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Abstract. Pulmonary stenosis (PS) is a congenital heart 
disease characterized by a dynamic or fixed anatomic 
obstruction of blood flow from the right ventricle to the 
pulmonary arterial vasculature. In the present study, extra-
cellular vesicle long RNAs (EVLRs) from pregnant females 
who had healthy infants or PS infants were analyzed by 
RNA sequencing, and their diagnostic potential for PS 
during pregnancy was evaluated. A method for the selec-
tion of genes that could be considered as informative for 
the prediction PS based on extracellular vesicles (EVs) 
from pregnant females using long‑read RNA sequencing 
was developed. Blood samples were collected from females 
carrying fetuses with PS and females carrying unaffected 
fetuses (n=6 in each group). Physical characterization of EVs 
was performed using nanoparticle tracking analysis, trans-
mission electron microscopy and western blotting. EVLRs 
from plasma were profiled by RNA sequencing and mRNA 
co‑expression modules were constructed by weighted gene 
co‑expression network analysis (WGCNA). Gene Ontology 
(GO) enrichment analysis was used to predict the function 
of the genes in each module. Hub genes were filtered out 
based on WGCNA and visualized using Cytoscape. EVLRs 

consisted of mRNAs, microRNAs and long non‑coding 
RNA. Overall, 26  modules were identified containing 
16,394 genes. All modules were independent of each other. 
One particular module, referred to as the blue module, 
was markedly different between the two groups. A total of 
735 hub genes in the blue module were identified, of which 
33 were visualized, demonstrating the connection between 
these hub genes. GO enrichment analysis demonstrated that 
the analyzed hub genes were enriched in ‘glucose transport’, 
‘ATP‑dependent chromatin remodeling’, ‘histone deacety-
lation’, ‘histone H3‑K4 methylation’, ‘DNA methylation’, 
‘apoptotic signaling pathway’ and ‘glucocorticoid receptor 
signaling pathway’. The hub genes identified in this module 
may provide a genetic framework for prenatal PS diagnosis. 
Furthermore, functional analysis of these associated genes 
may provide a theoretical basis for further research on PS 
pathogenesis.

Introduction

Pulmonary stenosis (PS) is a congenital heart disease (CHD) 
caused by abnormal development of the fetal heart during the 
first eight weeks of pregnancy, accounting for ~6.2% of all 
CHD cases worldwide (1). PS can be classified into valvular, 
subvalvular and supravalvular subtypes (2). The symptoms 
of PS can be mild, moderate or severe (3), and patients with 
severe PS require therapy due to possibly life‑threatening 
complications. The etiology and pathogenesis of PS remain 
poorly understood  (2). Current diagnostic methods for PS 
include electrocardiography, echocardiography, magnetic 
resonance imaging, multislice computed tomography, cardiac 
catheterization and angiography (2). However, biomarkers for 
early prediction and diagnosis remain unavailable. Several 
risk factors are associated with the onset of CHD, including 
genetic, epigenetic and environmental factors (4,5), and this 
may also be the case for PS. However, to the best of the 
authors' knowledge, no genetic assessment for fetal PS during 
pregnancy has been conducted.
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Extracellular vesicles (EVs) are secreted as exosomes 
after fusion of endosomes with the plasma membrane or 
shed from the plasma membrane as microvesicles (6). EVs 
are involved in cell‑to‑cell communication between tumor 
cells and surrounding cells in the primary tumor microen-
vironment  (7). Moreover, previous studies indicated that 
EVs play an important role in the maternal system as part 
of the physiological changes taking place during pregnancy. 
Cell‑free DNA fragments released from the fetus are found 
in maternal circulation, and EVs can also be released from 
the fetus, placenta and maternal body into fetal‑maternal 
circulation (8). EVs are detectable in maternal circulation as 
early as the sixth week of pregnancy (8). The concentration 
of EVs in circulation is higher in pregnant females compared 
with non‑pregnant females and increases with severity of 
pregnancy‑related disease, such as gestational diabetes 
mellitus, fetal growth restriction and preterm birth, and 
oxidative stress (9). 

Various functional proteins, RNAs, lipids and metabolites 
are detectable in different classes of EVs (6). Since micro-
environmental parameters such as acidosis, hypoxia and 
elevated interstitial fluid pressure can influence the release of 
EVs, optimized in vitro models that mimic in vivo cellular 
environments are required for the study of EVs (10,11). EVs 
can contain several types of RNA, including mRNA, circular 
RNA (circRNA) and long non‑coding RNA (lncRNA) (12). 
Functional extracellular vesicle long RNAs (EVLRs) found in 
peripheral blood could represent biomarkers for the diagnosis 
of a variety of diseases, including hepatic tumors, gastric 
cancer, kidney cancer and breast cancer (13,14). However, the 
characteristics of EVLRs in pregnant females with PS infants 
remain largely unknown. Therefore, understanding the roles 
of plasma EVLRs in pregnant females may provide new 
predictive strategies for the diagnosis of fetal PS in pregnant 
females.

In the present study, EVLRs from pregnant females who 
had healthy infants or infants with PS were analyzed by RNA 
sequencing and evaluated for their potential use as diagnostic 
markers for PS during pregnancy. The present study provides a 
comprehensive analysis of hub genes associated with EVLRs. 
The identification of these hub genes may provide insight into 
improved diagnostic approaches for PS during pregnancy. 

Materials and methods

Sample collection. Peripheral plasma samples from pregnant 
females were provided by Guangdong Provincial People's 
Hospital for high‑throughput sequencing. All subjects gave 
their verbal informed consent before enrollment. The study 
was conducted in accordance with the Declaration of Helsinki, 
and the protocol was approved by the Ethics Committee of 
Guangdong Provincial People's Hospital. Blood samples were 
obtained between September 2017 and November 2018 from 
pregnant females with children affected by PS, as well as preg-
nant females carrying unaffected fetuses (n=6 in each group). 
All blood samples were drawn 1‑2 days before delivery. PS 
was diagnosed using a postnatal cardiac color ultrasound. 
Both groups consisted of three male infants and three female 
infants. The mean age of pregnant females in the PS and 
control groups was 33.3 and 29 years, respectively. 

Isolation of EVs. Plasma EVs were extracted using an exoR-
Neasy Serum/Plasma Midi kit (Qiagen GmbH) and ~1 ml 
plasma was centrifuged at 16,000  x  g for 10  min at 4˚C. 
Cellular materials and coagulated proteins were removed, and 
the supernatant was transferred into a new tube by careful 
aspiration. The re‑suspended EV liquid was subsequently used 
for characterization of EVs.

Nanoparticle tracking analysis. The size distribution of the 
isolated EVs was analyzed using NanoSight NS300 (Malvern 
Panalytical). Particles were automatically tracked and sized 
based on Brownian motion and the diffusion coefficient. After 
isolation, EVs were diluted in 1 ml of exosome‑free PBS, and 
the mixture was slowly injected into a clean particle‑free 
sample pool to avoid formation of bubbles. The sample pool 
was covered and placed into the instrument. Manipulations 
were performed according to the manufacturer's instructions. 
Three recordings were carried out for each sample and results 
are presented as an average of these recordings. 

Transmission electron microscopy (TEM). For TEM, 3 µl of 
EV pellet were placed on 200‑mesh EM copper grids for 5 min, 
incubated for 5 min at room temperature, and then subjected 
to standard uranyl acetate staining at room temperature for 
1‑2 min. The grids were then washed three times with PBS and 
allowed to semi‑dry at room temperature. Subsequently, the 
grids were visualized with a transmission electron microscope 
(H7650; Hitachi, Ltd.) at magnification, x300, using digital 
micrograph software (v3.8; Gatan, Inc.).

Western blotting. EV lysate supernatants were prepared, 
total protein was extracted using Exosome cracking solution 
(Shanghai Umibio Biotechnology), and protein concentrations 
were determined using a bicinchoninic acid protein assay kit 
(Thermo Fisher Scientific, Inc.). Proteins (60 µl) were sepa-
rated via 10% SDS‑PAGE, and subsequently transferred onto 
PVDF membranes (EMD Millipore). Then, 5% non‑fat milk 
in TBS with 0.05% Tween‑20 (TBST) buffer was used to block 
the membranes for 1 h at room temperature. The membranes 
were incubated with rabbit anti‑CD63 (1:500; cat. no. sc‑5275; 
Santa Cruz Biotechnology, Inc.), anti‑CD9 (1:1,000; cat. 
no. ab263019; Abcam) and anti‑calnexin antibodies (1:1,000; 
cat. no. ab22595; Abcam) at 4˚C overnight, washed with TBST, 
then incubated with horseradish peroxidase‑conjugated goat 
anti‑rabbit secondary antibody (1:5,000; cat. no. 7074S; Cell 
Signaling Technology, Inc.). Protein bands were visualized 
with an ECL reagent (Merck KGaA) using an automatic 
imager (GE Healthcare).

Long RNA sequencing and data processing. Long RNAs from 
EVs were amplified by Epi™ longRNA Ampli kit (Epibiotek). 
RNA sequencing libraries were constructed using SMARTer 
Stranded Total RNA‑Seq kit (cat. no.  634413; Clontech 
Laboratories, Inc.). Adapters and low‑quality bases were 
removed using Trimmomatic software (v0.36)  (15). Clean 
RNA sequencing data were aligned to the GRCh38 human 
genome (hg38) downloaded from Ensembl (www.ensembl.org) 
using HISAT2 software (v2.1.0) (16). Genes were annotated 
using GENCODE annotation (v25; www.gencodegenes.org), 
and the read count for each gene was obtained using featu-
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reCounts (v1.6.3; subread.sourceforge.net). Clean read counts 
were further normalized using the fragments per kilobase 
per million mapped reads method. Moreover, underexpressed 
genes in any sample were filtered out. Cluster analysis was 
performed using the flashClust R (v1.01‑2‑2) package (17).

Construction of co‑expression modules of CHD. In weighted 
gene co‑expression network analysis (WGCNA), the connec-
tivity between two genes is the β power of their correlation 
coefficient. The β value determined both the scale‑free 
topology fitting index and the mean connectivity of genes. 
The β value for scale‑free topology fitting index was ≥0.8 by 
plotting the index against soft thresholds, which indicated that 
the topology of the network was scale‑free, or independent, 
and simultaneously, the mean connectivity of genes was as 
high as possible, and it may result in several modules in the 
subsequent analysis for an insignificant mean connectivity. To 
understand relationship between them, the softConnectivity 
function from WGCNA package (v1.63) (18) was used, and the 
number of randomly selected genes was set to 5,000, while 

other parameters were set as default. The power was calculated 
by the pickSoftThreshold function in the WGCNA package. 
The expression values were compiled using the collapseRows 
function in the WGCNA package. Cluster analysis was subse-
quently performed using the flashClust function.

Detection of hub genes and functional enrichment analysis. 
Hub genes are defined as genes with high correlation in 
candidate modules. In the present study, genes in the same 
co‑expression modules with module membership ≥0.8 
were considered as hub genes. Gene Ontology (GO; www.
geneontology.org) enrichment analysis was carried out 
for each module and the corresponding gene data were 
mapped to the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID; david.ncifcrf.gov/summary.
jsp). A corrected P‑value <0.05 was used as threshold. The 
most favorable module in the current study was visualized 
by Cytoscape v3.6.6 software (www.cytoscape.org), and the 
maximum intramodular connectivity of genes was considered 
as intramodular hub genes.

Figure 1. Characteristics of EVs in peripheral blood samples. (A) A representative screenshot of the NTA videos. Bright white dots indicate a moving particle. 
(B) NTA‑estimated size distribution of isolated EVs. (C) Heat map pattern of EVs. (D) Representative transmission electron microscopy image of EVs. Scale 
bar, 100 nm. (E) Western blot analysis of unenriched peripheral blood mononuclear cells and exosome‑enriched vesicles. EV, extracellular vesicle; NTA, 
nanoparticle trafficking analysis; PBMC, peripheral blood mononuclear cells; SD, standard deviation; a.u., absorbance unit.
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Results

Isolation and characterization of EVs. EVs were isolated and char-
acterized morphologically and phenotypically. Measurements 
demonstrated that the concentration of the isolated particles 
was 9.55x109±3.27x107 particles/ml (data not shown), and the 
mean diameter of the particles was 137.8±30.2 nm (Fig. 1A‑C). 
EVs were round‑shaped and membrane‑enclosed (Fig. 1D). The 
exosomal markers CD63 and CD9 were detected in the isolated 

vesicles, but not in peripheral blood mononuclear cells, whereas 
the expression of calnexin, the marker of peripheral blood 
mononuclear cells, showed the opposite results (Fig. 1E).

EVLR‑sequencing. EVLR‑sequencing yielded a median 
read count of 27.98 million mapped reads/sample. Overall, 
mRNA constituted 40%  of total mapped reads. Other 
types of RNA included 37% circRNAs and 23% lncRNAs 
(Fig. 2A). On average, 13,586 mRNAs, 12,984 circRNAs, and 

Figure 3. Co‑expression module construction. (A) Cluster analysis of 12 samples based on gene expression. (B) Influence of soft‑threshold power on scale‑free 
topology fitting index. The blue numbers correspond with their abscissa and the blue line is the threshold of power value. (C) Influence of soft‑threshold power 
on the mean connectivity. (D) Gene clustering dendrogram, with dissimilarity based on topological overlap, together with assigned color modules. A total 
of 26 co‑expression modules were constructed and were displayed in different colors. UC, samples from the normal group; UP, samples from the PS group.

Figure 2. Analysis of samples by EVLR sequencing. (A) Distribution of annotated genes and identified circRNAs. (B) Number of EVLR in each sample. Data 
are presented as the median and the interquartile range. EVLR, extracellular vesicle long RNA; circRNA, circular RNA; lncRNA, long non‑coding RNA.
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7,858 lncRNAs were detected from the 12 samples (Fig. 2B). 
In total, 19,391 genes were detected by EVLR‑sequencing in 
the 12 samples. Moreover, 2,997 genes were filtered out as 
their expression was too low in any sample. Thus, expression 
levels of 16,394 genes in 12 samples were used to construct 
the co‑expression network by the WGCNA package, of these 
40% were associated with mRNA, 37% with circRNA and 
23% with lncRNA.

Construction of co‑expression modules. Cluster analysis was 
conducted on the mRNAs detected in all 12 samples, using the 
flashClust package (Fig. 3A). Hub genes are displayed in gene 
dendrograms, in which they positively correlated together 
in different samples. Different soft‑thresholding power 
values were analyzed. When the power value reached 25, the 
scale‑free topology fitting index was ≥0.08 (Fig. 3B), and as 
the power value increased, the connectivity declined (Fig. 3C). 
Therefore, the power value used to construct co‑expression 
module was 25. A total of 26 distinct gene co‑expression 
modules were constructed altogether (Fig. 3D). The number of 
genes in each module is listed in Table I.

Analysis of co‑expression modules. As shown on the network 
heatmap plot (Fig. 4A), each module showed an independent 

expression to each other. Hence, we calculated eigengenes of 
each module, so as to quantify their co‑expression similarity. 
Modules were clustered on the basis of their correlation with 
each other, which was consistent with the heatmap plot of the 
adjacencies (Fig. 4B). 

Functional enrichment analysis and module visualiza‑
tion. Results of GO enrichment analysis are summarized in 
Table II. Biological process involved in fetal cardiovascular 
malformations, such as regulation of glucose transport 
and apoptotic signaling pathway were included in the blue 
module. Furthermore, the expression of each module in all 
samples was analyzed. Among all the 26 modules, the blue 
module markedly differed between the two groups (Fig. 5A). 
Additionally, a total of 735 genes were involved in the blue 
module. These genes were enriched in ‘regulation of glucose 
transport’, ‘glucose transport’, ‘glucocorticoid receptor 
signaling pathway’, ‘ATP‑dependent chromatin remodeling’, 
‘histone deacetylation’, ‘histone H3‑K4 methylation’, ‘DNA 
methylation’ and ‘apoptotic signaling pathways’. These 
biological processes were not enriched in other modules. The 
top 33 hub genes in the blue module, which have a high degree 
of correlation, are represented in an interaction network using 
Cytoscape software (Fig. 5B). 

Discussion

WGCNA is a method used to investigate the relationship 
between gene expression and phenotype (18). In particular, 
WGCNA transforms gene expression data into co‑expression 
modules, providing insight into signaling networks that may be 
responsible for phenotypic traits of interest (19). Not only can 
it illustrate how modules differ between control and experi-
mental groups, it can also be used to examine the functions of 
genes within a particular module. WGCNA has been applied 
in the context of several diseases, such as osteosarcoma, 
glioma and renal cell carcinoma (20‑23). In the present study, 
26 co‑expression modules were extracted from 16,394 genes 
using this method. Among these, one particular module, 
referred to as the blue module, displayed marked dissimilarity 
between PS group and normal group. The blue module was 
enriched in a variety of biological processes, which may influ-
ence fetal heart development, including ‘glucose transport’, 
‘ATP‑dependent chromatin remodeling’, ‘histone deacety-
lation’, ‘histone H3‑K4 methylation’, ‘DNA methylation’, 
‘apoptotic signaling pathways’ and ‘glucocorticoid receptor 
signaling pathway’. 

Maternal glycemia is a risk factor for the development 
of CHD in the fetus (24‑27). A previous study indicated that 
maternal blood glucose levels were strongly associated with 
odds of tetralogy of Fallot (28). This highlights the need for 
further epidemiological and mechanistic investigation into the 
risk conferred by insulin signaling and glucose metabolism 
during early pregnancy. In the present research, genes of 
glucose transport in PS group were markedly downregulated 
compared with those in normal group. 

A previous study suggested that maternal epigen-
et ic changes were related to feta l cardiovascular 
malformations (29). Another study used genome‑wide DNA 
methylation assays on placental samples and identified a 

Table I. Number of genes in the 26 modules.

Module colors	 Frequency

Black	 808
Blue	 1,909
Brown	 1,187
Cyan	 407
Dark green	 68
Dark grey	 56
Dark brown	 124
Dark turquoise	 61
Green	 997
Green‑yellow	 606
Grey	 1,153
Grey 60	 284
Light cyan	 404
Light green	 246
Light yellow	 208
Magenta	 648
Midnight blue	 404
Orange	 54
Pink	 781
Purple	 640
Red	 943
Royal blue	 176
Salmon	 411
Tan	 515
Turquoise	 2,242
Yellow	 1,062
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total of 80 highly accurate potential CpG sites for detec-
tion of ventricular septal defects (30). These differentially 
methylated genes were previously known to be associated 

with cardiovascular development  (31). Moreover, DNA 
methylation of the glucocorticoid receptor gene promoter is 
an epigenetic mechanism that can lead to abnormal devel-

Table II. GO enrichment analysis in blue, light cyan and grey 60 co‑expression modules.

Module	 GO ID	 GO Term	D ifgene	 GeneInGO	 P‑value

Blue	 GO:0010827	 regulation of glucose transport	 10	   31	 1.76x10‑7

	 GO:0043044	A TP‑dependent chromatin remodeling	   8	   23	 1.61x10‑6

	 GO:0016575	 histone deacetylation	   8	   34	 4.06x10‑5

	 GO:0042921	 glucocorticoid receptor signaling pathway	   4	     8	 1.47x10‑4

	 GO:0051568	 histone H3‑K4 methylation	   6	   23	 2.07x10‑4

	 GO:0015758	 glucose transport	 10	   65	 2.12x10‑4

	 GO:0006306	DNA  methylation	   6	   26	 4.28x10‑4

	 GO:0097190	 apoptotic signaling pathway	 13	 130	 1.86x10‑3

Light cyan	 GO:0006413	 translational initiation	 53	 157	 2.18x10‑67

	 GO:0006415	 translational termination	 42	   89	 9.93x10‑61

Grey 60	 GO:0030097	 Hemopoiesis	   7	   85	 1.30x10‑6

	 GO:0048821	 erythrocyte development	   7	   19	 6.02x10‑6

GO, Gene Ontology; Difgene, genes in a certain module related to one specific biological process; GeneInGO, genes in GO 
dataset related to one specific biological process.

Figure 4. Network heatmap plot of co‑expression modules. (A) Clustering dendrogram of genes and assignment of modules along the left side and the top. Each 
point in the figure represents the correlation between its corresponding modules on the horizontal axis and vertical axis. Followed by yellow color, the red 
color indicates the highest co‑expression interconnectedness. Blocks of darker colors along the diagonal represent the modules. (B) Dendrogram of modules 
and heatmap based on their correlation with each other. Each cell in the figure represents the correlation between its corresponding modules on the horizontal 
axis and vertical axis. Red represents high adjacency (positive correlation) and blue shows low adjacency (negative correlation).
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opment of the fetal heart  (32). MicroRNA (miR)‑29c‑3p 
overexpression in the serum of pregnant females inhibited 
embryonic P19 cell proliferation, promoted cell apoptosis 
and differentiation and is associated with fetal CHD (33). 
Altogether, these studies suggested that maternal epigenetic 
changes may play a pivotal role in heart development and 
pathogenesis of fetal PS.

Glucocorticoid signaling plays an important role in cardiac 
physiology  (34). The effects of glucocorticoids are medi-
ated classically by the glucocorticoid receptor (35). Previous 
studies indicated that the glucocorticoid receptor in cardiomy-
ocytes is critical for normal development and function of the 
heart (36‑38). Maternal hypoxia caused a significant increase 
of global methylation in the fetal heart, which was sustained 
in 4‑week‑old human infants (30). Maternal hypoxia induced 
miR‑210 production via hypoxia inducible factor‑1α, which 
reduced the expression of glucocorticoid receptors in the fetal 
heart, and led to cardiomyocyte death  (39). In the present 
study, the expression of the glucocorticoid receptor signaling 
pathway was reduced in the EVs of pregnant women carrying 
fetuses with PS offspring.

The results of the present study suggested that EVLRs 
may be used for the diagnosis of fetal PS. Hub genes involved 
in ‘regulation of glucose transport’, ‘glucose transport’, 
‘ATP‑dependent chromatin remodeling’, ‘histone deacety-
lation’, ‘histone H3‑K4 methylation’, ‘DNA methylation’, 
‘apoptotic signaling pathway’, and ‘glucocorticoid receptor 
signaling pathway’ were identified, which could represent 
potential biomarkers for PS. The use of EVLR as a diagnostic 
would be non‑invasive to the fetus. Moreover, hub genes 
could be easily identified by reverse transcription‑quantita-
tive PCR or targeted analysis sequencing from the perinatal 
blood of pregnant females. Similar to cell‑free RNA tests, 
the latter is a non‑invasive blood test for fetal development 

(40). However, WGCNA can only provide a cluster of hub 
genes rather than specific genes related to disease. Thus, 
the hub genes identified in the present study require further 
individual validation. Additionally, the cohort enrolled in 
the present study was relatively small, and further extensive 
validation is still needed to confirm the present results. 

In summary, a profile of EVLR was established for healthy 
pregnant females and pregnant females with PS, and a gene 
co‑expression network was constructed to predict a cluster 
of candidate genes involved in the diagnosis of fetal PS. The 
present findings may provide a theoretical basis for novel, 
non‑invasive detection methods of aberrant fetal heart devel-
opment.
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