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Abstract. Lower back pain (LBP) is one of the predominant 
factors contributing to dyskinesia and remains a serious social 
and economic burden worldwide. Intervertebral disc degen-
eration (IDD) is the leading cause of LBP; the existing IDD 
treatments cannot completely prevent IDD. Circular RNAs 
(circRNAs) are non‑coding RNAs resulting from back‑splicing 
with unique structural characteristics and functions. 
Accumulating evidence suggests that circRNAs are involved 
in the pathological process of IDD and modulate a range 
of IDD‑related genes or proteins. However, the underlying 
circRNA‑mediated regulatory mechanisms remain poorly 
understood. The aim of the present review is to describe the 
current understanding of circRNA characteristics, classifica-
tion, biogenesis and function in relation to its specific roles in 
IDD. Additionally, the limitations on the current knowledge in 
the field and the future direction of IDD‑related research are 
also discussed.
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1. Introduction

Lower back pain (LBP) is one of the predominant factors 
contributing to dyskinesia and the second most common cause 
of hospital visits, leading to a serious social and economic 
burden worldwide  (1,2). Symptomatic intervertebral disc 
degeneration (IDD) is the most frequent cause of LBP (1,3). 
Although several factors contribute to IDD, genetic factors are 
the leading cause (4). The nucleus pulposus (NP) is located in 
the center of the intervertebral disc (ID) (5); it is the largest 
avascular tissue in the body and lacks blood oxygenation, which 
limits its self‑repairing ability (6). Existing IDD treatments 
are not satisfactory and cannot fully recover ID function (7). 
Non‑coding RNA (ncRNA) generated by gene back‑splicing 
can regulate gene post‑transcriptional modification to 
modulate disease development (8). Frapin et al (9) described 
the pathological process of IDD in detail and inferred that 
metabolic dysregulation of the extracellular matrix (ECM) in 
the ID microenvironment was predominantly involved in the 
pathogenesis of IDD. The various types of IDD‑related genes 
or protein expression disorders can contribute to the synthesis 
and catabolic imbalance of ECM, giving rise to the alteration 
of ID morphology, physics and mechanics, leading to ID func-
tion loss, thereby triggering IDD (9‑11). Gene therapy uses 
viruses and other vectors to carry ncRNAs formed by genes 
or genes to target ID, which can reverse or block the patho-
logical process of IDD and recover ID function at the genetic 
level (10). In view of the aforementioned reasons, gene‑based 
diagnostic and treatment strategies are critical measures for 
IDD management.

IDD‑related genes or proteins can be divided into 
protective factors and catabolic factors. The former includes 
hypoxia‑inducible factor‑1α (HIF‑1α), vascular endothelial 
growth factor (VEGF), collagen type II (COL2), aggrecan 
(ACAN), SRY‑related high mobility group box 9 (SOX9) and 
a series of antiapoptotic proteins, whereas the latter includes 
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matrix metalloproteinases (MMPs), disintegrin and ADAM 
metallopeptidases with thrombospondin type  1 motifs 
(ADAMTSs), interleukin (IL)‑1β, tumor necrosis factor‑α 
(TNF‑α) and a number of proapoptotic proteins (4,9‑11).

Previous studies have suggested that ncRNAs, including 
microRNAs (miRNAs/miRs) and circular RNAs (circRNAs), 
serve a crucial role in the occurrence and progression of 
IDD (12‑17). In particular, circRNAs mediate NP cell (NPC) 
apoptosis and regulate the expression of inflammatory cyto-
kines, MMP, ADAMTS, various apoptosis‑related proteins 
and key components of the ECM, such as COL2 and ACAN, 
which serve a role in the pathogenesis of IDD (12‑17).

The present article provides an up‑to‑date review of 
circRNA characteristics, classification, biogenesis and 
function, with particular emphasis on the potential future 
directions of IDD‑related research. Additionally, the limita-
tions of current research are also discussed.

2. Characteristics

CircRNAs are a type of ncRNA with high thermal stability 
that were first discovered in plant‑infecting virions in 1976 by 
Sanger et al (18). Although circRNAs have been identified in 
different species (19‑22), these molecules were not initially 
extensively studied. However, circRNAs were later found to 
exert a previously unrecognized role in a wide spectrum of 
human diseases, owing to the rapid development of next‑gener-
ation sequencing technology (23,24). Compared with linear 
RNAs, covalently closed circRNAs have unique character-
istics and biological functions without 5' to 3' polarity or a 
polyadenylated tail (25‑27). They are predominantly located 
in the cytoplasm, abundantly expressed, conserved, highly 
stable and exonuclease‑resistant (28‑31). In addition, circRNAs 
are expressed in a tissue‑ and time‑specific manner (31,32). 
They can also be carried in exosomes and have potential 
applications as markers for disease diagnosis (33,34). Direct 
back‑splicing and exon skipping are the main pathways of 
circRNA synthesis (23,27).

3. Classifications

Currently, seven types of circRNAs have been identified 
according to the type and quantity of the parental gene the 
circRNAs originate from. These include exonic circRNA (ecir-
cRNA), intronic circRNA (ciRNA), tRNA intronic circRNA 
(tricRNA), exon‑intron circRNA (eiciRNA), read‑through 
circRNA (rt‑circRNA), fusion circRNA (f‑circRNA) and 
mitochondria‑encoded circRNA (mecciRNA). The circu-
larization of at least one intron or one exon from a single 
gene gives rise to ciRNAs and ecircRNAs, respectively, 
whereas the formation of eiciRNA is based on the cycli-
zation of at least an exon and an intron  (24,26) (Fig.  1). 
TricRNA is a special type of circRNA synthesized through 
a pre‑tRNA intron splicing mechanism (35). Rt‑circRNA is 
the result of circularization of two exons from two different 
genes (30). F‑circRNA is synthesized from the transcribed 
exons of several nuclear genes as a result of chromosomal 
translocation (36). Lastly, mecciRNA is produced from mito-
chondrial genes (37). EcircRNAs are the most common type 
of circRNA.

4. Biogenesis and functions

The biological functions of circRNAs depend on their type and 
cellular location. In the nucleus, synthetic circRNAs can modu-
late gene transcription (30,38) and alternative splicing (39). 
For example, eiciRNAs circ‑EIF3J and circ‑PAIP2 are largely 
localized in the nucleus and can interact with U1 small nuclear 
ribonucleoprotein and RNA polymerase (Pol) II to promote the 
transcription of their host genes (38). The ciRNA ci‑ankrd52 
positively regulates the function of RNA Pol II to modulate the 
transcription of its parental gene (ANKRD52), predominantly 
converging to the cell nucleus (39). Increased synthesis of 
circ‑Mbl may repress the transcription of its parental gene (40).

After synthesis, ecircRNAs are transferred from the nucleus 
to the cytoplasm. As shown in Fig. 1, the synthesis of mature 
miRNAs involves a range of processing steps. First, miRNA 
genes are transcribed into pri‑miRNAs, and then processed into 
pre‑miRNAs in the nucleus, pre‑miRNAs are then transported 
into the cytoplasm via the nuclear export protein Exportin5 to 
produce mature miRNAs (41). Subsequently, mature miRNAs 
directly interact with the 3'UTRs of target mRNAs, thereby 
inhibiting mRNA translation or degrading mRNA  (42). 
EcircRNAs that are primarily located in the cytoplasm can 
modulate the expression of their parental genes  (43,44), 
sponge miRNAs by acting as competitive endogenous RNAs 
(ceRNAs)  (25,31,43‑46), attach miRNAs  (47,48), interact 
with or sponge RNA‑binding proteins (RBPs) (25,31,49‑52), 
encode proteins (25,31,43,53‑55) and modulate protein transla-
tion (56‑58) (Fig. 1).

The crosstalk between circRNAs and miRNAs is 
complex. CircRNAs commonly inhibit miRNA expression 
through a ‘sponging’ mechanism (25,31,41‑44). Additionally, 
circ‑CSNK1G3 and ci‑RS‑7 positively regulate the levels 
of miR‑181b/d and miR‑7, respectively (45,46). Conversely, 
miR‑200b negatively modulates the expression and func-
tion of circRNA‑000839 (59). Whether miRNA, in turn, can 
regulate circRNA expression remains unknown. Moreover, 
the possibility that circRNAs also interact with each other has 
yet to be demonstrated. Furthermore, cytoplasmic circRNAs 
also modulate parental gene expression. For example, F‑box 
and WD repeat domain‑containing 7 (FBXW7), a well‑known 
tumor suppressor gene, encodes the FBXW7 protein and 
circ‑FBXW7. Circ‑FBXW7 regulates the mRNA and protein 
levels of FBXW7 to repress the expression of c‑Myc in a 
miRNA‑dependent manner (41). Another study suggests that 
circ‑filamin‑binding LIM protein 1 (FBLIM1) positively 
regulates the expression of the FBLIM1 gene by sponging 
miR‑346 (42).

CircRNAs regulate the activity and function of proteins 
in several ways, including via sponging, as a protein scaf-
fold, by encoding proteins and modulating protein translation 
(Fig.  1). Circ‑forkhead box O3 (Foxo3) can bind to both 
P21 and cyclin‑dependent kinase 2 (CDK2) to generate 
ternary complexes that enhance the inhibitory effect of P21 
on CDK2 (47). Circ‑Foxo3 also functions as a protein scaf-
fold, stabilizing Foxo3 protein expression by interacting 
with mouse double minute 2 (Mdm2) and P53 and inhibiting 
Mdm2‑induced Foxo3 ubiquitination  (50). Additionally, 
circ‑Foxo3 inhibits the nuclear translocation of transcrip-
tion factors, including HIF‑1α, thereby inhibiting their 
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functions (49). Circ‑ZKSCAN1 sponges fragile X mental retar-
dation protein, preventing it from binding to its downstream 
target mRNA, cell cycle and apoptosis regulator 1, thereby 
attenuating the malignant biological behavior of hepatocellular 
carcinoma (HCC) through the Wnt signaling pathway (48). 
RBPs also regulate the formation of circRNAs. For example, 
RNA‑binding motif protein 3 (RBM3) increases stearoyl‑CoA 
desaturase‑circ‑RNA 2 synthesis to promote HCC cell prolif-
eration (60), and Quaking 5 may promote the synthesis of 
circ‑ZKSCAN1 (48). In addition, some circRNAs function 
through the proteins they encode. Circ‑β‑catenin encodes a 
370‑amino‑acid β‑catenin, which inhibits glycogen synthase 
kinase 3β (GSK3β)‑mediated β‑catenin degradation and 
activates the Wnt/β‑catenin pathway in HCC (51). Circ‑protein 
phosphatase 1 regulatory subunit 12A (PPP1R12A)‑73aa (a 
protein encoded by circ‑PPP1R12A), but not circPPP1R12A 
itself, accelerates colon cancer growth and metastasis (52). 
Moreover, circ‑FBXW7 encodes the FBXW7 185‑amino‑acid 
protein (FBXW7‑185aa), and the synergistic action of FBXW7 
and FBXW7‑185aa stabilizes c‑Myc and promotes oncogenesis 
and tumor progression (42). Lastly, partial circRNAs modulate 
protein translation in a protein‑dependent manner. CircRHOT1 
regulates the translation of nuclear receptor subfamily 2 group 
F member 6 (NR2F6) by activating Tat‑interacting protein of 
60 kDa to the Nr2f6 gene promoter (54). Circ‑YY1‑associated 
protein 1 (YAP) regulates the initiation efficiency of YAP 
protein translation by interacting with Yap mRNA and the 
proteins eIF4G and PABP (55). More recently, Sun et al (58) 

reported that circMYBL2 could facilitate fms‑related receptor 
tyrosine kinase 3 (FLT3) protein translation efficiency by 
recruiting polypyrimidine tract‑binding protein 1 to bind to 
Flt3 mRNA.

Recently, Chen  et  al  (47) suggested that ~90% of 
circRNAs have an independent regulatory role in cell prolif-
eration, compared with their linear counterparts. Nevertheless, 
certain circRNAs have functions that are similar to linear 
RNAs  (61,62). Peroxisome proliferator‑activated receptors 
and their associated circRNA, circ‑5379‑6, both suppress 
tumor progression  (61). Yao  et  al  (62) also reported that 
circ‑ZKSCAN1 and its parental gene both inhibited cell 
growth through distinct signaling pathways.

5. Specificroles of circRNA in IDD

Biofunctions of circRNA in IDD. A growing body of 
evidence suggests that circRNAs are extensively involved in 
a multitude of chronic diseases, including osteoarthritis (63) 
and cancer  (64), as well as cardiovascular  (65), neurode-
generative  (66,67) and immunological  (68,69) diseases. 
However, the role of circRNA in IDD remains unclear. To 
the best of our knowledge, only nine upregulated and nine 
downregulated circRNAs have been identified in degenera-
tive NP samples compared with normal NP samples, and the 
functions of 12 of these dysregulated circRNAs remain fairly 
poorly understood (70,71). Using microarray data from the 
Gene Expression Omnibus (GEO) database, Zhu et al  (72) 

Figure 1. Biogenesis and function of circRNAs. In the nucleus, the circularization of at least one intron or one exon from a single gene gives rise to ciRNAs 
and ecircRNAs, respectively, whereas the formation of eiciRNA is based on the cyclization of at least one exon and one intron. CirRNAs or eiciRNA, mostly 
enriched in the nucleus, can modulate gene transcription and alternative splicing. EcircRNAs, which are primarily located in the cytoplasm, can modulate the 
expression of their parental genes, sponge miRNAs, interact with or sponge RBP, translate proteins and modulate protein translation. EcircRNAs positively 
regulate the expression of their target genes via sponging miRNAs to relieve the inhibitory effect of miRNAs on target genes. CircRNA, circular RNA; RBP, 
RNA‑binding protein; ciRNA, intronic circRNA; ecircRNA, exonic circRNA; eiciRNA, exon‑intron circRNA; miRNA, microRNA.
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predicted three circRNA‑mediated regulatory pathways 
in IDD, namely, circRNA‑102348/miR‑185‑5p/TGFB1/ 
FOS,  c i rcRNA‑ 102399/m i R‑302a‑3p/ H I F1A a nd 
circRNA‑100086/miR‑509‑3p/MAPK1. However, further 
investigation is needed to elucidate their potential role in 
IDD (72). Moreover, the detailed biofunctions of circRNAs 
that have been identified are listed in Table I and Fig. 2. The 
upregulated circRNAs except circ‑0004099 contribute to the 
occurrence and progression of IDD, whereas circ‑0004099 
and all downregulated circRNAs function as IDD repressors. 
CircRNAs act as IDD repressors or enhancers through the 
regulation of several pathological processes, including NPC 
apoptosis, proliferation, mitophagy and senescence, as well 
as the dysregulation of MMP, ADAMTS, inflammatory cyto-
kines and ECM expression.

The five described IDD repressors have diverse functions: 
i) Circ‑semaphorin 4B (SEMA4B) enhances NPC proliferation; 
ii)  circ‑SEMA4B and circ‑excision repair cross‑comple-
mentation group 2 (ERCC2) suppress NPC senescence; 
iii) circ‑growth factor receptor bound protein 10 (GRB10), 
circ‑vacuolar ATPase assembly factor VMA21 (VMA21) 
and circ‑ERCC2 suppress NPC apoptosis; iv) circ‑SEMA4B, 
circ‑0004099, circ‑VMA21 and circ‑ERCC2 promote ECM 
synthesis; v) circ‑VMA21 and circ‑ERCC2 suppress MMP or 
ADAMTS expression; vi) circ‑ERCC2 facilitates mitophagy; 
and vii) circ‑0004099 inhibits IC secretion (12‑17). The only 
known IDD enhancer, circRNA‑104670, not only represses 
NPC proliferation and the synthesis of ECM components, 
but also promotes NPC apoptosis and MMP2 expression (15). 
These abnormally expressed circRNAs mediate pathological 
processes through several signaling pathways, including 
apoptosis‑related pathways and ECM‑related pathways.

Circ‑VMA21‑mediated IDD repression. Circ‑VMA21 was the 
first identified IDD‑related circRNA (12), providing invaluable 
insight into the modulation of IDD pathogenesis by circRNAs. 
Circ‑VMA21 is downregulated in degenerative NP samples 
from patients with IDD compared with NP samples from 
controls  (12). Similarly, the expression of circ‑VMA21 is 
reduced in NPCs treated with both TNF‑α and IL‑1β (12). The 
progression of IDD is associated with the aberrant expression 
of circ‑VMA21 in degenerative and normal NP samples. More 
specifically, circ‑VMA21 blocked the progression of IDD, and 
its downregulation limited its protective effect. Circ‑VMA21 
serves a protective role in human NPCs and rat NP tissues 
predominantly through apoptosis‑related pathways and the 
ECM components metabolism‑related pathways.

Ci rc‑V M A21 posit ively  modulates  X l in ked 
inhibitor‑of‑apoptosis protein (XIAP) and represses the 
expression of caspase (CASP) family members (CASP‑3, 
CASP‑7 and CASP‑9), as well as a number of degrading 
metabolic enzymes (MMP‑3, MMP‑13, ADAMTS‑4 and 
ADAMTS‑5). Circ‑VMA21 also promotes the expression of 
ECM components, including COL2 and ACAN, by sponging 
miR‑200c (12,73). Luciferase reporter and RNA pull‑down 
assays confirmed that circ‑VMA21 has five effective binding 
sites in miR‑200c (12,73).

Pfirrmann classification is the most common method used 
for the evaluation of IDD severity, according to magnetic 
resonance imaging grade  (74). Circ‑VMA21 markedly 

decreased the Pfirrmann grade of IDD following injection 
into rat IDs. Altogether, these studies suggested that the 
circ‑VMA21/miR‑200c/XIAP axis may be involved in the 
regulation of IDD pathogenesis, providing novel therapeutic 
targets for IDD.

IDD repressor circ‑GRB10. Lan  et  al  (75) analyzed the 
microarray data of human lumbar IDD and uploaded it into 
the GEO database. Our previous study identified three abnor-
mally expressed circRNAs by analyzing circRNA microarray 
data from the GEO database, of which two were upregulated 
(circ‑FAM169A and circ‑SETD2) and one was downregu-
lated (circ‑GRB10) (13). The expression of circ‑GRB10 was 
downregulated in 20 degenerative NP samples from patients 
with IDD undergoing discectomy compared with 20 nonde-
generative NP samples from patients with fresh traumatic 
lumbar fracture (13). Mechanistically, the circ‑GRB10‑medi-
ated pathological process of IDD is miR‑328‑5p‑dependent. 
Functionally, circ‑GRB10 acts as an IDD repressor of NPC 
apoptosis under nutrient deprivation conditions by seques-
tering miR‑328‑5p and promoting Erb‑B2 receptor tyrosine 
kinase 2 (ERBB2) expression in NPCs. Thus, circ‑GRB10 
downregulation could decrease NPC survival, leading to IDD 
onset and progression.

IDD repressor circ‑0004099. Wang et  al  (14) categorized 
patients with IDD according to the Pfirrmann classification 
criteria (74). Patients with Pfirrmann grade I/II were assigned 
to a nondegenerative group, whereas those with Pfirrmann 
grade IV/V constituted the degeneration group. The authors 
collected six degenerative NP samples from the patients of the 
degenerative group who were undergoing spinal surgery and six 
nondegenerative NP samples from the patients of the nonde-
generative group with vertebral fracture or scoliosis (13,14). 
Using circRNA microarray, circRNA expression profiles in 
the twelve samples were examined (14). Circ‑0004099 was 
the most frequently upregulated circRNA in the degenerative 
samples (14). Moreover, circ‑0004099 expression was increased 
in NPCs in a dose and time‑dependent manner following treat-
ment with TNF‑α. It was also demonstrated that this effect was 
mediated by MAPK and the NF‑κB signaling pathways (14). 
Notably, circ‑0004099 overexpression enhanced (rather than 
repressed) the expression of Sox9 and ECM proteins, such as 
ACAN and COL2. Circ‑004099 also repressed (rather than 
enhanced) proinflammatory cytokine secretion (TNF‑α, IL‑1β 
and prostaglandin E2), and these changes were reversed by 
miR‑616‑5p mimic 14). Sox9 is a chondrocyte‑specific transcrip-
tion factor that promotes COL2 and ACAN synthesis (76,77). 
Wang et al (14) also confirmed that Sox9 was the direct target 
of miR‑616‑5p. In addition, luciferase reporter, RNA immu-
noprecipitation and RNA pull‑down assays indicated that 
circ‑0004099 could bind to miR‑616‑5p (14). Collectively, these 
research results reveal that the circ‑0004099/miR‑616‑5p/Sox9 
axis might play a protective role in IDD.

IDD repressor circ‑SEMA4B. Consistent with Guo's 
method (13), Wang et al (16) also analyzed the same circRNA 
microarray data that was downloaded from the GEO data-
base. Circ‑SEMA4B expression was the most significantly 
downregulated circRNA in 45 IDD specimens and had 
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a negative association with IDD severity, as bard on the 
Pfirrmann grade (16). Notably, circ‑SEMA4B promoted the 
synthesis of ECM components and NPC proliferation, while 
inhibiting NPC senescence under IL‑1β stimulation. It was 
also demonstrated that IL‑1β exerted these effects by inhib-
iting circ‑SEMA4B expression (16).

Previous studies have demonstrated that the Wnt signaling 
pathway serves an important role in the regulation of NPC prolif-
eration and senescence (78,79). For instance, circ‑SEMA4B 
regulates the activation of the Wnt signaling pathway by 
sponging miR‑431, the upstream regulator of two well‑known 
Wnt signaling pathway inhibitors, GSK‑3β and secreted friz-
zled‑related protein 1 (SFRP1) (16,80,81). Collectively, results 
from these studies suggest that circ‑SEMA4B may be associ-
ated with the prognosis of patients with IDD and inhibits IDD 
development by regulating the miR‑431/GSK‑3β/SFRP1 axis.

IDD repressor circ‑ERCC2. Xie et al (17) analyzed Song's (15) 
microarray analysis of circRNAs and Lan's (75) microarray 
dataset (GSE67566) and demonstrated that circ‑ERCC2 was 
the most frequently downregulated circRNA in degenerative 
NP tissue  (15,74). Functional analyses also suggested that 
circ‑ERCC2 modulated tert‑butyl hydroperoxide‑induced 

NPC apoptosis (through CASP‑3, CASP‑7 and CASP‑9), 
mitophagy (through PTEN‑induced kinase 1, parkin, p62, and 
LC3II/I) and ECM structure (MMP13 and COL2) in vitro 
and in  vivo  (17). Fluorescence in  situ hybridization and 
dual‑luciferase assays demonstrated that circ‑ERCC2 could 
bind to miR‑182‑5p (17).

Previous studies have indicated that silent mating type infor-
mation regulator 2 homolog 1 (SIRT1) plays a significant role 
in mitophagy and apoptosis (82‑84). SIRT1‑small interfering 
(si)RNA inhibits NPC apoptosis and senescence. Moreover, 
this effect is suppressed by circ‑ERCC2 and miR‑182‑5p 
inhibitor, suggesting that circERCC2 exerts a protective effect 
on NPCs that is dependent on miR‑182‑5p (17).

IDD enhancer circRNA_104670. CircRNA‑104670 is related 
to cervical IDD and is upregulated ~4.5‑fold in degenerative 
tissues from patients with cervical spondylotic myelopathy 
compared with normal tissues from patients with Hirayama 
disease  (15). Furthermore, circRNA‑104670 may represent 
a diagnostic marker for IDD. In a previous study, receiver 
operating characteristic curve analysis indicated that the area 
under the curve value of circRNA_104670 was 0.96 and the 
expression of circRNA_104670 was positively associated with 

Figure 2. CircRNAs are involved in the regulation of IDD. In the upper half of the ellipse, circ‑SEMA4B, circ‑GRB10, circ‑VMA21 and circ‑ERCC2 
were downregulated, whereas circ‑0004099 was upregulated in IDD (green circle). All of them function as an IDD‑repressor by regulating different 
miRNA‑mRNA pathways, of which circ‑SEMA4B, circ‑0004099, circ‑VMA21 and circ‑ERCC2 promote the synthesis of key components of the ECM; 
circ‑GRB10, circ‑VMA21 and circ‑ERCC2 suppress NPC apoptosis; circ‑VMA21 and circ‑ERCC2 suppress NPC senescence; circ‑SEMA4B enhances NPC 
proliferation; circ‑VMA21 and circ‑ERCC2 suppress MMP or ADAMTS expression; circ‑ERCC2 facilitates mitophagy; and circ‑0004099 inhibits TNF‑α 
and IL‑1β secretion. Additionally, TNF‑α can inhibit circ‑0004099 expression, IL‑1β can inhibit circ‑SEMA4B expression, and both of them elevate the 
expression of circ‑VMA21. In the lower half of the ellipse, circRNA‑104670 was upregulated in IDD (green circle), which not only represses NPC proliferation 
and synthesis of ECM components, but also promotes NPC apoptosis and MMP2 expression via sponging miR‑17‑3p, thereby its acts as an IDD enhancer. 
CircRNA, circular RNA; IDD, intervertebral disc degeneration; circ‑VMA21, circ‑vacuolar ATPase assembly factor 21; circ‑SEMA4B, circ‑semaphorin 4B; 
circ‑ERCC2, circ‑excision repair cross‑complementation group 2; circ‑GRB10, circ‑growth factor receptor bound protein 10; miR, microRNA; ECM, extra-
cellular matrix; MMP, matrix metalloproteinase; NPC, nucleus pulposus cell; ADAMTS, ADAM metallopeptidases with thrombospondin type 1 motifs; 
TNF‑α, tumor necrosis factor‑α; IL‑1β, interleukin 1β.
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Pfirrmann grade (15). Functionally, circRNA‑104670 increased 
NPC apoptosis and suppressed NPC proliferation. Moreover, 
this circRNA also promoted MMP2 and repressed COL2 
expression by sequestering miR‑17‑3p (15). Mice injected with 
circRNA_104670 siRNA presented lower Pfirrmann grades (15). 
Thus, circRNA‑104670 may act as an IDD enhancer that regu-
lates miR‑17‑3p and MMP2, leading to IDD progression.

6. Current limitations and future directions

All of the research on IDD‑related circRNAs has shortcom-
ings. Although a universal approach to NPC culture with 
inflammatory cytokine treatment and ID microenvironment 
stimulation has been developed, it does not account for the 
fact that different circRNAs have diverse affinities for various 
inflammatory cytokines. However, as highlighted in Table I, 
none of the investigations explain why they used IL‑1β or 
TNF‑α or both. Recently, Shen et al  (63) approached this 
problem by detecting the expression of circRNAs in the cells 
stimulated with IL‑1β, TNF‑α or both.

As the NP is a hypoxic environment, the potential role of 
HIF‑1α in IDD has been reviewed previously. In the develop-
ment of IDD, HIF‑1α activation is involved in the regulation 
of IDD‑related gene or protein expression (9). Thus, HIF‑1α 
is a crucial transcriptional regulator of IDD. Increasing 
evidence suggests that HIF‑1α is a target of ncRNAs in several 
diseases (26,85,86). Nevertheless, hypoxia‑related circRNA 
pathways in IDD are still poorly characterized.

Exosomes serve an important role in numerous physiolog-
ical and pathological processes in various diseases (33,87,88). 
Various factors, including HIF‑1α, ncRNAs and proteins, 
among others, are present in exosomes (89). Thus, circRNAs 
contained within exosomes could serve as markers for 
diseases  (33,87,88). Importantly, whether HIF‑1α affects 
MMP and the ECM remains unclear  (9). Nevertheless, 
we cannot rule out the possibility of the existence of the 
circRNA/HIF‑1α/MMP/ECM axis in the exosomes of IDD. 
Further research is needed to elucidate this.

The phosphoinositide 3‑kinase (PI3K)/protein kinase B 
(AKT)/mechanistic target of rapamycin (mTOR) axis regu-
lates numerous biological events, including cell proliferation, 
apoptosis, metastasis and metabolism (90). Growing evidence 
also indicates that circRNA‑mediated regulation of the 
PI3K/AKT/mTOR axis serves an essential role in the patho-
genesis of several diseases, such as hepatocellular carcinoma 
and kidney cancer (85,91,92). However, whether this holds 
true in IDD remains unclear. Recently, bioinformatics analysis 
predicted that circRNAs could regulate autophagy signaling 
pathways in IDD via sponging miRNAs (93). So, the role of 
circRNA‑mediated autophagy in IDD cannot be ruled out and 
is a worthwhile research direction.

7. Conclusions

In conclusion, circRNAs function as ceRNAs to regulate the 
pathological process of IDD in a miRNA‑dependent manner. 
However, circRNAs also have a number of other functions 
aside from their role as a ceRNA that have not been reported 
on in IDD. Whether circRNAs can sponge or interact with 
RBP, encode proteins, modulate protein translation and gene 

expression in the context of IDD should also be addressed. 
Thus, understanding the biological role of circRNAs and their 
underlying molecular mechanism in the context of IDD would 
provide further insight into disease prevention strategies and 
contribute to the development of therapeutic targets for IDD.
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