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Abstract. Ankylosing spondylitis (AS) is a chronic 
inflammatory systemic disease and is difficult to detect in 
the early stages. The present study aimed to investigate the 
role of microRNA (miR)‑204‑5p in osteogenic differentiation 
of AS fibroblasts. Bone morphogenetic protein 2 (BMP‑2) 
was used to induce osteogenic differentiation. Cells 
were divided into the following groups: AS group, 
AS + BMP‑2 group, AS + BMP‑2 + miR‑negative control 
group, AS  +  BMP‑2  +  miR‑204‑5p mimics group and 
AS + BMP‑2 + miR‑204‑5p mimics + pcDNA‑Notch2 group. 
The expression levels of miR‑204‑5p, Notch2, runt‑related 
transcription factor 2 (RUNX2) and osteocalcin were detected 
via reverse transcription‑quantitative PCR analysis. The 
binding site between Notch2 and miR‑204‑5p was predicted 
using TargetScan software and verified via the dual‑luciferase 
reporter assay. Alkaline phosphatase (ALP) activity was 
assessed via the ALP assay, while the mineralized nodules 
area was determined via the Alizarin Red S staining assay. 
The results demonstrated that Notch2 is a target gene of 
miR‑204‑5p. Furthermore, treatment with BMP‑2 significantly 
decreased miR‑204‑5p expression, and significantly 
increased ALP activity, the mineralized nodules area and 
the expression levels of Notch2, RUNX2 and osteocalcin in 
ligament fibroblasts (all P<0.05). Conversely, transfection 
with miR‑204‑5p mimics significantly increased miR‑204‑5p 
expression, and significantly decreased ALP activity, the 
mineralized nodules area and the expression levels of Notch2, 
RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). 
Notably, transfection with pcDNA‑Notch2 significantly 
reversed the inhibitory effects induced by miR‑204‑5p mimics 

on the osteogenic differentiation of ligament fibroblasts (all 
P<0.05). Furthermore, miR‑204‑5p inhibited the osteogenic 
differentiation of ligament fibroblasts in patients with AS by 
targeting Notch2. Thus, miR‑204‑5p may negatively regulate 
Notch2 expression and may be a potential therapeutic target 
for AS. Collectively, the results of the present study provide 
a theoretical basis for the effective treatment of patients with 
AS.

Introduction

Ankylosing spondylitis (AS) is a common chronic 
immune‑mediated joint disease, which predominantly affects 
the spine and pelvis (1). Between May 2005 and May 2019, 
the total prevalence of AS in mainland China was 0.29% (2). 
AS is characterized by spinal pain, stiffness and new bone 
formation, which manifests ligament atrophy and joint 
stiffness (3). A previous study has demonstrated that there 
is no definite value in assessing the long‑term prognosis and 
mortality of patients with AS (4). The number of patients with 
AS per 10,000 people is 23.8 in Europe, 16.7 in Asia, 31.9 in 
North America, 10.2 in Latin America and 7.4 in Africa (5). 
With the increasing incidence of AS, the therapeutic strategies 
of AS are also diversified, including the use of tumor necrosis 
factor blockers  (6), radiotherapy  (7), ultrasound combined 
exercise therapy (8) and surgical treatment (9). Furthermore, 
microRNAs (miRNAs/miRs) play a key role in regulating 
the immune function and autoimmunity  (10). With the 
development of molecular targeting technology, research on 
miRNAs is of great interest for the treatment of AS.

miRNAs play a significant role in AS pathology by targeting 
the inflammation and bone remodeling genes (11). Notably, 
miR‑204 regulates the transformation of mesenchymal stem 
cells into adipose and osteoblast cell lines (12). miR‑204 is 
involved in the development of several diseases. For example, 
miR‑204‑5p plays a therapeutic role in aplastic anemic rats 
via the NF‑kB signaling pathway (13), which is a target for 
AS treatment (14). Furthermore, the maintain bone morpho-
genetic protein (BMP)/SMAD (15), Wnt/β‑catenin (16) and 
Notch (17) signaling pathways are involved in the process of 
AS. Specifically, the Notch2 signaling pathway is required to 
promote cell proliferation and maintain BMP signaling (18). 
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There is a positive regulatory association between the Notch 
and NF‑κB signaling pathways  (19). However, whether 
miR‑204‑5p is involved in the regulation of the Notch signaling 
pathway, and whether it has an impact on osteogenic differen-
tiation of AS fibroblasts have not yet been fully investigated.

BMP‑2 is a member of the transforming growth factor‑β 
superfamily that is synthesized and secreted by osteoblasts (20). 
BMP‑2 is considered a common osteogenic agent, which can 
induce undifferentiated mesenchymal cells into cartilage 
and bone tissues  (21). A previous study demonstrated that 
BMP‑2 facilitates the osteogenic differentiation of bone 
marrow‑derived mesenchymal stem cells by inducing alkaline 
phosphatase (ALP) activity, promoting mineralization, 
enhancing adherence and mediating the expression and 
activation of osteogenic markers (22).

In the current study mRNA expression was detected 
using reverse transcription‑quantitative PCR (RT‑qPCR). The 
binding site between Notch2 and miR‑204‑5p was predicted 
using TargetScan software and assessed via the dual‑luciferase 
reporter assay. Moreover, ALP activity was assessed via the 
ALP assay, while the mineralized nodules area was deter-
mined via the Alizarin Red S staining assay. In addition, 
BMP‑2 was used to induce osteogenic differentiation of AS 
fibroblasts, and the regulatory role of miR‑204‑5p on the 
osteogenic differentiation of AS fibroblasts, and the underlying 
molecular mechanism involving the Notch signaling pathway 
were assessed. Taken together, the results of the present study 
provide a theoretical basis for the treatment of patients with 
AS.

Materials and methods

Primary culture of ligament fibroblasts. A total of 20 patients 
with AS (20 men; age, 25‑39 years; mean age, 30.2 years) 
who underwent surgical intervention at Shouguang People's 
Hospital between January 2016 and January 2018 were 
recruited in the present study. The bioptic tissues were collected 
from the 20 patients with AS. All patients were in the active 
stage, exhibiting inflammatory low back pain, notable ossifica-
tion of the ankle joint, positive histocompatibility leukocyte 
antigen (HLA)‑B27, and elevated levels of C‑reactive protein 
and erythrocyte sedimentation rate (ESR). All patients met the 
New York Standard of the American College of Rheumatology 
revised in 1984 (23).

A total of 20 patients (20 men; age, 26‑43 years; mean 
age, 31.5 years) who underwent hip arthroplasty for femoral 
neck fracture (excluding other types of osteoarthritis) 
between January 2017 and October 2017 were recruited 
as the control group in the present study. The hip ligament 
tissues were washed with physiological saline, immediately 
frozen in liquid nitrogen and stored at  ‑80˚C until further 
experimentation. The present study was approved by the 
Ethics Committee of Shouguang People's Hospital (approval 
no. SGSRMXY‑2020‑09) and written informed consent was 
provided by all patients prior to the study start.

The hip ligament tissues of patients with AS were rinsed 
three times with PBS supplemented with 300 U/ml penicillin 
and 300  µg/ml streptomycin (all Gibco; Thermo Fisher 
Scientific, Inc.). The ligament tissues were subsequently cut 
into 1‑mm3‑thick sections using ophthalmic scissors, and 

added into plates containing 5 ml serum‑free DMEM medium 
and 0.2 µg/ml type  I collagenase (all Invitrogen; Thermo 
Fisher Scientific, Inc.). The collagen fibers were removed 
by filtration at 1,000 r/min, through a 0.22 µm filter (EMD 
Millipore). The precipitated cells were cultured in DMEM 
medium supplemented with 20% serum and 1% streptomycin, 
at 37˚C in 5% CO2 for 72 h.

Osteogenic differentiation of ligament fibroblasts. The 
osteogenic differentiation of ligament fibroblasts was 
induced by BMP‑2 as previously described  (24‑26). 
Cells were divided into the following groups: AS group, 
AS + BMP‑2 group, AS + BMP‑2 + miR‑negative control 
(NC) group, AS  +  BMP‑2  +  miR‑204‑5p mimics group 
and AS + BMP‑2 + miR‑204‑5p mimics + pcDNA‑Notch2 
group. Cells were transfected with 50 nmol/l miR‑204‑5p 
mimics, miR‑NC, pcDNA‑Notch2 or pcDNA‑NC (Shanghai 
GenePharma Co., Ltd.), using Lipofectamine® 2000 transfection 
reagent (Thermo Fisher Scientific, Inc.). The subsequent 
experiments were performed at  24  h post‑transfection. 
Subsequently, cells were cultured in DMEM/H containing 
10% fetal bovine serum, 0.05 mM vitamin C and 100 mM 
dexamethason (all Gibco; Thermo Fisher Scientific, Inc.). 
BMP‑2 (200 ng/ml; Sigma‑Aldrich; Merck KGaA) was added 
to all medium except the AS group. All cells were cultured in 
5% CO2 at 37˚C and induced for 14 days.

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was extracted from the hip ligament tissues and ligament 
fibroblasts using TRIzol® reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.). Synthesis of cDNA using reverse transcrip-
tase was performed with the PrimeScript RT Enzyme Mix I 
kit (Takara Bio, Inc.). The reaction mixtures were incubated 
at 37˚C for 60 min, 95˚C for 5 min and then held at 4˚C. A 
total of 5 µl diluted RNA (1:20) was used to determine the 
concentration and purity of total RNA. miScript SYBR 
Green PCR kit (Qiagen, Inc.) was used to conduct the qPCR 
analysis. RT‑qPCR was performed on an ABI7500 quantita-
tive PCR machine (Thermo Fisher Scientific, Inc.). U6 was 
used as the internal control for miRNAs, and GAPDH served 
as the internal control for other genes. The primer sequences 
(Guangzhou Ruibo Biotechnology Co., Ltd.) are listed in 
Table  I. The reaction conditions were as follows: 95˚C for 
10 min, followed by 40 cycles at 95˚C for 10 sec, 60˚C for 
20 sec and 72˚C for 34 sec. Relative expression levels were 
calculated using the 2‑ΔΔCq method (27).

ALP staining and calcium salt deposition staining. After 
7 days of culturing, cells (1x104 cells/well) from each group 
were collected and fixed. ALP activity was assessed using 
the ALP activity assay kit (cat.  no.  A059‑2‑2; Nanjing 
Jiancheng Bioengineering Institute) according to the 
manufacturer's protocol. ALP activity was measured at a 
wavelength of 520 nm, using a microplate reader (Molecular 
Devices LLC).

After 14 days of culturing, cells from each group were 
collected and stained with 2% Alizarin Red staining solution 
(pH 8.3; Nanjing KeyGen Biotech Co., Ltd.) at 37˚C for 10 min. 
The solution was discarded, cells were washed with PBS and 
subsequently observed under a phase contrast microscope 
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(light microscope), and the mineralized nodules area was 
counted at five high‑power fields (magnification, x100).

Western blotting. Ligament fibroblasts were lysed using 
RIPA lysate (Beyotime Institute of Biotechnology) at 4˚C for 
30 min. The supernatants were collected via centrifugation 
at 7,200 x g at 4˚C for 10 min. Total protein was quantified 
using the bicinchoninic acid assay kit (Beyotime Institute of 
Biotechnology) and 60 µg protein/lane was separated via 10% 
separating gum and 5% concentrating gum. The separated 
proteins were subsequently transferred onto polyvinylidene 
difluoride membranes and blocked with 5% skim milk for 
1 h at 37˚C. The membranes were incubated with primary 
antibodies against: Notch2 (cat.  no.  ab8926), runt‑related 
transcription factor 2 (RUNX2; cat. no. ab23981), osteocalcin 
(cat.  no.  ab93876), GAPDH (cat.  no.  ab9485) and rabbit 
anti‑human (all 1:5,000 and from Abcam) overnight at 4˚C. 
Following the primary incubation, membranes were incubated 
with horseradish peroxidase‑labeled goat‑anti‑rabbit IgG 
secondary antibody (1:5,000; ca. no. ab6721; Abcam) for 1 h 
at 25˚C. The protein blots were visualized using an enhanced 
chemiluminescence kit (Invitrogen; Thermo Fisher Scientific, 
Inc.). Protein bands were assessed using a luminescent image 
analysis software (Quantity One 1‑D Analysis software; 
version 4.6.9; Bio‑Rad Laboratories, Inc.). GAPDH was used 
as the internal control.

Dual‑luciferase reporter assay. TargetScan software v3.0 
(http://starbase.sysu.edu.cn.) was used to predict the targeting 
relationship between miR‑204‑5 and Notch2. A 3'‑untrans-
lated region (UTR) wild type (WT) plasmid of Notch2 
(Notch2‑3'‑UTR‑WT) was constructed according to the 
3'‑UTR sequence of Notch 2. Based on this plasmid, a binding 
site was mutated to construct a 3'‑UTR mutant (MUT) plasmid 
(Notch2‑3'‑UTR‑MUT). The construction and sequencing of 
the plasmids were performed by Sangon Biotech Co., Ltd. 
Subsequently, the constructed luciferase reporter plasmids, 
pmirGLO‑Notch2‑WT/pmirGLO‑Notch2‑MUT (Shanghai 

GenePharma Co., Ltd.) and miR‑204‑5p mimics/miR‑NC 
were co‑transfected into 293T cells (American Type Culture 
Collection) using Lipofectamine® 2000 transfection reagent 
(Thermo Fisher Scientific, Inc.). The luciferase activity was 
measured using the dual luciferase activity assay kit (Thermo 
Fisher Scientific, Inc.), 48 h post‑transfection, and was normal-
ized to Renilla luciferase activity.

Statistical analysis. Statistical analysis was performed 
using SPSS software (version 21.0; IBM Corp.) and data are 
presented as the mean ± standard deviation. All experiments 
were repeated three times. Unpaired Student's t‑test was used 
to compare differences between two groups. One‑way analysis 
of variance followed by Tukey's post hoc test was used to 
compare differences between multiple groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Downregulation of miR‑204‑5p in hip capsules of patients with 
AS. miR‑204‑5p expression was significantly lower in the hip 
joint capsules of patients with AS than in patients with femoral 
neck fracture (P<0.05; Fig. 1A). Additionally, miR‑204‑5p 
expression was significantly decreased in BMP‑2‑induced 
AS cells compared with untreated‑cells (P<0.05; Fig. 1B). 
Furthermore, transfection of miR‑204‑5p mimics significantly 
increased miR‑204‑5p expression in BMP‑2‑induced AS cells 
(P<0.05; Fig. 1B).

Upregulation of Notch2 expression in hip capsules of 
patients with AS. Notch2 mRNA expression was signifi-
cantly higher in the hip joint capsules of patients with AS 
than that in patients with femoral neck fracture (P<0.05; 
Fig. 2A). Notch2 expression was significantly higher in the 
AS + BMP‑2 group compared with the AS group, at both 
the mRNA and protein levels (P<0.05; Fig.  2B  and  C). 
Furthermore, the mRNA and protein levels of Notch2 were 
significantly decreased in the AS + BMP‑2 + miR‑204‑5p 
mimics group compared with those in the AS + BMP‑2 + 
miR‑NC group (P<0.05; Fig. 2B and C).

Notch2 is a target gene of miR‑204‑5p. The binding site for 
Notch2 and miR‑204‑5p was predicted using TargetScan soft-
ware (Fig. 3A). The luciferase activity of cells co‑transfected 
with miR‑204‑5p mimics and pmirGLO‑Notch2‑WT was 
significantly lower than those co‑transfected with miR‑204‑5p 
mimics and pmirGLO‑Notch2‑MUT (P<0.05; Fig. 3B).

miR‑204‑5p inhibits osteogenic differentiation of ligament 
fibroblasts by targeting Notch2. The ALP activity of the 
AS + BMP‑2 group was higher than that in the AS group 
(P<0.01; Fig.  4A). Furthermore, the ALP activity in the 
AS + BMP‑2 + miR‑204‑5p mimics group was significantly 
lower than that in the AS + BMP‑2 + miR‑NC group (P<0.01; 
Fig. 4A). Notably, transfection with pcDNA‑Notch2 signifi-
cantly reversed the inhibitory effect induced by miR‑204‑5p 
mimics on the ALP activity of ligament fibroblasts (P<0.05; 
Fig. 4A).

The mineralized nodules area in the AS + BMP‑2 group was 
significantly increased compared with the AS group (P<0.01; 

Table I. Primer sequences used for quantitative PCR.

Gene	 Sequence (5'‑3')

miR‑204‑5p (F)	 TTCCCTTTGTCATCCTATGCCT
miR‑204‑5p (R)	 TGGTGTCGTGGAGTCG
U6 (F)	 GCTTCGGCAGCACATATACTAAAAT
U6 (R)	 CGCTTCACGAATTTGCGTGTCAT
Notch2 (F)	 CACAGGGTTCATAGCCATCTC
Notch2 (R)	 GGAGGCGACCGAGAAGAT
RUNX2 (F)	 AGCTTCTGTCTGTGCCTTCTGG
RUNX2 (R)	 GGAGTAGAGAGGCAAGAGTTT
Osteocalcin (F)	 CTTTGTGTCCAAGCAGGA
Osteocalcin (R)	 CTGAAAGCCGATGTGGTCAE
GAPDH (F)	 GAAGGTGAAGGTCGGAGTC
GAPDH (R)	 GAAGATGGTGATGGGATTTC

F, forward; R, reverse; miR, microRNA; RUNX2, runt‑related 
transcription factor 2.
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Fig. 4B). Furthermore, the mineralized nodules area in the 
AS + BMP‑2 + miR‑204‑5p mimics group was significantly 
decreased compared with the AS + BMP‑2 + miR‑NC group 
(P<0.01; Fig. 4B). Notably, transfection with pcDNA‑Notch2 
significantly reversed the inhibitory effect induced by 
miR‑204‑5p mimics on the mineralized nodules area of 
ligament fibroblasts (P<0.05; Fig. 4B).

miR‑204‑5p inhibits the expression of RUNX2 and osteocalcin 
by targeting Notch2. Transfection with pcDNA‑Notch2 
significantly increased Notch2 protein expression in 
ligament fibroblasts (P<0.01; Fig.  5A). The expression of 
RUNX2 and osteocalcin in the AS  +  BMP‑2 group were 
significantly increased compared with the AS group, at 
both the mRNA and protein levels (P<0.01; Fig. 5B and C). 
Furthermore, the expression of RUNX2 and osteocalcin in the 
AS + BMP‑2 + miR‑204‑5p mimics group were significantly 
decreased compared with the AS + BMP‑2 + miR‑NC group, 
at both the mRNA and protein levels (P<0.01; Fig. 5B and C). 
Notably, transfection with pcDNA‑Notch2 significantly 
reversed the inhibitory effect induced by miR‑204‑5p mimics 
on the expression of RUNX2 and osteocalcin in ligament 
fibroblasts (P<0.05; Fig. 5B and C).

Discussion

AS is an autoimmune disease characterized by fibroblast 
ossification (28). Notably, inhibition of the ossification of AS 
fibroblasts is a common treatment for patients with AS (28). 
The present study aimed to determine whether miR‑204‑5p 
regulates the Notch signaling pathway, and subsequently 
affects the osteogenic differentiation of AS fibroblasts. The 
results demonstrated that miR‑204‑5p expression decreased 
in the hip capsule tissues of patients with AS, and Notch2 
was identified as the target gene of miR‑204‑5p. Furthermore, 
miR‑204‑5p inhibited the osteogenic differentiation of AS 
fibroblasts by downregulating the expression of Notch2, 
RUNX2 and osteocalcin. Heterotopic ossification is one 
of the most prominent features of AS (29), and osteogenic 

differentiation of fibroblasts plays a key role in the hetero-
topic ossification of AS (30). miRNAs play important roles 
in regulating cell‑cell interactions between osteoclasts and 
fibroblasts (31). For example, miR‑204‑5p is involved in the 
adjustability of adipogenesis and osteogenic differentiation of 
bone marrow stem cells (32). Zhang et al (33) reported that 
downregulating miR‑204‑5p expression increases RUNX2 
expression and promotes osteoblast proliferation. Consistent 
with previous findings, the results of the present study demon-
strated the overexpression of miR‑204‑5p inhibited RUNX2 
expression, thereby inhibiting osteogenic differentiation of 
fibroblasts. In addition, overexpression of miR‑204 has been 
reported to promote adipocyte differentiation and inhibit 
osteogenic differentiation, while miR‑204 knockdown exerts 
the opposite effects (34). Taken together, these results suggest 
that miR‑204‑5p inhibits osteogenic differentiation, and thus 
can be used to treat patients with AS.

The results of the present study demonstrated that 
miR‑204‑5p inhibited the osteogenic differentiation of fibro-
blasts by targeting Notch2. Lee et al (35) and Cai et al (36) 
have reported that Notch2 is a target gene of miR‑204‑5p. 
In addition, Notch family members and their ligands are 
involved in the formation of articular cartilage at different 
locations, and the coordination of the ossification and exten-
sion of growth plates  (37). Notably, the Notch signaling 
pathway significantly enhances BMP‑2‑induced osteogenesis 
of embryonic fibroblasts (38). BMP‑2 is a well‑known bone 
formation stimulating factor (39). However, downregulation of 
miR‑204 expression by BMP‑2 increases RUNX2 expression 
and enhances osteogenic differentiation (40). miR‑204‑5p also 

Figure 1. miR‑204‑5p expression in hip joint capsule tissues and liga-
ment fibroblasts. (A) miR‑204‑5p expression in hip joint capsule tissues. 
(B) miR‑204‑5p expression in AS‑derived ligament fibroblasts. U6 was used 
as the internal control. *P<0.05. miR, microRNA; AS, ankylosing spondy-
litis; BMP‑2, bone morphogenetic protein 2; NC, negative control.

Figure 2. Notch2 expression in hip joint capsule tissues and ligament fibro-
blasts. (A) Notch2 expression in hip joint capsule tissues. (B) Notch2 mRNA 
expression in AS‑derived ligament fibroblasts. (C) Notch2 protein expression 
in AS‑derived ligament fibroblasts. GAPDH was used as the internal control. 
*P<0.05. AS, ankylosing spondylitis; BMP‑2, bone morphogenetic protein 2; 
NC, negative control; miR, microRNA.
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Figure 3. Notch2 is the target gene of miR‑204‑5p. (A) The target site for Notch2 and miR‑204‑5p was predicted using TargetScan software. (B) Detection 
of dual‑luciferase reporter activity. *P<0.05 vs. the miR‑NC group. miR, microRNA; NC, negative control; UTR, untranslated region; WT, wild-type; MUT, 
mutant.

Figure 4. miR‑204‑5p inhibits the osteogenic differentiation of ligament fibroblasts by targeting Notch2. (A) ALP staining and (B) Alizarin Red S staining. 
*P<0.05 vs. the AS + BMP‑2 + miR‑204‑5p mimics group; **P<0.01 vs. the AS and AS + BMP‑2 + miR‑NC groups, respectively. miR, microRNA; ALP, 
alkaline phosphatase; AS, ankylosing spondylitis; BMP‑2, bone morphogenetic protein 2; NC, negative control; OD, optical density.
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functions in inhibiting the osteogenic differentiation of AS 
fibroblasts by targeting RUNX2 (41).

RUNX2 and osteocalcin are key factors involved in the 
bone‑repair process (42). The level of RUNX2 mRNA is higher 
in patients with AS than that in healthy controls (43). RUNX2 
controls the differentiation and formation of osteoblasts by 
upregulating the transcription of the BMP‑2 gene to differen-
tiate osteoblast precursors into osteocytes (44). Furthermore, 
suppressing RUNX2 can initiate osteogenic differentiation, 
which participates in the anti‑osteogenic differentiation of 
AS fibroblasts (45). The results of the present study indicated 
that miR‑204‑5p inhibited the osteogenic differentiation of 
fibroblasts by inhibiting RUNX2 expression. Yu et al  (41) 
demonstrated that miR‑204‑5p positively regulates RUNX2 
expression to promote osteogenic differentiation of calcific 
aortic valve disease. Conversely, Wang et al (46) reported that 
miR‑204 inhibits RUNX2 expression and plays a negative 
role in regulating osteogenic differentiation. These previous 
findings suggest that the inhibition of RUNX2 expression 
contributes to the inhibitory effect induced by miR‑204‑5p on 
osteogenic differentiation.

Osteocalcin is the principle non‑collagen component of 
the bone, which is considered a specific indicator of bone 

formation  (47). Osteocalcin expression is notably higher 
in patients with AS than that in the control group  (48). 
Furthermore, osteocalcin expression is significantly higher 
in patients with ankle stiffness and hip involvement than 
that in healthy controls (49). In the current study, osteocalcin 
expression was decreased in AS. miR‑204‑5p controls the 
osteogenic differentiation of fibroblasts by inhibiting osteo-
calcin expression (31). Thus, when miR‑204‑5p is inhibited, 
osteocalcin expression increases  (31). Additionally, the 
expression of osteocalcin is downregulated by inhibiting 
RUNX2 expression and disrupting the activation of 
RUNX2  (50). Taken together, these results suggest that 
miR‑204‑5p is an important target to inhibit osteogenic 
differentiation through inhibiting the expression of RUNX2 
and osteocalcin.

The current study had some limitations. Firstly, a rela-
tively small number of studies have come from China, which 
limited the ability to identify the relationships between the 
miR‑204‑5p and AS. Moreover, the mechanism of miR‑204‑5p 
regulation on AS was only based on the experiments in vitro, 
and thus requires further investigation in vivo. In addition, the 
detailed mechanisms of action of miR‑204‑5p on AS are yet to 
be elucidated.

Figure 5. miR‑204‑5p inhibits the expression of RUNX2 and osteocalcin. (A) Notch2 protein expression following transfection with pcDNA‑Notch2. 
(B) mRNA expression of RUNX2 and osteocalcin. (C) Protein expression of RUNX2 and osteocalcin. GAPDH was used as the internal control. *P<0.05 vs. 
the AS + BMP‑2 + miR‑204‑5p mimics group; **P<0.01 vs. the AS and AS + BMP‑2 + miR‑NC groups, respectively. miR, microRNA; RUNX2, runt‑related 
transcription factor 2; AS, ankylosing spondylitis; BMP‑2, bone morphogenetic protein 2; NC, negative control.
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The present study investigated the osteogenic differen-
tiation of ligament fibroblasts from patients with AS. The 
results demonstrated that miR‑204‑5p inhibited the expression 
of RUNX2 and osteocalcin in AS ligament fibroblasts by 
targeting Notch2, which provides a theoretical basis for the 
effective treatment of AS.
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