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miR-29 mediates exercise-induced skeletal muscle angiogenesis
by targeting VEGFA, COL4A1 and COL4A2
via the PI3K/AKkt signaling pathway
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Abstract. The present study investigated the molecular
changes and related regulatory mechanisms in the response
of skeletal muscle to exercise. The microarray dataset
‘GSE109657’ of the skeletal muscle response to high-intensity
intermittent exercise training (HII'T) was downloaded from the
Gene Expression Omnibus database. Differentially expressed
genes (DEGs) were screened and analyzed using weighted
gene co-expression network analysis (WGCNA) to identify the
significant functional co-expressed gene modules. Moreover,
functional enrichment analysis was performed for the DEGs
in the significant modules. In addition, protein-protein inter-
action (PPI) network and microRNA (miR)-transcription
factor (TF)-target regulatory network were constructed. A total
of 530 DEGs in the skeletal muscle were screened after HIIT,
suggesting an effect of HIIT on the skeletal muscle. Moreover,
three significant modules (brown, blue and red modules) were
identified after WGCNA, and the genes Collagen Type IV al
Chain (COL4A1) and COL4A2 in the brown module showed
the strongest correlation with HIIT. The DEGs in the three
modules were significantly enriched in focal adhesion,
extracellular matrix organization and the PI3K/Akt signaling
pathway. Furthermore, the PPI network contained 104 nodes
and 211 interactions. Vascular endothelial growth factor A
(VEGFA), COL4A1 and COL4A2 were the hub genes in
the PPI network, and were all regulated by miR-29a/b/c. In
addition, VEGFA, COL4A1 and COL4A?2 were significantly
upregulated in the skeletal muscle response to HIIT. Therefore,
the present results suggested that the growth and migration of
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vascular endothelial cells, and skeletal muscle angiogenesis
may be regulated by miR-29a/b/c targeting VEGFA, COL4A1
and COL4A2 via the PI3K/Akt signaling pathway. The present
results may provide a theoretical basis to investigate the effect
of exercise on skeletal muscle.

Introduction

Skeletal muscle accounts for ~42% of the total body mass
in males and 36% in females (1); it is a metabolically active
tissue and is responsible for 30% of the resting metabolic rate
in adults (2). Apart from skeletal motion, skeletal muscle plays
key roles in calorigenesis, blood glucose control, metabolic
balance and the support and protection of soft tissue (1).
Exercise training has the ability to improve pathological
conditions involving metabolic disorders and prevent various
lifestyle-related chronic maladies, partly due to its regulation
of metabolic homeostasis and the molecular responses of
skeletal muscle (2). Moreover, exercise induces various adap-
tive responses in the skeletal muscle, including mitochondrial
biogenesis (3), lipid metabolism (4), glycometabolism (5) and
ultrastructural changes (6).

Baar er al (7), reported that mitochondrial biogenesis
triggered by exercise is associated with the increase of the
transcriptional coactivators peroxisome proliferator-activated
receptor y coactivator-1 (PGC-1), nuclear respiratory
factor 1 (NRF-1) and NRF-2. Canté et al (8), revealed that
AMP-activated protein kinase (AMPK) is first activated
during the adaptive responses in skeletal muscle after exercise,
while sirtuin 1 (SIRT1) is activated with deficient AMPK
activity, suggesting an acetylation regulation mechanism of
the AMPK/SIRT1 axis. High-intensity intermittent exercise
training (HIIT) improves the skeletal myopathy in patients with
heart failure associated with the increased expression of the
insulin-like growth factor 1 bioregulation system (9). Exercise
training can induce the increased expression level of cytokines
secreted by skeletal muscle cells, including IL-6, IL-1 and
IL-10, which have anti-inflammatory effects (10). In addition,
microRNAs (miRNAs/miRs), a class of non-coding small
RNAs regulating genes at a post-transcriptional level, also play
crucial roles in the skeletal muscle response to exercise (1,11).
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The expression level of miR-761 is reduced in the mouse skel-
etal muscle response to exercise and its overexpression inhibits
the P38 mitogen-activated protein kinase signaling pathway
and PGC-la, which are associated with mitochondrial biogen-
esis (12). Although previous studies have been conducted,
the specific molecular mechanisms of mouse skeletal muscle
response to exercise are not fully understood (13,14). Therefore,
the present study investigated the molecular changes and related
regulatory mechanisms in skeletal muscle response to exercise.

The microarray dataset ‘GSE109657’ of the skeletal muscle
response to HIIT used in the present study was contributed
by Miyamoto-Mikami er al (15). These authors investigated
the differentially expressed genes (DEGs) and the associated
functions, and significantly upregulated DEGs are found to
be associated with glucose metabolism and mitochondrial
membranes (15). In the present study, DEGs were identified
and analyzed using weighted gene co-expression network
analysis (WGCNA), which is effective for the identification
of functional co-expressed gene modules (16). In addition,
except for the functional enrichment analysis, miRNAs and
transcription factors (TFs) were predicted in order to construct
the miRNA-TF-target regulatory network. Thus, the present
results may provide a theoretical basis for the investigation of
the effect of exercise on skeletal muscle.

Materials and methods

Microarray data. The ‘GSE109657” gene expression dataset
of human skeletal muscle was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). There were 22 biopsy samples in this dataset,
which were collected fromthe vastuslateralis muscle of 11 young
and healthy men before (GSM2948027-GSM2948037) and
after (GSM2948038-GSM2948048) a 6-week HIIT. The
platform of this dataset was GPL16686 [HuGene-2_0-st]
Affymetrix Human Gene 2.0 ST Array [transcript (gene)
version]. Since the dataset was obtained from a public data-
base, no ethical approval was obtained in the present study.

Data preprocessing and screening of DEGs. The Oligo in R
package (v.1.34.0; http://bioconductor.org/help/search/index.
html?q=oligo/) was used to perform raw data preprocessing,
including format conversion, missing value supplement,
background correction and data standardization. The probes
were annotated according to the annotation file on the plat-
form and were removed when the gene symbol did not match.
The differentially expressed analysis among samples was
performed utilizing the classical Bayes method in limma
package (R v.3.3.3) (17) and the DEGs were screened with the
threshold of P<0.05 and llog fold change (FC)I >0.263.

WGCNA for DEGs. WGCNA (http://www.inside-r.
org/packages/cran/ WGCNA/docs/bicor) was used to identify
the modules and genes associated with HIIT based on the
expression level of DEGs, and the DEGs were clustered into
different modules according their co-expression relationships.
WGCNA was conducted according to a previous study by
Langfelder and Horvath (18), including the definition of gene
co-expression matrix S, = Icor, ,|, the definition of adjacent
function a,,, = pOWer s, the determination of weighted coef-
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ficient 3 (=0.8) and the measurement of dissimilarity between
nodes. The minimum number of genes in each module was
set as 20 and the cluster analysis height of the module was set
as 0.2 in the identification of gene modules. In addition, the
module significance was calculated to identify the correlation
between modules and HIIT.

Functional enrichment analysis for the genes in significant
modules. The online database for annotation, visualization and
integrated discovery tool (v.6.8; https://david-d.ncifcrf.gov/)
was used to investigate the function of the genes in significant
modules, including biological processes in Gene Ontology (GO_
BP) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
signaling pathways. The number of enrichment genes was set as
count =2 and P<0.05 was selected as the threshold.

Construction of protein-protein interaction network. The
genes in significant modules were integrated and uploaded to
the STRING database (version: 10.0; http://www.string-db.
org/) to retrieve the protein-protein interactions (PPIs) with
the following parameters: Species was set as human and
the PPI score was set as 0.4 (median confidence). Cytoscape
software (v.3.2.0; http://www.cytoscape.org/) was used to
construct the visualized PPI network based on the retrieved
interactions from STRING. A high node degree centrality
value indicated the hub nodes in the PPI network (19).

Construction of miRNA-TF-target regulatory network.
The over-representation analysis method of enrichment in
WebGestalt (v.2017; http://www.webgestalt.org/) was used to
predict the miRNA-target interactions and TF-target interac-
tions for the genes with node degree >5 in the PPI network.
P<0.05 was selected as the threshold. In addition, Cytoscape
software was used to construct the miRNA-TF-target regula-
tory network with the significantly enriched miRNA-target
interactions and TF-target interactions.

Confirmatory analysis. In order to investigate the expression
and function of the DEGs, the ‘GSE41769° gene expression
dataset of human skeletal muscle, which was contributed by
Catoire et al (20), was downloaded from the GEO database.
This dataset included 36 skeletal muscle biopsy samples, which
were collected from both the legs of nine healthy middle-aged
men before and after 1 h of one-legged exercise. The platform
of this dataset was GPL11532 [HuGene-1_1-st] Affymetrix
Human Gene 1.1 ST Array [transcript (gene) version]. Data
were preprocessed and differentially expressed analysis was
performed using the method mentioned above, and the DEGs
were screened within the threshold of P<0.05. Moreover, func-
tional enrichment analysis was also conducted for these DEGs
using the method described above.

Results

Data preprocessing and screening of DEGs. The gene
expression in each sample was at the same level after data
normalization, suggesting that they could be used in the subse-
quent analyses (Fig. 1A). A total of 530 DEGs were screened in
the vastus lateralis muscle after HIIT, of which 209 genes were
significantly upregulated, while 321 genes were significantly
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Figure 1. Results of differential expression analysis. (A) Boxplot of the levels of gene expression in each sample after data normalization. (B) Heatmap of
differentially expressed genes before or after 6-week high-intensity intermittent exercise training.
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Figure 2. Weighted gene co-expression network analysis. (A) Selection diagram of adjacency matrix weight parameter ‘power’. (B) Identification of gene system clus-
tering tree under dissimilarity matrix using dynamic hybrid shearing algorithm. (C) High-intensity intermittent exercise training correlated co-expression modules.

downregulated. The heatmap of DEGs displayed in Fig. 1B
indicated that DEGs could be distinguished in the muscle
biopsy samples before and after HIIT.

WGCNA for DEGs. The value of the power parameter in
the adjacent function was determined as eight. A total of six
co-expression modules were identified for the DEGs with
absolute correlation =0.5, of which three modules had the
absolute correlation =0.8; these were the brown, blue and red
modules. The DEGs in these three modules were used in the
following analysis (Table I). The DEGs in the brown module
showed the strongest correlation with HIIT and those in the

Table I. High-intensity intermittent exercise training correlated
co-expression modules.

Module Correlation coefficient P-value

MEbrown 0.36 2.35x107
MEblue -0.81 5.94 x10°¢
MEred -0.8 9.49 x10°¢
MEturquoise -0.79 1.39x10°
MEblack -0.68 0.0004783
MEgrey -0.63 0.001525
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Figure 3. In total, three significant modules (brown, blue and red module) are identified after weighted gene co-expression network analysis. Heatmaps of the
differentially expressed genes in the brown, blue and red modules were displayed.

grey module were not clustered into co-expression modules
with other DEGs (Fig. 2).

Expression levels of the genes in significant modules. In total,
three significant modules (brown, blue and red modules) were
identified after WGCNA, and a total of 106, 74 and 49 DEGs
were included in the brown, blue and red module, respec-
tively. Fig. 3 shows the heatmap of the DEGs in each of the
three modules.

Functional enrichment analysis for the genes in significant
modules. The results of functional enrichment analysis
suggested that the DEGs in the brown module were significantly
enriched in eight KEGG signaling pathways and 14 GO_BPs,
such as ‘hsa04510:Focal adhesion’ [involving collagen type IV
al (COL4A1) and COL4A2], ‘hsa04151:PI3K-Akt signaling
pathway’ (involving COL4A1 and COL4A2), ‘GO:0030198
extracellular matrix organization’ (involving COL4A1 and
COL4A?2) and ‘G0O:0038063 collagen-activated tyrosine
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Figure 4. Significantly enriched KEGG signaling pathway and top ten GO_BPs for the differentially expressed genes in the brown, blue and red modules.
(A) Top ten GO_BP terms for the differentially expressed genes in the brown, blue and red modules. (B) KEGG signaling pathway for the differentially
expressed genes in the brown, blue and red modules. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO_BP, biological processes in Gene ontology.
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Figure 5. Protein-protein interaction network for the DEGs in the brown, blue and red modules. A circle represents upregulated DEGs; a rhombus represents
downregulated DEGs. Brown, blue and red represent the DEGs belonging to the brown, blue and red modules, respectively. DEGs, differentially expressed genes.

kinase receptor signaling pathway’ (involving COL4A1 and
COL4A2). The DEGs in the blue module were significantly
enriched in five KEGG signaling pathways and three GO_BPs,
such as ‘hsa00350:Tyrosine metabolism’ [involving alcohol
dehydrogenase 1C, y polypeptide (ADHI1C), alcohol dehy-
drogenase 1B and 3 polypeptide (ADHI1B)], ‘hsa00071:Fatty
acid degradation’ (involving ADHIC and ADHI1B) and
‘G0:0006107 oxaloacetate metabolic process’ (involving
glutamic-oxaloacetic transaminase 1 and malate dehydro-

genase 1). The DEGs in the red module were significantly
enriched in nine GO_BPs, including ‘G0O:0007267 cell-cell
signaling’ [involving fibroblast growth factor 6 (FGF6) and
androgen receptor (AR)], ‘G0O:0002548 monocyte chemo-
taxis’ (involving C-C motif chemokine ligand 13 and C-C
motif chemokine ligand 4 like 1) and others (Fig. 4). It was
found that no KEGG pathways were significantly enriched
for the DEGs in the red module. The significantly enriched
KEGG pathways and top ten GO_BPs are presented in Fig. 4,
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Table II. Continued.

FDR

Genes Benjamini

P-Value

Count

Term

Category

Module

33.3037599
36.7737565
36.7737565
43.6233265
1.18243256
3.08747273
12.7828018
20.3855781
35.1613714
35.5422436
38.0538321
45.9815491
472007199

0.50048559
0.99999776
0.99999776
0.99970543
0.21970158
0.27894373
0.61357594
0.69537283
0.83589656
0.78271109
0.75994039
0.79921365
0.77236779

ADHI1C,ADH1B, MGST1

GOT1,MDH1

0.03624794
0.03239246
0.03239246
0.04032881

9.02x10*

3
2

hsa05204:Chemical carcinogenesis

KEGG_pathway
GO_BP terms

GO:0006107~o0xaloacetate metabolic process

GO:0006069~¢ethanol oxidation

GO_BP terms

ADHI1C,ADHIB

GO_BP terms

SLC25A30, UCP3

GO0:0006839~mitochondrial transport

GO:0007267~cell-cell signaling

GO_BP terms

FGF6, AR, CCL13,CCL4L1, PHEX

CCL13, CCLAL1, IL6R
CYP3A4,CYP1A1

GO_BP terms

0.00237563
0.01031897
0.01714109
0.03232524
0.03275751
0.03566861
0.04563192
0.04728279

GO0:0002548~monocyte chemotaxis
G0:0002933~lipid hydroxylation

GO_BP terms

Enriched results

GO_BP terms

for the genes in

CYP3A4,CYP1A1
ZNF658, MT1X

GO0:0042359~vitamin D metabolic process

GO_BP terms

red module
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GO:0071294~cellular response to zinc ion

GO:0007568~aging

GO_BP terms

SLC32A1, SREBFI1, CYP1A1l

SREBF1, CYPIAL1

GO_BP terms

G0:0032094~response to food

GO_BP terms

CYP3A4,CYP1A1
CCL13,CCLAL1

GO0:0017144~drug metabolic process

GO_BP terms

G0:0048247~lymphocyte chemotaxis

KEGG, Kyoto Encyclopedia of Genes and Genomes; GO_BP, biological processes in Gene ontology.

and detailed information of significantly enriched results is
shown in Table II.

Construction of PPI network. The PPI network contained
104 nodes, of which 57 belonged to the brown module,
29 belonged to the blue module and 18 belonged to the red
module, and 211 interactions (Fig. 5). The nodes in the PPI
network with a degree of >5 are presented in Table III. It was
demonstrated that epidermal growth factor receptor (EGFR,
degree =23), vascular endothelial growth factor A (VEGFA),
AR, proto-oncogene receptor tyrosine kinase (KIT),
COL4A1 (degree =8) and COL4A?2 (degree =7) were the hub
genes with higher degrees in the PPI network. Furthermore,
EGFR and VEGFA were the genes in the blue module, and
AR was the gene in the red module, while KIT, COL4A1 and
COL4A2 were the genes in the brown module (Fig. 5).

Construction of miRNA-TF-target regulatory network. The
miRNA-TF-target regulatory network included 27 nodes
and 36 regulatory interactions (Fig. 6). In total, five miRNAs
and eight TFs were predicted to regulate 14 DEGs, including
12 upregulated DEGs and two downregulated DEGs. It was
found that VEGFA, COL4A1, COL4A2 and FGF6 were
the hub nodes in the regulatory network, in which VEGFA,
COL4A1 and COL4A2 were all regulated by miR-29a/b/c;
miR-29a/b/c regulated only these three DEGs in this network.
Moreover, FGF6 was regulated by five TFs, including
interferon consensus sequence binding protein (ICSBP). In
addition, ICSBP also regulated COL4A1 and COL4A2.

Confirmatory analysis. A total of 2,164 DEGs were obtained
from skeletal muscle after 1 h of one-legged exercise, including
809 upregulated genes and 1,355 downregulated genes. There
were 53 overlapping DEGs in the two datasets, such as VEGFA
and FGF6 (Fig. 7; Table SI). In the ‘GSE41769’ dataset, collagen
type VIII a 2 Chain and collagen type II a 1 chain (COL2A1)
were differentially expressed after 1 h of one-legged exercise.
However, in the ‘GSE109657’ dataset, COL4A1 and COL4A2
were differentially expressed after HIIT, suggesting that exercise
may induce expression changes of collagen-associated genes.

In addition, the DEGs were significantly enriched in
88 KEGG pathways and numerous GO_BPs, including the
PI3K-Akt signaling pathway (involving COL2A1 and VEGFA),
regulation of angiogenesis, sprouting angiogenesis, regulation
of extracellular matrix assembly, extracellular matrix organi-
zation and focal adhesion assembly (Table SII). Furthermore,
these results were consistent with the results from the analysis
of genes in the brown module (Table II).

Discussion

In the present study, a total of 530 genes were found to be
abnormally expressed in skeletal muscle after a 6-week HIIT,
suggesting an effect of HIIT on the skeletal muscle. In total,
three significant modules (brown, blue and red modules)
were identified after WGCNA, and the genes, COL4A1 and
COL4A2, in module brown showed the strongest correlation
with HIIT. There were 106, 74 and 49 DEGs in the brown,
blue and red modules, respectively, which were significantly
enriched in focal adhesion, extracellular matrix organization
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Table III. Nodes in the protein-protein interaction network
with degree >5.

Nodes Regulation Module Degree
EGFR down blue 23
VEGFA up blue 19
AR down red 14
KIT up brown 12
KDR up brown 11
PECAM1 up brown 11
PKM up brown 11
CYP3A4 down red 10
MDHI1 up blue 9
CD38 down blue 9
COL4A1 up brown 8
CDH5 up brown 8
COL4A2 up brown 7
LAMBI1 up brown 7
FBP2 up brown 7
CARMI1 down brown 7
NRP1 up brown 6
GOT1 up blue 6
ADHI1B down blue 6
LAMA4 up brown 6
CYP1Al up red 6
PFKM up brown 6
APLNR up blue 6
FGF6 up red 6
PGAM2 up brown 6
MCAM up red 6
MGST1 down blue 6
GSTMS down brown 6
CKMT2 up blue 6
FCGRI1A down brown 6
ADHIC down blue 5
GNGl11 up brown 5
IL6R down red 5
HSPB1 down brown 5
MYHI1 down blue 5
CD93 up brown 5

and the PI3K-Akt signaling pathway. Furthermore, it was
found that VEGFA, COL4A1 and COL4A2 were the hub genes
in the PPI network, and were all regulated by miR-29a/b/c.
Therefore, the present results indicated that these genes,
together with miR-29a/b/c, may have a regulatory function in
the skeletal muscle response to HIIT.

VEGFA is a protein-coding gene that plays a crucial role
in vascular endothelial cell growth and angiogenesis (21).
Gustafsson er al (22), indicated that exercise can promote the
expression of VEGFA involved in the non-pathological angio-
genesis in human skeletal muscle. Moreover, Baum et al (23)
showed that exercise training induces ultrastructural changes,
such as pericyte mobilization and basement membrane

CHEN et al: REGULATION OF SKELETAL MUSCLE ANGIOGENESIS

Figure 6. miRNA-TF-target regulatory network. A circle represents upregu-
lated DEGs; a rhombus represents downregulated DEGs; green triangles
represent miRNAs; yellow hexagons represent TFs. Brown, blue and red
represent the DEGs belonging to the brown, blue and red modules, respec-
tively. miRNA, microRNA; TFs, transcription factors; DEGs, differentially
expressed genes.

GSE41769 GSE109657

477
(18.8%)

Figure 7. A total of 53 overlapping differentially expressed genes in GSE41769
and GSE109657 datasets. Venn diagram to identify the overlapped DEGs in
the two datasets.

thinning in the capillaries, and this process is associated
with exercise-induced angiogenesis. The generation of new
capillaries in skeletal muscles is an adaptive response of the
skeletal muscle to exercise (24). Capillaries serve as major
sites for the transport of gas, nutrients and metabolic waste;
exercise-induced capillary angiogenesis ensures that the
increased need of active skeletal muscle for oxygen and nutri-
ents is met (24). The present results suggested that VEGFA was
upregulated in skeletal muscles after HIIT, which was consis-
tent with results from previous studies (23,24), suggesting that
skeletal muscle angiogenesis was induced after HIIT and is
associated with the upregulation of VEGFA.

Previous studies in animal models have shown that
local VEGFA gene transfer accelerates long-term angiogen-
esis (25,26). However, unregulated VEGFA expression results
in adverse changes leading to aberrant muscle morphology (27),
suggesting the need for the regulation of VEGFA expression in
long-term gene transfer cases. Klagsbrun (28) revealed that the
extracellular matrix is a critical component in the regulation of
angiogenesis and could also provide a barrier to angiogenesis.
Furthermore, Sottile (29) reported that the extracellular matrix
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controls the growth, differentiation and migration of vascular
endothelial cells in the course of angiogenesis. Moreover,
remodeling of extracellular matrix results in events that either
promote or inhibit angiogenesis (29). Focal adhesion also
participates in regulating cell migration and proliferation
during angiogenesis, and adhesion molecules may interact
with the extracellular matrix to exert an effect (30,31). The
PI3K/Akt signaling pathway is reported to regulate vascular
endothelial cell elongation and endothelial capillary stability
during angiogenesis (32,33). In the present study, COL4A1
and COL4A2 were significantly enriched in focal adhesion,
extracellular matrix organization and the PI3K/Akt signaling
pathway. COL4A1 and COL4A2 are type IV collagen a
proteins, and are major components of the basement
membrane (34). COL4A1 mutations are reported to cause
the endothelial cell defects and apoptosis in the capillaries of
skeletal muscle (35). Therefore, COL4A1 and COL4A2 may
mediate the growth and migration of vascular endothelial
cells via cell adhesion, extracellular matrix organization and
the PI3K/Akt signaling pathway, and as a result can regulate
exercise-induced skeletal muscle angiogenesis.

In the present study, miR-29a/b/c were predicted to
regulate VEGFA, COL4A1 and COL4A?2 in the regulatory
network. A previous study showed that miR-29 plays an
important role in regulating skeletal muscle growth and
differentiation via decreasing Akt3 (36). Furthermore, it
was demonstrated that miR-29b mediates the expression
of collagen type I a via the PI3K/Akt signaling pathway in
human Tenon's fibroblasts (37). In addition, miR-29b targets
VEGFA via the PI3K/Akt signaling pathway to suppress
angiogenesis in endometrial carcinoma (38). Moreover,
miR-29c and miR-29a are crucial regulators in the cell cycle
progression and growth, as well as in the angiogenic proper-
ties of human umbilical vein endothelial cells (39,40). The
present study identified the potential roles of miR-29a/b/c
in skeletal muscle and angiogenesis. Therefore, miR-29a/b/c
may regulate the exercise-induced angiogenesis in skeletal
muscle by targeting VEGFA, COL4A1 and COL4A?2 via the
PI3K/Akt signaling pathway. However, further experimental
studies are required to investigate the present results in
greater depth.

In conclusion, the present results suggested that VEGFA,
COL4A1 and COL4A?2 were upregulated in the skeletal muscle
in response to HIIT. Furthermore, COL4A1 and COL4A?2 may
mediate the growth and migration of vascular endothelial cells
via cell adhesion and extracellular matrix organization, along
with the regulation of angiogenesis. It was demonstrated that
skeletal muscle angiogenesis may be regulated by miR-29a/b/c
targeting VEGFA, COL4A1 and COL4A?2 via the PI3K/Akt
signaling pathway. Therefore, the present results may facilitate
continued investigation into the effect of exercise on skeletal
muscles.
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