intermittent exercise training (HIIT) was downloaded from the 
Gene Expression Omnibus database. Differentially expressed 
genes (DEGs) were screened and analyzed using weighted 
gene co‑expression network analysis (WGCNA) to identify the 
significant functional co‑expressed gene modules. Moreover, 
functional enrichment analysis was performed for the DEGs 
in the significant modules. In addition, protein‑protein inter-
action  (PPI) network and microRNA  (miR)‑transcription 
factor (TF)‑target regulatory network were constructed. A total 
of 530 DEGs in the skeletal muscle were screened after HIIT, 
suggesting an effect of HIIT on the skeletal muscle. Moreover, 
three significant modules (brown, blue and red modules) were 
identified after WGCNA, and the genes Collagen Type IV α1 
Chain (COL4A1) and COL4A2 in the brown module showed 
the strongest correlation with HIIT. The DEGs in the three 
modules were significantly enriched in focal adhesion, 
extracellular matrix organization and the PI3K/Akt signaling 
pathway. Furthermore, the PPI network contained 104 nodes 
and 211 interactions. Vascular endothelial growth factor A 
(VEGFA), COL4A1 and COL4A2 were the hub genes in 
the PPI network, and were all regulated by miR‑29a/b/c. In 
addition, VEGFA, COL4A1 and COL4A2 were significantly 
upregulated in the skeletal muscle response to HIIT. Therefore, 
the present results suggested that the growth and migration of 

vascular endothelial cells, and skeletal muscle angiogenesis 
may be regulated by miR‑29a/b/c targeting VEGFA, COL4A1 
and COL4A2 via the PI3K/Akt signaling pathway. The present 
results may provide a theoretical basis to investigate the effect 
of exercise on skeletal muscle.

Introduction

Skeletal muscle accounts for ~42% of the total body mass 
in males and 36% in females (1); it is a metabolically active 
tissue and is responsible for 30% of the resting metabolic rate 
in adults (2). Apart from skeletal motion, skeletal muscle plays 
key roles in calorigenesis, blood glucose control, metabolic 
balance and the support and protection of soft tissue  (1). 
Exercise training has the ability to improve pathological 
conditions involving metabolic disorders and prevent various 
lifestyle‑related chronic maladies, partly due to its regulation 
of metabolic homeostasis and the molecular responses of 
skeletal muscle (2). Moreover, exercise induces various adap-
tive responses in the skeletal muscle, including mitochondrial 
biogenesis (3), lipid metabolism (4), glycometabolism (5) and 
ultrastructural changes (6). 

Baar  et  al  (7), reported that mitochondrial biogenesis 
triggered by exercise is associated with the increase of the 
transcriptional coactivators peroxisome proliferator‑activated 
receptor γ  coactivator‑1  (PGC‑1), nuclear respiratory 
factor 1 (NRF‑1) and NRF‑2. Cantó et al  (8), revealed that 
AMP‑activated protein kinase  (AMPK) is first activated 
during the adaptive responses in skeletal muscle after exercise, 
while sirtuin 1  (SIRT1) is activated with deficient AMPK 
activity, suggesting an acetylation regulation mechanism of 
the AMPK/SIRT1 axis. High‑intensity intermittent exercise 
training (HIIT) improves the skeletal myopathy in patients with 
heart failure associated with the increased expression of the 
insulin‑like growth factor 1 bioregulation system (9). Exercise 
training can induce the increased expression level of cytokines 
secreted by skeletal muscle cells, including IL‑6, IL‑1 and 
IL‑10, which have anti‑inflammatory effects (10). In addition, 
microRNAs  (miRNAs/miRs), a class of non‑coding small 
RNAs regulating genes at a post‑transcriptional level, also play 
crucial roles in the skeletal muscle response to exercise (1,11). 
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The expression level of miR‑761 is reduced in the mouse skel-
etal muscle response to exercise and its overexpression inhibits 
the P38 mitogen‑activated protein kinase signaling pathway 
and PGC‑1α, which are associated with mitochondrial biogen-
esis  (12). Although previous studies have been conducted, 
the specific molecular mechanisms of mouse skeletal muscle 
response to exercise are not fully understood (13,14). Therefore, 
the present study investigated the molecular changes and related 
regulatory mechanisms in skeletal muscle response to exercise.

The microarray dataset ‘GSE109657’ of the skeletal muscle 
response to HIIT used in the present study was contributed 
by Miyamoto‑Mikami et al (15). These authors investigated 
the differentially expressed genes (DEGs) and the associated 
functions, and significantly upregulated DEGs are found to 
be associated with glucose metabolism and mitochondrial 
membranes (15). In the present study, DEGs were identified 
and analyzed using weighted gene co‑expression network 
analysis (WGCNA), which is effective for the identification 
of functional co‑expressed gene modules (16). In addition, 
except for the functional enrichment analysis, miRNAs and 
transcription factors (TFs) were predicted in order to construct 
the miRNA‑TF‑target regulatory network. Thus, the present 
results may provide a theoretical basis for the investigation of 
the effect of exercise on skeletal muscle.

Materials and methods

Microarray data. The ‘GSE109657’ gene expression dataset 
of human skeletal muscle was downloaded from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). There were 22 biopsy samples in this dataset, 
which were collected from the vastus lateralis muscle of 11 young 
and healthy men before (GSM2948027‑GSM2948037) and 
after  (GSM2948038‑GSM2948048) a 6‑week HIIT. The 
platform of this dataset was GPL16686 [HuGene‑2_0‑st] 
Affymetrix Human Gene 2.0 ST Array [transcript  (gene) 
version]. Since the dataset was obtained from a public data-
base, no ethical approval was obtained in the present study.

Data preprocessing and screening of DEGs. The Oligo in R 
package (v.1.34.0; http://bioconductor.org/help/search/index.
html?q=oligo/) was used to perform raw data preprocessing, 
including format conversion, missing value supplement, 
background correction and data standardization. The probes 
were annotated according to the annotation file on the plat-
form and were removed when the gene symbol did not match. 
The differentially expressed analysis among samples was 
performed utilizing the classical Bayes method in limma 
package (R v.3.3.3) (17) and the DEGs were screened with the 
threshold of P<0.05 and |log fold change (FC)| >0.263.

WGCNA for DEGs. WGCNA  (http://www.inside‑r.
org/packages/cran/WGCNA/docs/bicor) was used to identify 
the modules and genes associated with HIIT based on the 
expression level of DEGs, and the DEGs were clustered into 
different modules according their co‑expression relationships. 
WGCNA was conducted according to a previous study by 
Langfelder and Horvath (18), including the definition of gene 
co‑expression matrix Smm = |cor(m,n)|, the definition of adjacent 
function amn = power(Smnβ), the determination of weighted coef-

ficient β (≥0.8) and the measurement of dissimilarity between 
nodes. The minimum number of genes in each module was 
set as 20 and the cluster analysis height of the module was set 
as 0.2 in the identification of gene modules. In addition, the 
module significance was calculated to identify the correlation 
between modules and HIIT.

Functional enrichment analysis for the genes in significant 
modules. The online database for annotation, visualization and 
integrated discovery tool  (v.6.8; https://david‑d.ncifcrf.gov/) 
was used to investigate the function of the genes in significant 
modules, including biological processes in Gene Ontology (GO_
BP) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
signaling pathways. The number of enrichment genes was set as 
count ≥2 and P<0.05 was selected as the threshold.

Construction of protein‑protein interaction network. The 
genes in significant modules were integrated and uploaded to 
the STRING database (version: 10.0; http://www.string‑db.
org/) to retrieve the protein‑protein interactions (PPIs) with 
the following parameters: Species was set as human and 
the PPI score was set as 0.4 (median confidence). Cytoscape 
software  (v.3.2.0; http://www.cytoscape.org/) was used to 
construct the visualized PPI network based on the retrieved 
interactions from STRING. A high node degree centrality 
value indicated the hub nodes in the PPI network (19).

Construction of miRNA‑TF‑target regulatory network. 
The over‑representation analysis method of enrichment in 
WebGestalt (v.2017; http://www.webgestalt.org/) was used to 
predict the miRNA‑target interactions and TF‑target interac-
tions for the genes with node degree >5 in the PPI network. 
P<0.05 was selected as the threshold. In addition, Cytoscape 
software was used to construct the miRNA‑TF‑target regula-
tory network with the significantly enriched miRNA‑target 
interactions and TF‑target interactions.

Confirmatory analysis. In order to investigate the expression 
and function of the DEGs, the ‘GSE41769’ gene expression 
dataset of human skeletal muscle, which was contributed by 
Catoire et al (20), was downloaded from the GEO database. 
This dataset included 36 skeletal muscle biopsy samples, which 
were collected from both the legs of nine healthy middle‑aged 
men before and after 1 h of one‑legged exercise. The platform 
of this dataset was GPL11532 [HuGene‑1_1‑st] Affymetrix 
Human Gene 1.1 ST Array [transcript (gene) version]. Data 
were preprocessed and differentially expressed analysis was 
performed using the method mentioned above, and the DEGs 
were screened within the threshold of P<0.05. Moreover, func-
tional enrichment analysis was also conducted for these DEGs 
using the method described above.

Results

Data preprocessing and screening of DEGs. The gene 
expression in each sample was at the same level after data 
normalization, suggesting that they could be used in the subse-
quent analyses (Fig. 1A). A total of 530 DEGs were screened in 
the vastus lateralis muscle after HIIT, of which 209 genes were 
significantly upregulated, while 321 genes were significantly 
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downregulated. The heatmap of DEGs displayed in Fig. 1B 
indicated that DEGs could be distinguished in the muscle 
biopsy samples before and after HIIT.

WGCNA for DEGs. The value of the power parameter in 
the adjacent function was determined as eight. A total of six 
co‑expression modules were identified for the DEGs with 
absolute correlation ≥0.5, of which three modules had the 
absolute correlation ≥0.8; these were the brown, blue and red 
modules. The DEGs in these three modules were used in the 
following analysis (Table I). The DEGs in the brown module 
showed the strongest correlation with HIIT and those in the 

Figure 2. Weighted gene co‑expression network analysis. (A) Selection diagram of adjacency matrix weight parameter ‘power’. (B) Identification of gene system clus-
tering tree under dissimilarity matrix using dynamic hybrid shearing algorithm. (C) High‑intensity intermittent exercise training correlated co‑expression modules.

Figure 1. Results of differential expression analysis. (A) Boxplot of the levels of gene expression in each sample after data normalization. (B) Heatmap of 
differentially expressed genes before or after 6‑week high‑intensity intermittent exercise training.

Table I. High‑intensity intermittent exercise training correlated 
co‑expression modules.

Module	 Correlation coefficient	 P‑value

MEbrown	 0.86	 2.35x10‑7

MEblue	‑ 0.81	 5.94 x10‑6

MEred	‑ 0.8	 9.49 x10‑6

MEturquoise	‑ 0.79	 1.39x10‑5

MEblack	‑ 0.68	 0.0004783
MEgrey	‑ 0.63	 0.001525
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grey module were not clustered into co‑expression modules 
with other DEGs (Fig. 2).

Expression levels of the genes in significant modules. In total, 
three significant modules (brown, blue and red modules) were 
identified after WGCNA, and a total of 106, 74 and 49 DEGs 
were included in the brown, blue and red module, respec-
tively. Fig. 3 shows the heatmap of the DEGs in each of the 
three modules.

Functional enrichment analysis for the genes in significant 
modules. The results of functional enrichment analysis 
suggested that the DEGs in the brown module were significantly 
enriched in eight KEGG signaling pathways and 14 GO_BPs, 
such as ‘hsa04510:Focal adhesion’ [involving collagen type IV 
α1 (COL4A1) and COL4A2], ‘hsa04151:PI3K‑Akt signaling 
pathway’ (involving COL4A1 and COL4A2), ‘GO:0030198 
extracellular matrix organization’ (involving COL4A1 and 
COL4A2) and ‘GO:0038063 collagen‑activated tyrosine 

Figure 3. In total, three significant modules (brown, blue and red module) are identified after weighted gene co‑expression network analysis. Heatmaps of the 
differentially expressed genes in the brown, blue and red modules were displayed.
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kinase receptor signaling pathway’ (involving COL4A1 and 
COL4A2). The DEGs in the blue module were significantly 
enriched in five KEGG signaling pathways and three GO_BPs, 
such as ‘hsa00350:Tyrosine metabolism’ [involving alcohol 
dehydrogenase 1C, γ polypeptide  (ADH1C), alcohol dehy-
drogenase 1B and β polypeptide (ADH1B)], ‘hsa00071:Fatty 
acid degradation’  (involving ADH1C and ADH1B) and 
‘GO:0006107 oxaloacetate metabolic process’  (involving 
glutamic‑oxaloacetic transaminase 1 and malate dehydro-

genase 1). The DEGs in the red module were significantly 
enriched in nine GO_BPs, including ‘GO:0007267 cell‑cell 
signaling’ [involving fibroblast growth factor 6 (FGF6) and 
androgen receptor  (AR)], ‘GO:0002548 monocyte chemo-
taxis’ (involving C‑C motif chemokine ligand 13 and C‑C 
motif chemokine ligand 4 like 1) and others (Fig. 4). It was 
found that no KEGG pathways were significantly enriched 
for the DEGs in the red module. The significantly enriched 
KEGG pathways and top ten GO_BPs are presented in Fig. 4, 

Figure 5. Protein‑protein interaction network for the DEGs in the brown, blue and red modules. A circle represents upregulated DEGs; a rhombus represents 
downregulated DEGs. Brown, blue and red represent the DEGs belonging to the brown, blue and red modules, respectively. DEGs, differentially expressed genes.

Figure 4. Significantly enriched KEGG signaling pathway and top ten GO_BPs for the differentially expressed genes in the brown, blue and red modules. 
(A) Top ten GO_BP terms for the differentially expressed genes in the brown, blue and red modules. (B) KEGG signaling pathway for the differentially 
expressed genes in the brown, blue and red modules. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO_BP, biological processes in Gene ontology.
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and detailed information of significantly enriched results is 
shown in Table II.

Construction of PPI network. The PPI network contained 
104  nodes, of which 57  belonged to the brown module, 
29 belonged to the blue module and 18 belonged to the red 
module, and 211 interactions (Fig. 5). The nodes in the PPI 
network with a degree of >5 are presented in Table III. It was 
demonstrated that epidermal growth factor receptor (EGFR, 
degree =23), vascular endothelial growth factor A (VEGFA), 
AR, proto‑oncogene receptor tyrosine kinase  (KIT), 
COL4A1 (degree =8) and COL4A2 (degree =7) were the hub 
genes with higher degrees in the PPI network. Furthermore, 
EGFR and VEGFA were the genes in the blue module, and 
AR was the gene in the red module, while KIT, COL4A1 and 
COL4A2 were the genes in the brown module (Fig. 5).

Construction of miRNA‑TF‑target regulatory network. The 
miRNA‑TF‑target regulatory network included 27  nodes 
and 36 regulatory interactions (Fig. 6). In total, five miRNAs 
and eight TFs were predicted to regulate 14 DEGs, including 
12 upregulated DEGs and two downregulated DEGs. It was 
found that VEGFA, COL4A1, COL4A2 and FGF6 were 
the hub nodes in the regulatory network, in which VEGFA, 
COL4A1 and COL4A2 were all regulated by miR‑29a/b/c; 
miR‑29a/b/c regulated only these three DEGs in this network. 
Moreover, FGF6 was regulated by five TFs, including 
interferon consensus sequence binding protein (ICSBP). In 
addition, ICSBP also regulated COL4A1 and COL4A2.

Confirmatory analysis. A total of 2,164 DEGs were obtained 
from skeletal muscle after 1 h of one‑legged exercise, including 
809 upregulated genes and 1,355 downregulated genes. There 
were 53 overlapping DEGs in the two datasets, such as VEGFA 
and FGF6 (Fig. 7; Table SI). In the ‘GSE41769’ dataset, collagen 
type VIII α 2 Chain and collagen type II α 1 chain (COL2A1) 
were differentially expressed after 1 h of one‑legged exercise. 
However, in the ‘GSE109657’ dataset, COL4A1 and COL4A2 
were differentially expressed after HIIT, suggesting that exercise 
may induce expression changes of collagen‑associated genes.

In addition, the DEGs were significantly enriched in 
88 KEGG pathways and numerous GO_BPs, including the 
PI3K‑Akt signaling pathway (involving COL2A1 and VEGFA), 
regulation of angiogenesis, sprouting angiogenesis, regulation 
of extracellular matrix assembly, extracellular matrix organi-
zation and focal adhesion assembly (Table SII). Furthermore, 
these results were consistent with the results from the analysis 
of genes in the brown module (Table II).

Discussion

In the present study, a total of 530 genes were found to be 
abnormally expressed in skeletal muscle after a 6‑week HIIT, 
suggesting an effect of HIIT on the skeletal muscle. In total, 
three significant modules  (brown, blue and red modules) 
were identified after WGCNA, and the genes, COL4A1 and 
COL4A2, in module brown showed the strongest correlation 
with HIIT. There were 106, 74 and 49 DEGs in the brown, 
blue and red modules, respectively, which were significantly 
enriched in focal adhesion, extracellular matrix organization 
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and the PI3K‑Akt signaling pathway. Furthermore, it was 
found that VEGFA, COL4A1 and COL4A2 were the hub genes 
in the PPI network, and were all regulated by miR‑29a/b/c. 
Therefore, the present results indicated that these genes, 
together with miR‑29a/b/c, may have a regulatory function in 
the skeletal muscle response to HIIT.

VEGFA is a protein‑coding gene that plays a crucial role 
in vascular endothelial cell growth and angiogenesis  (21). 
Gustafsson et al (22), indicated that exercise can promote the 
expression of VEGFA involved in the non‑pathological angio-
genesis in human skeletal muscle. Moreover, Baum et al (23) 
showed that exercise training induces ultrastructural changes, 
such as pericyte mobilization and basement membrane 

thinning in the capillaries, and this process is associated 
with exercise‑induced angiogenesis. The generation of new 
capillaries in skeletal muscles is an adaptive response of the 
skeletal muscle to exercise (24). Capillaries serve as major 
sites for the transport of gas, nutrients and metabolic waste; 
exercise‑induced capillary angiogenesis ensures that the 
increased need of active skeletal muscle for oxygen and nutri-
ents is met (24). The present results suggested that VEGFA was 
upregulated in skeletal muscles after HIIT, which was consis-
tent with results from previous studies (23,24), suggesting that 
skeletal muscle angiogenesis was induced after HIIT and is 
associated with the upregulation of VEGFA.

Previous studies in animal models have shown that 
local VEGFA gene transfer accelerates long‑term angiogen-
esis (25,26). However, unregulated VEGFA expression results 
in adverse changes leading to aberrant muscle morphology (27), 
suggesting the need for the regulation of VEGFA expression in 
long‑term gene transfer cases. Klagsbrun (28) revealed that the 
extracellular matrix is a critical component in the regulation of 
angiogenesis and could also provide a barrier to angiogenesis. 
Furthermore, Sottile (29) reported that the extracellular matrix 

Figure 6. miRNA‑TF‑target regulatory network. A circle represents upregu-
lated DEGs; a rhombus represents downregulated DEGs; green triangles 
represent miRNAs; yellow hexagons represent TFs. Brown, blue and red 
represent the DEGs belonging to the brown, blue and red modules, respec-
tively. miRNA, microRNA; TFs, transcription factors; DEGs, differentially 
expressed genes.

Figure 7. A total of 53 overlapping differentially expressed genes in GSE41769 
and GSE109657 datasets. Venn diagram to identify the overlapped DEGs in 
the two datasets.

Table III. Nodes in the protein‑protein interaction network 
with degree >5.

Nodes	R egulation	 Module	D egree

EGFR	 down	 blue	 23
VEGFA	 up	 blue	 19
AR	 down	 red	 14
KIT	 up	 brown	 12
KDR	 up	 brown	 11
PECAM1	 up	 brown	 11
PKM	 up	 brown	 11
CYP3A4	 down	 red	 10
MDH1	 up	 blue	 9
CD38	 down	 blue	 9
COL4A1	 up	 brown	 8
CDH5	 up	 brown	 8
COL4A2	 up	 brown	 7
LAMB1	 up	 brown	 7
FBP2	 up	 brown	 7
CARM1	 down	 brown	 7
NRP1	 up	 brown	 6
GOT1	 up	 blue	 6
ADH1B	 down	 blue	 6
LAMA4	 up	 brown	 6
CYP1A1	 up	 red	 6
PFKM	 up	 brown	 6
APLNR	 up	 blue	 6
FGF6	 up	 red	 6
PGAM2	 up	 brown	 6
MCAM	 up	 red	 6
MGST1	 down	 blue	 6
GSTM5	 down	 brown	 6
CKMT2	 up	 blue	 6
FCGR1A	 down	 brown	 6
ADH1C	 down	 blue	 5
GNG11	 up	 brown	 5
IL6R	 down	 red	 5
HSPB1	 down	 brown	 5
MYH1	 down	 blue	 5
CD93	 up	 brown	 5
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controls the growth, differentiation and migration of vascular 
endothelial cells in the course of angiogenesis. Moreover, 
remodeling of extracellular matrix results in events that either 
promote or inhibit angiogenesis  (29). Focal adhesion also 
participates in regulating cell migration and proliferation 
during angiogenesis, and adhesion molecules may interact 
with the extracellular matrix to exert an effect (30,31). The 
PI3K/Akt signaling pathway is reported to regulate vascular 
endothelial cell elongation and endothelial capillary stability 
during angiogenesis (32,33). In the present study, COL4A1 
and COL4A2 were significantly enriched in focal adhesion, 
extracellular matrix organization and the PI3K/Akt signaling 
pathway. COL4A1 and COL4A2 are type  IV collagen  α 
proteins, and are major components of the basement 
membrane  (34). COL4A1 mutations are reported to cause 
the endothelial cell defects and apoptosis in the capillaries of 
skeletal muscle (35). Therefore, COL4A1 and COL4A2 may 
mediate the growth and migration of vascular endothelial 
cells via cell adhesion, extracellular matrix organization and 
the PI3K/Akt signaling pathway, and as a result can regulate 
exercise‑induced skeletal muscle angiogenesis.

In the present study, miR‑29a/b/c were predicted to 
regulate VEGFA, COL4A1 and COL4A2 in the regulatory 
network. A previous study showed that miR‑29 plays an 
important role in regulating skeletal muscle growth and 
differentiation via decreasing Akt3  (36). Furthermore, it 
was demonstrated that miR‑29b mediates the expression 
of collagen type I α via the PI3K/Akt signaling pathway in 
human Tenon's fibroblasts (37). In addition, miR‑29b targets 
VEGFA via the PI3K/Akt signaling pathway to suppress 
angiogenesis in endometrial carcinoma  (38). Moreover, 
miR‑29c and miR‑29a are crucial regulators in the cell cycle 
progression and growth, as well as in the angiogenic proper-
ties of human umbilical vein endothelial cells (39,40). The 
present study identified the potential roles of miR‑29a/b/c 
in skeletal muscle and angiogenesis. Therefore, miR‑29a/b/c 
may regulate the exercise‑induced angiogenesis in skeletal 
muscle by targeting VEGFA, COL4A1 and COL4A2 via the 
PI3K/Akt signaling pathway. However, further experimental 
studies are required to investigate the present results in 
greater depth.

In conclusion, the present results suggested that VEGFA, 
COL4A1 and COL4A2 were upregulated in the skeletal muscle 
in response to HIIT. Furthermore, COL4A1 and COL4A2 may 
mediate the growth and migration of vascular endothelial cells 
via cell adhesion and extracellular matrix organization, along 
with the regulation of angiogenesis. It was demonstrated that 
skeletal muscle angiogenesis may be regulated by miR‑29a/b/c 
targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt 
signaling pathway. Therefore, the present results may facilitate 
continued investigation into the effect of exercise on skeletal 
muscles.
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