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Abstract. rheumatoid arthritis (ra) and osteoarthritis (oa) 
are the two most common debilitating joint disorders and 
although both share similar clinical manifestations, the patho-
genesis of each is different and remains relatively unclear. The 
present study aimed to use bioinformatic analysis to identify 
pivotal genes and pathways involved in the pathogenesis 
of ra. Microarray datasets from patients with ra and oa 
were obtained from the Gene expression omnibus (Geo) 
database and differentially expressed genes (deGs) were 
identified using GEO2R software; Gene Ontology analysis 
and pathway enrichment were analyzed using the database for 
annotation, Visualization and integrated discovery and the 
Kyoto Encylopedia for Genes and Genomes, respectively; and 
protein-protein interaction networks of deGs were constructed 
using the Search Tool for the retrieval of interacting Genes 
database, and module analysis and pathway crosstalk of the 
PPi network was visualized using plugins of cytoscape. in 
addition, the prediction of target mrnas for differentially 

expressed micrornas (deMs) was performing using the star-
Base database and the identified pivotal genes were verified 
using reverse-transcription quantitative Pcr in synovial tissue 
from patients with RA. A total of 566 DEGs were identified in 
GSe55457, GSe55235 while 23 DEMs were identified in the 
GSe72564 dataset. upregulated deGs were found to be mostly 
enriched in the ‘cytokine-cytokine receptor interaction’ 
pathway, whereas downregulated deGs were discovered to be 
enriched in the ‘PPar signaling pathway’. The top 25 deGs 
were mostly enriched in the ‘chemokine signaling pathway’. 
in addition, six of the mirna target genes were selected as 
potential biomarkers and a total of 24 genes were selected as 
potential hub genes. experimental validation demonstrated that 
the expression levels of cytotoxic T-lymphocyte associated 
Protein 4 (CTLA4), Zeta-chain-associated protein kinase 70 
(ZAP70) and lcK proto-oncogene (LCK) were significantly 
increased, whereas HGF expression levels were decreased in 
RA synovial tissue. In conclusion, these findings suggest that 
the identified deGs and pivotal genes in the present study may 
further enhance our knowledge of the underlying pathways in 
the pathogenesis of ra. These genes may also serve as diag-
nostic biomarkers and therapeutic targets for RA; however, 
further experimental validation is necessary following the 
bioinformatic analysis to determine our conclusions.

Introduction

rheumatoid arthritis (ra) and osteoarthritis (oa), which are 
the two most common chronic inflammatory joint diseases that 
culminate in joint deformity and disability worldwide, both 
result from persistent inflammatory disorders (1). Both RA 
and oa involve the destruction of articular cartilage, which 
eventually results in joint dysfunction (2); however, the patho-
genesis of the two diseases is different and remains largely 
unknown. ra is a systemic autoimmune disease that involves 
multiple pathways and is characterized by hyperplasia of the 
synovium, formation of pannus, angiogenesis and T cell infil-
tration (3); the tumorigenic‑like growth of the synovium causes 
progressive destruction of the bone and articular cartilage (4). 
Rheumatoid arthritis fibroblast‑like synoviocytes (RAFLS) 
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are the most important components of ra synovial tissue and 
serve an important role in joint destruction through the secre-
tion of various proteases and cytokines (5); the secretion of 
pro‑inflammatory mediators is the main cause of the persistent 
pain in ra (6). in addition, the contributory role of rheumatoid 
factor (RF) and anti‑citrullinated peptide antibodies (ACPA) 
in the deterioration of joins have also been investigated (7). 
acPa leads to production of pro-inflammatory cytokines 
and differentiation of osteoclasts (8). Moreover, systemic 
appearance of acPa precedes the onset of ra by a number of 
years (9). oa is a chronic degenerative disease, which is char-
acterized by articular cartilage damage, osteophyte formation 
and subchondral bone sclerosis. oa is affected by multiple 
factors, such as age, gender, trauma history, obesity, heredity 
and joint deformity (10). it is widely accepted that synovitis is 
associated with symptoms such as joint pain and swelling, and 
may promote cartilage degradation (11).

micrornas (mirnas) are a class of small non-coding rnas 
of ~18‑25 nucleotides in length, which are highly conserved 
throughout evolution and serve as important post-transcrip-
tional regulators of gene expression. each mirna prevents the 
transcription of numerous downstream genes by incompletely 
binding to the 3' untranslated region of target mrnas, whereas 
complete complementary base-pairing leads to the degrada-
tion of mrnas (12). mirnas play roles in almost all aspects 
of cancer biology including cell cycle, programmed cell death, 
tumorigenesis, angiogenesis, invasion and migration (13). 
abnormal expression levels of mirnas are also involved in 
the pathogenesis of ra, and their different functions in the 
synovium, synovial fluid and serum have been reported in past 
decade. MiR‑16, miR‑146a/b, miR‑150, miR‑155, and miR‑223 
were overexpressed in both the periphery and ra joints (14). 
mirna expression levels also differ depending on the stage and 
activity of the disease (15). Serum mir-22 and mir-103a may 
predict ra development (16). Serum mir-223 levels have been 
associated with ra activity and disease relapse (17).

Microarray datasets for ra and oa synovial tissue 
samples provide a unique perspective for understanding the 
molecular mechanisms of the diseases (18) and facilitate 
the identification of potential target genes and pathways for 
targeted therapy. due to the complexity of the genome, most 
of the genes thought to be involved in the pathogenesis of ra 
remain to be identified; thus, the present study aimed to inves-
tigate the molecular mechanisms and potential therapeutic 
targets of ra using bioinformatics analysis. Microarray data 
from the Gene expression omnibus (Geo) database was 
obtained and used to identify differentially expressed genes 
(deGs) and differentially expressed mirnas (deMs) in ra 
compared with patients with oa. in addition, Gene ontology 
(Go) analysis and Kyoto encylopedia of Genes and Genomes 
(KeGG) pathway analysis was used to predict the functional 
enrichment of deGs. Selected genes obtained from the bioin-
formatic analysis were subsequently experimentally verified 
in vitro. These findings may help identify potential diagnostic 
biomarkers and therapeutic targets of ra.

Materials and methods

Microarray data. Microarray datasets GSe55457, GSe55235 (19) 
and GSe72564 were downloaded from the Geo database 

(http://www.ncbi.nlm.nih.gov/geo), a public database containing 
gene expression profiles, chips and microarrays. GSe55457 
and GSe55235 were composed of gene expression data using 
affymetrix Human Genome u133a array platform, whereas 
GSe72564 was performed using the Qiagen Human mirnome 
miScript mirna Pcr array platform. The GSe55457 dataset 
comprised the gene expression data of 10 synovial tissue samples 
from normal donors (nd), 13 synovial tissue samples from 
patients with ra and 10 synovial tissue samples from patients 
with OA; the GSE55235 dataset comprised the gene expression 
data of 10 synovial tissue samples from nds, 10 synovial tissue 
samples from patients with ra and 10 synovial tissue samples 
for patients with OA; and the GSE72564 comprised of gene 
expression data of FLSs isolated from 4 patients with RA and 4 
patients with oa, which were cultivated for 4 passages.

Identification of DEGs and DEMs. The deGS in ra and 
oa samples of the three datasets were identified using 
Geo2r software (https://www.ncbi.nlm.nih.gov/geo/geo2r/). 
The cut-off values for deG selection in the GSe55457 and 
GSE55235 datasets were P<0.05 and |log FC| >1.5. The expres-
sion of non-coding rna is different from coding rna. The 
number of deMs is too small under the cut-off criteria of 
DEG. Thus P<0.05 and |log FC|>1 were used for the GSE72564 
dataset. The hierarchical clustering of deGs was performed 
using MeV 4.9.0 software (20). The intersections of deGs in 
different microarrays were visualized using VennY 2.1.0 
software (21).

GO and KEGG pathway analysis of DEGs. To determine 
the biological processes, molecular functions and signifi-
cantly altered metabolic pathways enriched by deGs, deGs 
were subjected to functional term enrichment analysis using 
The database for annotation, Visualization and integrated 
Discovery (DAVID 6.8; http://david.abcc.ncifcrf.gov/) for 
Go enrichment analysis (P<0.05) and signaling pathway 
enrichment analysis using the KeGG database (P<0.05).

PPI network and module analysis. a protein-protein interac-
tion (PPi) network of the deGs was constructed using the 
Search Tool for the retrieval of interacting Genes/Proteins 
(STRING 11.0; https://string-db.org/) database (22), with a 
threshold combined score of >0.4 identified as significant, 
to determine the molecular mechanisms that discriminate 
between ra and oa pathology. cytoscape v3.7.2 (23) was 
used to visualize the PPi network. in the PPi network, the 
edges represent the predicted functional interactions, while 
the network nodes represent the proteins. The degree of 
the node was defined as the number of interactions with 
other nodes. The highest degree means the most ‘popular’ 
gene in the PPI network. Hub genes were defined as nodes 
with ≥25 degrees. Interrelation analysis between the hub 
genes and pathways was determined using the cytoscape 
plug-in clueGo (24). The molecular complex detection 
(Mcode) (25) plug-in of cytoscape was used to detect 
pivotal modules that may represent molecular complexes in 
the PPi network, using a degree cut-off value of 10 and node 
number >4, which was presented using Cytoscape. KEGG 
pathway analysis of deGs in modules was subsequently 
performed using daVid.
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miRNA and target mRNA network construction. Target mrnas 
of DEMs were identified using starBase v2.0 (26) and target 
genes were predicted using five programs: microT v5.0 (27), 
miRmap (28), RNA22 (29), PicTar (30) and TargetScan 
7.2 (31). Genes predicted by ≥3 databases were identified as 
target genes for the deMs. Subsequently, the intersection 
genes of Mcode network and mirna/mrna networks were 
integrated to investigate the potential interactions between 
deGs and deMs.

Patient samples. all experiments involving patient samples 
were approved by the clinical research ethics committee of 
Xi'an Jiaotong University (approval no. XJTULAC‑2018454). 
Written informed consent was obtained from all participants. 
Human synovium biopsies were obtained from patients with 
ra and oa undergoing total knee arthroplasty at Xi'an 
Honghui Hospital from March 2018 to April 2019, who 
fulfilled the diagnostic criteria of the American College of 
Rheumatology and had a Disease Activity Score 28‑joint 
assessment of ≥3 (32). Synovial tissue of patients with OA 
were obtained as the controls. The clinicopathological features 
of the patients are presented in Table Si.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
rna was extracted from synovial tissues using Trizol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's protocol. Total rna (5 µg) was reverse 
transcribed into cDNA using the RevertAid First Strand 
cDNA Synthesis kit (Thermo Fisher Scientific, Inc.). Total 
RNA and primer were mixed and incubated at 65˚C for 
5 min. reaction buffer ribolock, dnTP MiX and revertaid 
were mixed gently and centrifuged briefly. The mixture was 
incubated at 40˚C for 60 min, 25˚C for 5 min, finally heating 
at 70˚C for 5 min for termination and stored at ‑20˚C. qPCR 
was subsequently performed using a chamQ universal SYBr 
qPcr Master mix (Vazyme Biotech co., ltd.) according to the 
manufacturer's protocol, in a volume of 10 µl, and an agilent 
StrataGene Mx3000P QPcr system (agilent Technologies, 
inc.). The following primer pairs used for the qPcr are listed 
in Table i. The following thermocycling conditions were 
used for the qPCR: Initial denaturation at 95˚C for 10 min; 
and 45 cycles at 95˚C for 10 sec, 60˚C for 15 sec and 72˚C 
for 30 sec. Expression levels were quantified using the 2-ΔΔcq 

method (33) and normalized to acTB.

Statistical analysis. Statistical analysis was performed using 
SPSS 20.0 software (iBM corp.) and GraphPad Prism 7.0 
software (GraphPad Software, inc.). The experimental data are 
presented as the mean ± Sd. Statistical differences between 
two groups were determined using a Student's t-test. P<0.05 
was considered to indicate a statistically significant difference.

Results

Identification of DEGs and DEMs. according to the cut-off 
criteria (P<0.05 and |logFC|>1.5), data from each microarray 
was separately analyzed using Geo2r to identify deGs in ra 
compared with OA (RA‑OA). A total of 428 DEGs were identi-
fied in the GSE55457 dataset and 289 DEGs in the GSE55235 
dataset (Fig. 1B). MeV software was used for hierarchical 

clustering and to generate expression heat maps (Fig. 1A). To 
investigate the identified DEGs, DEGs shared between the two 
datasets and the genes found to be independently expressed 
were selected (Fig. 1B). These 566 genes identified in the two 
datasets were defined as DEGs, and consisted of 280 upregu-
lated DEGs (uDEGs) and 286 downregulated DEGs (dDEGs). 
in addition, 6 mirnas were observed to be downregulated 
and 17 mirnas were upregulated in the GSe72564 dataset 
(Table ii).

GO term enrichment analysis and KEGG pathway analysis. 
To determine the functions of the identified DEGs, all DEGs 
were subjected to functional term enrichment analysis using 
DAVID; uDEGs were mostly enriched in biological process 
(BP), such as ‘immune response’, ‘chemokine-mediated 
signaling pathway’ and ‘Inflammatory response’, cellular 
component (cc), such as ‘external side of plasma membrane’ 
and ‘Plasma membrane’ and molecular function (MF), such 
as ‘chemokine activity’ and ‘Transmembrane signaling 
receptor activity’. dDEGs were significantly enriched in 
BP, such as ‘cell adhesion’ and ‘chemical synaptic trans-
mission’, cc, such as ‘extracellular region’, ‘extracellular 
space’ and ‘Extracellular matrix’ and MF, such as ‘Heparin 
binding’ and ‘Growth factor activity’ (Fig. 2A). The most 

Table i. Primers used for reverse transcription-quantitative Pcr.

Gene  Primer sequence (5'→3')

PI3CG F: CACCCAAAAGCATATCCTAAGC
 r: TaaTGcaGaacaTcaTcGTcc 
LCK F: GTGTGTGAGAACTGCCATTATC
 r: GaTTGGaGccTTcGTaGGTaac
ZAP70 F: AGAGCTCTGCGAGTTCTACTC
 r: TcTcGcaGGcaGTcGaaGa
LEP F: CATCAAGACAATTGTCACCAGG
 r: GTcGTTGGaTaTTTGGaTcacG
HGF F: AATCCACTCATTCCTTGGGATT
 r: TcccaTTTacaacTcGcaaTTG
CTLA4 F: CAGTTAGTTCGGGGTTGTTTTT
 r: TTTTcacaTTcTGGcTcTGTTG
SERPINE1 F: AACGTGGTTTTCTCACCCTAT
 r: caaTcTTGaaTcccaTaGcTGc
SDC1 F: AAGATATCACCTTGTCACAGCA
 r: GTTcTGGaGacGTGGGaaTaG
NPY1R F: GAGGCGATGTGTAAGTTGAATC
 r: acccaaaTcacaGcaaTaccTa
ACTB F: AAGGATTCCTATGTGGGCGAC
 r: cGTacaGGGaTaGcacaGcc

F, forward; R, reverse. PI3CG, phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic sub-unit γ; LCK, lcK proto-oncogene Src family 
tyrosine kinase; ZAP70, ζ chain of T cell receptor-associated protein 
kinase 70; LEP, leptin; HGF, hepatocyte growth factor; CTLA4, cyto-
toxic T‑lymphocyte associated protein 4; SERPINE1, serpin family e 
member 1; SDC, syndecan 2; NPY1R, neuropeptide Y receptor Y1; 
ACTB, β-actin.
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significantly enriched signaling pathways of the uDEGs 
were identified as ‘cytokine-cytokine receptor interac-
tion’, ‘chemokine signaling pathway’, ‘Hematopoietic cell 
lineage’, ‘Primary immunodeficiency’ and ‘Cell adhesion 
molecules (CAMs)’ (Fig. 2B). Only six downregulated path-
ways fulfiled the condition of P<0.05; these were ‘PPAR 
signaling pathway’, ‘regulation of lipolysis in adipo-
cytes’, ‘dilated cardiomyopathy’, ‘arrhythmogenic right 
ventricular cardiomyopathy (arVc)’ and’ ecM-receptor 
interaction’ (Fig. 2B).

PPI network construction and module screening. The PPi 
network of deGs, constructed using STrinG and visualized 
using Cytoscape, consisted of 481 nodes and 1,728 edges 
(Fig. 3). The top 25 nodes with the highest degree were selected. 
Pathway crosstalk analysis of the top 22 nodes identified was 
performed through performing KeGG pathway analysis in 
ClueGO (Fig. 4), with P<0.05 as the cut‑off criterion. A total 
of 17 of these 23 genes were found to be involved in inflam-
matory processes (Table III), with 11 identified as chemokines 
and their receptors, which are abundant in the peripheral 
blood and in the local inflamed joints of RA (34). Thus, five 
different hub genes were selected for further experimental 
validation: Phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit γ (PIKC3G), lymphocyte-specific kinase 
(LCK), leptin (LEP), cytotoxic T-lymphocyte antigen (CTLA4) 
and ζ chain of T cell receptor associated protein kinase 70 
(ZAP70). Module analysis was performed using the Mcode 
plug-in of cytoscape and a total of 6 modules were selected 
using the previously mentioned criterion from the whole PPi 
network (Fig. 5). KEGG pathway enrichment analysis of 
these genes were performed using daVid and the pathway 
analysis demonstrated that the selected genes in the modules 
were mostly enriched in the ‘chemokine signaling pathway’, 

‘Primary immunodeficiency’, ‘Proteoglycans in cancer’, ‘Wnt 
signaling pathway’ and ‘Asthma’ (Fig. 5).

miRNA/mRNA network construction. The target genes were 
predicted using starBase and compared with deGs to iden-
tify pivotal target mrnas as potential biomarkers. only the 
intersection was selected and visualized using cytoscape 
(Fig. 6). The MCODE results and the miRNA/mrna network 
were analyzed and a total of 6 genes were chosen as candidate 
genes (Table ii), consisting of two ddeGs [hepatocyte growth 
factor (HGF) and neuropeptide Y receptor Y1 (NPY1R) and 
four udeGs [cd69, serpin family e member 1 (SERPINE1), 
syndecan 1 (SDC1) and c-X-c motif chemokine ligand3 
(CXCL)3].

Experimental validation. rT-qPcr was performed to verify 
the expression levels of the 9 candidate genes in oa and ra 
synovial tissue. The expression levels of CTLA4, ZAP70, LCK, 
PIK3CG, SERPINE1, SDC1, NPY1R in ra tissue compared 
with oa tissue were observed to be consistent with the 
predictions (Fig. 7). In addition, the experimental validation 
found that CTLA4, ZAP70 and LCK expression levels were 
significantly increased, whereas HGF expression levels were 
significantly decreased in RA synovial tissue compared with 
OA synovial tissue (P<0.05; Fig. 7).

Discussion

Microarray and bioinformatic analysis is widely used to 
investigate the causes and underlying mechanisms of different 
types of disease (35), and gene expression profiling of 
rheumatoid arthritis (ra) has been conducted in numerous 
previous studies. orange et al (36) used rna-seq of synovial 
tissue along with histologic analysis identified three distinct 

Figure 1. Identification of DEGs in RA and OA using datasets obtained from the Gene Expression Omnibus database. (A) Hierarchical clustering analysis 
and heat map of DEGs identified in the GSE55235 and GSE55457 datasets. Red indicates higher expression levels and green indicates lower expression 
levels. The blue and pink bar represents OA and RA samples, respectively. (B) Overlapping DEGs in the GSE55457 and GSE55235 datasets were identified. 
RA, rheumatoid arthritis; OA, osteoarthritis; DEGs, differentially expressed genes.
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molecular subtypes of RA that correlated with specific clinical 
phenotypes.

in the present study, genome-wide transcriptomic datasets 
from the Geo database were used to identify deGs in patients 
with ra or osteoarthritis (oa). combining the data from the 
GSe55457 and GSe55235 dataset revealed that 566 genes were 
differentially expressed between OA and RA samples (280 
genes were upregulated and 286 genes were downregulated). 
in addition, six mirnas were found to be downregulated and 
17 mirnas were upregulated in the GSe72564 dataset.

Go functional term enrichment analysis indicated that 
upregulated (u)deGs were mostly enriched in BP such as 
‘immune response’, cc such as ‘external side of plasma 
membrane’ and MF such as ‘Chemokine receptor activity’, 
whereas downregulated (d)DEGs were significantly enriched 
in ‘cell adhesion’ at the BP level, ‘extracellular region’ at 
CC level and ‘heparin binding’ at the MF level. These find-
ings are consistent with the previous studies that reported 
that immune responses and chemokine activity were vital 
processes for RA development and progression (37,38). KEGG 
signaling pathway enrichment analysis indicated that udeGs 
were mostly enriched in ‘cytokine-cytokine receptor interac-
tion’ and ‘chemokine signaling pathway’. a diverse range 
of cytokines have been observed to have important roles in 

the pathophysiological processes of ra, such as interleukin 
(IL)‑1, IL‑17 and tumor necrosis factor (TNF)‑α (39). in fact, 
the development of therapeutic agents, such as rituximab and 
infliximab, which are targeted agents against cytokines or 
their receptors, have significantly increased the success rate 
for the treatment of the disease (40). The ddeGs were found to 
be enriched in the ‘PPar signaling pathway’ and ‘regulation 
of lipolysis in adipocytes’. Peroxisome proliferator activated 
receptors (PPars) are transcription factors that belong to the 
nuclear receptor family (41) and they have been reported to 
inhibit the expression of matrix metalloproteinases (MMP) 
and the release of pro‑inflammatory cytokines when exposed 
to il-1β (42). Decreased PPAR activationmay promote FLSs 
proliferation and expression levels of c-Myc, cyclin d1, 
MMP-1 and MMP-9 (43).

in addition, based on the PPi network constructed of the 
deGs, the top 25 nodes with the highest degree were selected 
and pathway interactions of these genes were analyzed using 
ClueGO; this revealed that 17 of these genes were involved 
in the inflammatory process. Some of these genes identified 
in the present study have previously been attributed to the 
pathogenesis of RA; for example, 11 of them were chemo-
kines and their receptors, including c-X-c motif chemokine 
ligand 1 (cXcl1), cXcl2, cXcl3, c-X-c motif chemokine 
receptor 4 (cXcr4), c-c motif chemokine ligand 5 (ccl5), 
CXCL8, CXCL9, CXCL10, CXCL11, CXCL13 and CCL20. 
chemokines are divided into four classes depending on the 
location of the conserved cysteine in the protein molecule: 
c-X-c, c-c, c-X-3-c and X-c (44). chemokines and their 
receptors control hemostasis during recirculation and promote 
the recruitment of immune cells during inflammation (45). 
of note, the role of multiple chemokines and growth factors, 
such as vascular endothelial growth factor, in angiogenesis 
and the inflammatory response has been reported in RA (46). 
CXCL8, also known as IL‑8, is the most commonly studied 
chemokine of the cXc subfamily and the expression levels 
of CXCL8 have been closely associated to the symptoms and 
disease activity of patients with ra (47). ccl20, also known 
as liver and activation-regulated chemokine, is one of the few 
known chemokine ligands that only pairs with a sole receptor, 
ccr6 (45). ccl20 is able to recruit ccr6+ mononuclear cells 
to the synovial fluid of patients with RA and has been found to 
be significantly neutralized with the addition of an anti‑CCL20 
antibody (48). CCL20 has also been reported to activate osteo-
blast proliferation and osteoclast differentiation, which may 
be maintain bone homeostasis in ra bone destruction (49). 
Furthermore, the blockade of inflammatory cytokines through 
biological agents, such as infliximab, inhibited the produc-
tion of ccl20 (50). ccl5 is found to serve a positive role in 
leukocyte recruitment during inflammation (51). In addition, 
human RAFLS treated with CCL5 demonstrated significantly 
increased expression levels of MMP-1 and MMP-13, which 
resulted in the degradation of type Ⅰ collagenase (52). The 
cXc subfamily are the predominant chemotactic cytokines of 
the neutrophils; CXCL10 and its receptor CXCR3, have been 
found to promote FLS invasion and joint erosion by increasing 
the expressing levels of receptor activator of nuclear factor-κ 
B ligand (ranKl) in cd4+ T cells in ra (53,54). notably, it 
has been suggested that serum concentrations of cXcl9 and 
cXcl10 may also serve as sensitive biomarkers for ra (55).

Table II. Identification of the differentially expressed 
micrornas in the GSe72564 dataset obtained from the Gene 
expression omnibus database.

mirna id P-value log, fold change

hsa‑miR‑670 0.00181 1.5375
hsa-mir-26a 0.00365 2.0325
hsa‑miR‑2116 0.00745 1.8950
hsa-mir-653 0.01371 -1.2775
hsa-mir-190a 0.02222 1.1625
hsa‑miR‑2276 0.02301 ‑1.8875
hsa‑miR‑548b 0.02336 1.5025
hsa‑miR‑579 0.02551 1.2850
hsa‑miR‑496 0.02800 ‑1.0725
hsa-mir-1305 0.02961 1.7775
hsa-mir-30c 0.02995 1.6525
hsa-mir-20b 0.03323 1.1150
hsa‑miR‑4262 0.03394 1.1850
hsa-mir-4263 0.03396 -1.0450
hsa-mir-502 0.03450 1.1650
hsa‑miR‑1258 0.03540 1.4250
hsa‑miR‑708 0.03672 2.1575
hsa‑miR‑1193 0.04084 ‑1.4750
hsa-mir-1299 0.04256 1.6225
hsa‑miR‑218 0.04671 2.7450
hsa-mir-346 0.04710 -1.0200
hsa‑miR‑3116 0.04784 1.1275
hsa-mir-499a 0.04941 1.4275

mir, microrna.
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PiK3cG has been demonstrated to serve an important role 
in proliferation, apoptosis and adhesion (56). In hTNF‑α trans-
genic mice, reduced MMP-3 expression levels and invasive 

properties were observed in synovial fibroblasts in the absence 
of PiK3γ (57). in line with this observation, the pharmaco-
logical inhibition of PiK3cG was discovered to effectively 

Figure 3. PPI and modules analysis of DEGs using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape software. A total 
of 6 modules were selected using a degree cut‑off value of 10 and node number >4. Upregulated genes are marked in red and downregulated genes are marked 
in green. PPI, protein‑protein interaction; DEGs, differentially expressed genes.

Figure 2. GO analysis and KEGG pathway analysis of DEGs. Red bars indicate upregulated genes and green bars indicate downregulated genes. (A) GO 
functional term enrichment analysis of deGs (top 5 in each category). (B) KeGG signaling pathway enrichment analysis of deGs (top 10 in each category). 
DEG, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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alleviate chronic inflammation in RA (58). Thus, it is thought 
that the full therapeutic potential of selective PiK3γ inhibitors 
remains to be investigated.

lcK is a member of the Src family of protein tyrosine 
kinases (59), which is only expressed in T cells and natural 
killer (nK) cells, and is involved in T cell receptor-mediated 
T cell proliferation and differentiation (60). in the present 
study, LCK was observed to be significantly over‑expressed 
in ra synovial tissue and the overexpression of lcK has 
been found to contribute to numerous autoimmune diseases, 
such as inflammatory bowel diseases and type I diabetes (59). 
Selective lcK inhibitors have been developed and have 
reported potential upon their application in inflammatory 
disorders, including ra (60). in addition, previous bioinfor-
matical analysis indicated that lcK expression was increased 
in ra (61), which is consistent with what was observed in the 
present study, in which the aberrant expression of lcK was 
experimentally validated.

leptin is one of the most important hormones and cyto-
kines secreted by adipose tissue and the past decade of research 
has proven that leptin controls body weight by inhibiting food 
intake (62). As a cytokine, Leptin modulates inflammatory 
responses and the immune system by promoting Th1 cell acti-
vation and the production of pro‑inflammatory cytokines, such 
as IL‑6, IL‑2 and TNF‑α (63,64); however, the expression levels 

and role of leptin in the pathogenesis of ra remains unclear. 
Some previous studies have observed higher expression levels 
of Leptin in the serum, synovial fluid and synovial tissue from 
patients with ra, which suggested that leptin expression 
levels are related to disease activity (65,66). in contrast, other 
studies have reported no change in the expression levels of 
leptin and no correlation with disease activity (67), because 
the individual characteristics of patients such as age, race and 
body weight were inconsistent (66). Thus, further investiga-
tions on leptin will help determine its mechanism of action 
and its potential as a treatment option in ra.

ZaP70, also known as SrK, encodes an enzyme belonging 
to the protein tyrosine kinase family. in a previous study, 
ZaP70+ B cells were identified as a biomarker of response to 
B cell depletion therapy in RA (68) and partial ZAP‑70 defi-
ciency was found to alter the balance between the activation 
and apoptotic processes of T cells (69). in the present study, 
ZAP70 was found to be significantly enriched in the NF‑κB 
signaling pathway, which is a widely researched signaling 
pathway in ra. Meanwhile, cTla-4 is a T cell surface glyco-
protein, which helps prevent the development of autoimmune 
diseases through the inhibition of T cell activation (70).

The intersected genes in Mcode and target genes of mirnas 
were selected for further experiment. in the present study, 
submodules in Mcode analysis were found to be associated 

Figure 4. Pathway crosstalk analysis of the top 25 nodes identified. Upregulated genes are marked in red and downregulated genes are marked in green. 
Pathway crosstalk analysis of the genes with highest degree was identified through performing KEGG pathway analysis in ClueGO. LCK, lcK proto-onco-
gene; ZAP70, ζ chain of T cell receptor‑associated protein kinase 70; IL7R, interleukin 7 receptor; PTPRC, protein tyrosine phosphatase receptor type C; 
CXCL13, C‑X‑C motif chemokine ligand 13; LEP, leptin; CCL21, C‑C motif chemokine ligand 21; CXCR4, C‑X‑C motif chemokine receptor 4; CXCL2, c-X-c 
motif chemokine ligand 2; PIK3CG, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ; CXCL10, C‑X‑C motif chemokine ligand; STAT1, 
signal transducer and activator of transcription 1; CXCL9, C‑X‑C motif chemokine ligand 9; CXCL11, C‑X‑C motif chemokine ligand 11; CXCL8, c-X-c motif 
chemokine ligand 8; CCL20, C‑C motif chemokine ligand 20; CCL5, C‑C motif chemokine ligand 5; CXCL5, C‑X‑C motif chemokine ligand; CXCL1, c-X-c 
motif chemokine ligand; CTLA4, cytotoxic T‑lymphocyte‑associated protein 4; VEGF, vascular endothelial growth factor.
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with the ‘chemokine signaling pathway’, ‘Primary immunode-
ficiency’, ‘Wnt signaling pathway’, ‘Asthma’ and ‘Proteoglycans 
in cancer’. HGF, SERPINE1, SDC1, NPY1R, CTLA4 and CXCL3 

were selected as potential biomarkers. HGF has been discovered 
to stimulate hepatocyte proliferation, in addition to promoting 
proliferation, angiogenesis, anti-inflammatory and apoptotic 

Table iii. Hub genes with highest degree in protein-protein interaction networks and intersected genes in molecular complex 
detection analysis and microRNA/target genes.

Gene symbol (name) degree Predicted expression level

CXCL8 (C‑X‑C motif chemokine ligand 8) 78 Upregulated
VEGFA (vascular endothelial growth factor a) 64 upregulated
CXCR4 (c-X-c motif chemokine receptor 4) 51 upregulated
PIK3CG (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ) 50 upregulated
CCL5 (c-c motif chemokine ligand 5) 49 upregulated
LCK (LCK proto‑oncogene, Src family tyrosine kinase) 48 Upregulated
LEP (leptin) 43 downregulated
CXCL9 (c-X-c motif chemokine ligand 9) 41 upregulated
CXCL10 (c-X-c motif chemokine ligand 10) 41 upregulated
CXCL1 (c-X-c motif chemokine ligand 1) 36 upregulated
ZAP70 (ζ chain of T cell receptor associated protein kinase 70) 35 upregulated
CCL20 (c-c motif chemokine ligand 20) 32 upregulated
IL7R (interleukin 7 receptor) 31 upregulated
CXCL11 (c-X-c motif chemokine ligand 11) 31 upregulated
CXCL13 (c-X-c motif chemokine ligand 13) 30 upregulated
CXCL2 (c-X-c motif chemokine ligand 2) 30 upregulated
HGF (hepatocyte growth factor) 33 downregulated
CTLA4 (cytotoxic T-lymphocyte associated protein 4) 29 upregulated
SERPINE1 (Serpin family E member 1) 28 Upregulated
CD69 (CD69 molecule) 28 Upregulated
SDC1 (syndecan 1) 24 upregulated
CXCL3 (c-X-c motif chemokine ligand 3) 23 upregulated
NPY1R (neuropeptide Y receptor Y1) 22 downregulated

Figure 5. Kyoto Encylopedia of Genes and Genomes pathway analysis of 5 of the top 25 genes identified. Six modules were selected. Ordinate represented‑log 
(P-value) and the size of bubble represent the number of genes in each pathway.
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Figure 6. miRNA/mRNA network. Differentially expressed miRNAs are presented as blue diamonds. Upregulated DEGs are presented in red and down-
regulated DEGs are marked in green. DEGS, differentially expressed genes; miR/miRNA, microRNA.

Figure 7. Reverse transcription‑quantitative PCR results of the expression levels of identified candidate genes in samples from OA vs. RA. Expression levels of 
each gene was normalized to acTB. *P<0.05, **P<0.01 vs. OA. OA, osteoarthritis; RA, rheumatoid arthritis. PI3KCG, phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic sub-unit γ; LCK, LCK proto‑oncogene Src family tyrosine kinase; ZAP70, ζ chain of T cell receptor‑associated protein kinase 70; LEP, 
leptin; HGF, hepatocyte growth factor; CTLA4, cytotoxic T‑lymphocyte‑associated protein 4; SERPINE1, serpin family E member 1; SDC1, syndecan 1; 
NPY1R, neuropeptide Y receptor Y1.
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processes in cells other than hepatocytes (71). SerPine1 is a 
member of urokinase plasminogen activating system; increased 
expression levels of SerPine1 have also been related to inva-
sion and migration in head and neck cancer cells (72). Previous 
KeGG pathway analysis has indicated that SerPine may 
be related to the HIF‑1 signaling pathway, which alongside its 
downstream receptors, is activated in a hypoxic environment 
during RA (73); however, to the best of our knowledge, there 
are currently no studies published on the differential expression 
and function of SerPine1 in the pathogenesis of ra. Sdc1 is 
expressed in hepatocytes, epithelial cells and the endothelium, 
where it interacts with multiple chemokines and cytokines to 
regulate differentiation, migration and proliferation (74). in addi-
tion, SDC is a phenotypic marker and regulator of NKT17; in a 
previous study, SDC1 deficiency led to a significant expansion 
of nKT17 cells, which was detected by the increased expression 
levels of il-17 (75). nPY1 is mediated by the nPY receptor 
subtypes 1r-6r (76). nPY accompanied with nPY1 receptor 
(nPY1r) and nPY2 receptor (nPY2r) are overexpressed in 
human oa cartilage, which results in chondrocyte hypertrophy 
and cartilage degradation (77). increased expression levels of 
nPY1r have been found to regulate proliferation and metastasis 
in breast cancer (78). In the present study, NPY1R was discov-
ered to be involved in the ‘regulation of lipolysis in adipocytes’ 
pathway.

The present study experimentally validated that PIK3CG, 
LCK, ZAP70, HGF, CTLA4, SERPINE1 exhibited consistent 
expression trends with the microarray datasets GSe55457 and 
GSe55235, whereas LEP, SDC‑1 and NPY1R were downregu-
lated, but Pcr demonstrated them to be upregulated., which 
may be caused by disease activity and ethnic differences. LCK, 
ZAP70 and CTLA4 expression levels were observed to be 
overexpressed, whereas expression levels of HGF were signifi-
cantly decreased in the ra synovium. conversely, previous 
studies have reported significant increases in the expression 
levels of serum HGF in patients with ra (79), which is 
inconsistent with our findings. Therefore, further research is 
required to determine the role of HGF.

To conclude, transcriptome sequencing has been widely 
used for research into both cancer and autoimmune diseases. 
in the present study, bioinformatics methods were used to 
analyze the presence of deGs in the synovial tissue of patients 
with ra compared with oa. The expression levels of LCK, 
ZAP70 and CTLA4 were found to be overexpressed, whereas 
HGF expression levels were significantly decreased in RA. 
These genes and their related signaling pathways may provide 
diagnostic biomarkers and future therapeutic targets for RA; 
however, only CTLA4, ZAP70, LCK and HGF were validated 
to be significantly differentially expressed in the synovial 
tissue of patients with ra, which indicated that experimental 
validation is necessary following bioinformatics analysis.
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