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Abstract. In recent years, there have been major breakthroughs 
in immunotherapies for the treatment of cancer. However, 
different patients have different responses to immunotherapy. 
Numerous studies have shown that the accumulation of 
epigenetic abnormalities, such as DNA methylation, serve an 
important role in the immune response of lung adenocarci-
noma (LUAD). To investigate the effects of DNA methylation 
on tumor immunity with survival and prognosis, relevant 
studies can be performed based on the regulatory mecha-
nisms of RNA molecules. For example, long non‑coding 
RNAs (lncRNAs), which regulate gene expression through 
epigenetic levels. By constructing an immune-associated 
competitive endogenous RNA (ceRNA) network, the present 
study identified the regulatory associations among 3 key 
immune‑associations mRNAs, 2 microRNAs (miRs) and 29 
lncRNAs that were closely associated with the prognosis of 
patients with LUAD. The molecular biology analysis indi-
cated that hypomethylation of the 1101320‑1104290 regions 
of chromosome 1 resulted in the low expression levels of 
LINC00337 and that LINC00337 may affect the expression 
levels of CHEK1 by competitively binding with human 
(has)‑miR‑373 and hsa‑miR‑195. Therefore, abnormal DNA 
methylation in lncRNA‑associated regions caused their 
abnormal expression levels, which further affected the inter-
actions between RNA molecules. The interactions between 
these RNA molecules may have regulatory effects on 
tumor immunity and the prognosis of patients with LUAD. 

Introduction

Studies have reported some key breakthroughs in tumor 
immunological therapies for lung cancer (1,2). For example, 
a blockade of immune checkpoint therapy regulated T cell 
activity to enhance the antibody‑tumor immune responses. 
Significant advances in the molecular characterizations of 
lung cancer have led to the creation of effective immuno-
therapies that assist in the recognition of cancer as foreign 
by the host immune system, stimulate the immune system 
and relieve the inhibition that allows tumor growth and 
spread  (3). However, immunotherapies have a number of 
limitations in clinical applications due to the existence of 
tumor heterogeneity and immunological suppression (4,5). 
In a previous study that focused on tumor immunological 
genomics, the assessment of tumor immune infiltrating cells 
served a key role in investigating the way in which the inter-
actions between the tumor and the immune system affect 
patient outcome (6).

In an investigation into lung cancer and its immune 
regulations, a previous study demonstrated the significance 
of CpG islands in the lung immune responses of granuloma-
tous lung diseases (7). Simultaneously, the study indicated 
that long non‑coding RNAs (lncRNAs) serve an important 
role in directing the development of various immune cells 
and controlling dynamic transcriptional programs and were 
hallmarks of immune cell activation  (7). In addition to 
the direct regulation of lncRNAs by DNA methylation via 
interactions with their promoter regions, previous studies 
have revealed several intricate regulatory associations 
between lncRNAs and DNA methylation  (8,9). In the 
cis‑methylated lncRNAs group, DNA methylation adjacent 
to a lncRNA locus, such as the promoter or the imprinting 
control region, directly modulate the expression levels of 
target lncRNAs as a cis‑regulator (10). In trans‑methylation 
due to lncRNAs, lncRNAs regulate the DNA methylation 
of a trans‑genomic locus as an intermedium by recruiting 
DNA (cytosine‑5‑)‑methyltransferase (11,12). In the trans-
methylation‑regulated lncRNAs group, an alteration in the 
DNA methylation state at a specific genomic locus regulates 
the transcription of its antisense‑oriented lncRNAs (13,14). 
The lncRNA extracoding CEBPA transcribed from the 
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CEBPA gene locus is reported to be critical for the regulation 
of DNA methylation at this site through interactions with 
DNA methyltransferase 1 (15). 

Based on the interactions between DNA methylation and 
lncRNAs, it is easy to investigate the role of methylation on the 
tumor immune responses from the perspective of lncRNAs. 
Currently, the competitive endogenous (ce)RNA hypothesis 
provides an approach to study the regulatory mechanisms of 
RNA molecules (16). ceRNA is an RNA with a binding site 
that competitively binds to a micro (mi)RNA to inhibit its 
target gene regulation (16). Pseudogenes, lncRNAs, miRNAs 
and other types of RNAs can be regulated by ceRNA mecha-
nisms (7). Therefore, the present study investigated the roles 
of DNA methylation in tumor immune cell infiltration abun-
dance and its association with patient prognosis from the novel 
perspective of RNA molecules, DNA methylation and their 
regulatory mechanisms.

The present study investigated the cause behind the differ-
ences in tumor immune responses from a new perspective. The 
present study investigated how DNA methylation affected the 
interactions between tumors and immune cells and between 
RNA molecules. Starting with DNA methylation, the present 
study revealed DNA methylation abnormalities, differentially 
expressed RNA (DERNA) molecules and mutual regulatory 
associations between DNA methylation and RNA molecules 
and assessed potential associations between DNA methylation 
and tumor immune infiltration in LUAD. 

Materials and methods

Acquisition and preprocessing of the data. LUAD transcrip-
tome, miRNA, DNA methylation and associated clinical data 
were downloaded from The Cancer Genome Atlas (TCGA) 
website (TCGA‑LUAD; portal.gdc.cancer.gov/). The tran-
scriptome data contained 594 samples (59 normal samples and 
535 tumor samples), the miRNA data contained 577 samples 
(46 normal samples and 531 tumor samples) and the DNA 
methylation data included 507 samples (30 normal samples 
and 477 tumor samples). These data were downloaded on 
April 1, 2018. For the original data, most of the data with 
RNA expression level=0 were deleted. For the transcriptome 
data, the RSEM‑preprocessed per million transcript method 
was used to isolate and obtain lncRNA and mRNA expression 
data (17).

Extraction of the differential methylation regions and asso‑
ciated lncRNAs. For the preprocessed DNA methylation 
data, differential DNA methylation regions and associated 
lncRNAs were identified using the lncDM algorithm in 
a package in R 3.5.3 in March 11, 2019. LncDM is a novel 
computational method for identifying differentially methyl-
ated regions in specific diseases. LncDM uses the Illumina 
HumanMethylation450 BeadChip GENCODE of all anno-
tation information based on the reannotation method and 
obtains the CpG values of the differential transcript (18). The 
gene functional regions were used to calculate the patterns 
of differential methylation. The screening criteria for the 
differentially methylated regions were adjusted to P<0.05 
and β diffcut >0.3. The β diffcut value was used to reflect the 
differential situations between samples. 

Extraction of the abnormally expressed RNA molecules. For 
those RNA molecules in original data that were subjected to 
deletion processing, DERNA were screened using the DEseq2 
algorithm in R software. The DEseq2 method uses shrinkage 
to estimate fold change, thus improving the stability and inter-
pretability of the DEseq‑based estimation (19). The screening 
criteria for the DERNA were |log FC|>2 and P<0.05. 

Selection of the immune cell‑associated genes. To investigate 
the cause of tumor heterogeneity and its association with prog-
nosis, the immune infiltration abundance of relevant LUAD 
tumor samples needed to be calculated. In this process, the 
TIMER 1.0 algorithm was used (20). First, the CHAT package 
was used to estimate the tumor purity of the samples (21), 
then the COMBAT package was used to combine all relevant 
immune cell gene expression data to eliminate the effect of 
batch processing of different data  (22). Genes negatively 
correlated with tumor purity were selected and matched with 
some known immune cell (B cell, CD4+ and CD8+ T cell, 
neutrophil, macrophage and dendritic cell) tag genes to obtain 
6 immune cell‑associated genes. 

Construction of the DNA methylation and immune‑associated 
ceRNA network. To construct the ceRNA network, multiple 
databases were used to investigate the inter‑relationships 
between DERNA molecules and DNA methylation. First, the 
differential methylation region (DMR)‑DElncRNA relation-
ship pairs were identified by employing the Lnc2Meth 1.0 
(bio‑bigdata.hrbmu.edu.cn/Lnc2Meth/) database (18). Next, 
the DElncRNA‑DEmiRNA relationship pairs were identified 
by searching the miRcode 1.0 (mircode.org/) database (23). 
miRNAs were then annotated with 3p and 5p, which were used 
to distinguish between the 3' and 5' arms of miRNA precursors 
that target different sites, using the Starbase v2.0 (starbase.
sysu.edu.cn/) database (24). Finally, the DEmiRNA‑DEmRNA 
relationship pairs (25‑27) were identified using miRDB v3.0 
(mirdb.org/), miRTarBase 1.0 (mirtarbase.mbc.nctu.edu.tw/) 
and TargetScan v7.2 (targetscan.org/vert_72/). The visualiza-
tion of this ceRNA network was achieved using Cytoscape 
version  3.6.0 software  (28). In order to study the overall 
survival for the associated RNA molecules in the network, the 
present study used the Renyi test (29), a weighted test method, 
to generate survival curves. 

Clinical analysis of the immune cell genes associated with 
DNA methylation. In order to investigate the effects of DNA 
methylation‑associated tumor immune infiltration on clinical 
data, a multivariate regression model with associated factors, 
such as infiltration abundance, tumor purity, stage, infec-
tion status, age and sex was constructed. In this process, a 
single‑factor Cox analysis was performed on the differential 
DNA methylation‑associated immune genes. Those associated 
mRNAs with P‑value <0.0001 were screened as clinically 
relevant genes. A multivariate risk regression analysis was then 
performed based on these clinically relevant genes. The theo-
retical basis of this model was the semiparametric regression 
model proposed by the British statistician D.R. Cox (30). The 
dependent variables of this model were the overall survival 
rates and result of survival. This model had the advantage of 
analyzing the influences of multiple factors on overall survival 
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rates and the truncation analysis of overall survival rates simul-
taneously. Finally, Kaplan‑Meier curves were used to verify 
the overall survival rates within 5 years. Kaplan‑Meier curves 
were generated using the log‑rank test. These aforementioned 
processes were completed with the survival package 3.2‑3 of 
R software (CRAN.R‑project.org/package=survival).

Functional enrichment analysis. For the immune genes 
associated with DNA methylation, the biological functions of 
genes were analyzed using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) functional 
enrichment (geneontology.org/). The KEGG (kegg.jp/) and 
GO functional enrichment analyses were performed by using 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID; v6.8) website (31). 

Results

Extraction of DERNAs and differential DNA methylation 
regions. To understand the RNAs and methylation regions 
that have undergone significant changes in tumor and control 
tissues, differential data were first extracted. The extraction 
process of differential data involved extracting DERNAs, DNA 
methylation regions and the regulatory correlations between 
DNA methylation regions and lncRNAs. In the process of 
extraction, DERNA molecules in LUAD, such as DElncRNAs, 
DEmiRNAs and DEmRNAs were screened using the DEseq2 
method in R software. The screening criteria for DERNA 
molecules were |log FC|>2 and P<0.05 (Fig. 1). A total of 
1,187 DElncRNAs, 133 DEmiRNAs and 1,474 DEmRNAs 
were obtained. The extracted RNA molecules were increased 
or decreased expressed in the patients with LUAD. It can be 
inferred that the abnormal expression levels of RNA molecules 
were associated with LUAD. 

The processed DNA methylation data were used to screen 
for differential DNA methylation regions and the corresponding 
lncRNAs using the lncDM method in R software. Those meth-
ylation regions were removed when methylation differences 
were <0.05. The detailed information regarding the DMRs 
included the methylation regions, the associated lncRNAs and 
the methylation difference are presented in Table SI. During 

the process, 1,692 DMRs associated with the lncRNAs were 
extracted. It was hypothesized that the increased or decreased 
expression levels of lncRNAs were associated with abnormal 
methylation. 

Construction of the immune‑associated ceRNA network. 
In order to investigate the regulatory mechanisms of 
gene expression associated with immune cells from the 
perspective of DNA methylation, a DNA methylation and 
immune-associated ceRNA network was constructed based on 
the internal competitive RNA hypothesis (Fig. 2). By matching 
the Lnc2Meth 1.0 database, 1,692 DMR‑DElncRNA relation-
ship pairs were identified, of which there were 64 lncRNAs. In 
addition, 285 DElncRNA‑DEmiRNA relationship pairs were 
identified by matching the Micode 1.0 database, of which there 
were 21 miRNAs and 64 lncRNAs in DElncRNA‑DEmiRNA 
relationship pairs. In addition, 1,177 DEmiRNA‑DEmRNA 
relationship pairs were obtained by searching the databases 
of interactions between miRNAs and mRNAs, of which there 
were 21 miRNAs and 92 mRNAs. 

Then, the RNA molecules in the aforementioned relationship 
pairs were matched with the increased or decreased expressed 
RNA molecules yielding abnormally expressed relationship 
pairs. The abnormal expression levels of RNA molecules in 
relationship pairs are presented in Tables SII, SIII and SIV. 
The expression levels of CHEK1, SLC7A11 and CCNE1 
were much lower in LUAD samples compared with normal 
samples (Table SII). The expression levels of hsa‑miR‑373 and 
hsa‑miR‑195 were much lower in LUAD samples compared 
with normal samples (Table SIII). The expression levels of 
LINC00377, LINC00473 and LINC00355 were much lower in 
LUAD samples compared with normal samples (Table SIV). 
The changes in DNA methylation regions and corresponding 
RNAs of the ceRNA network are presented in Table SV.

According to the abnormally expressed relationship pairs, 
the ceRNA network was constructed. In order to improve the 
current understanding of the ceRNA network, the visualiza-
tion of this ceRNA network was achieved using Cytoscape 
version 3.6.0 software (27). This network included 3 mRNAs, 
2 miRNAs and 29 lncRNAs. It can be inferred that low expres-
sion levels of the lncRNA LINC00337 were associated with 

Figure 1. Volcano plots of the differentially expressed RNA molecules. The distributions of the differentially expressed in (A) lncRNAs, (B) miRNA and 
(C) mRNA. Red plots represent upregulated RNA molecules, green plots represent downregulated and the black plots represented no differences. lnc, long 
non‑coding; mi, micro; DE, differentially expressed.
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hypomethylation in the corresponding DNA regions (Fig. 2). 
The miRNAs (hsa‑miR‑372, hsa‑miR‑373) can bind to mRNAs 
(SLC7A11, CHEK1 and CCNE1). The lncRNAs (LINC00337 
and LINC00355) may bind to miRNAs (Fig. 2). 

The associated RNA molecules in this network were 
critical for investigating immunity and DNA methylation. The 
present study used the Renyi test (29), a weighted test method, 
to generate survival curves for the associated RNA molecules 
in the network (Fig. 3). In the present study, the Renyi test 
weight is 1.

The criterion for expression levels of RNA molecules was 
derived from the criteria in the premier increased or decreased 
expression level extraction of RNA molecules. The screening 
criteria for DERNA molecules were |log FC|>2 and P<0.05, 
which indicated that the expression levels of the RNAs were 
evidently increased or decreased in LUAD samples. Survival 
curves of all the RNA in the network were generated and 
survival curves with P<0.05 were selected as this indicated 
that abnormal RNA expression levels were significantly asso-
ciated with survival rates in the LUAD samples. 

The patients with LUAD that exhibited low expression levels 
of mRNA CCNE1 (Fig. 3E), CHEK1 (Fig. 3F) and SLC7A11 
(Fig. 3G) had improved survival rate. The patients with LUAD 
that exhibited high expression levels of TCEAL3‑AS1 (Fig. 3C) 

had improved survival time. The patients with LUAD that 
exhibited low expression levels of lncRNA LINC00337 had 
improved survival rate (Fig. 3A). These results indicated that 
the increased or decreased expression levels of immune cells 
genes affected the survival rate of patients with LUAD and 
suggested that the interactions between DNA methylation and 
RNA molecules may affect the responses to immunotherapies. 
The associated mRNAs can be considered potential markers 
of immunotherapies in LUAD. It was also verified that the 
RNAs in the network influenced the survival rate of patients 
with LUAD.

In order to investigate the expressional relationships 
between the RNA molecules, correlational analyses of the 
potential mRNAs and lncRNAs in the network were performed. 
There may be several competitive relationships in these RNA 
molecules. The expression levels of CHEK1 were positively 
correlated with all the associated lncRNA molecules including 
LINC00473, LINC00337 and LINC00355. Among them, 
CHEK1 was strongly correlated with LINC00337 (Fig. 4A). 
There were also positive correlations between the expression 
levels of CCNE1 and the majority of its associated lncRNAs, 
including C20orf48, LINC00377 and TCL6 (Fig. 4B). These 
results verified the hypothesis of the present study based on the 
ceRNA hypothesis. It can be inferred that LINC00337 affects 

Figure 2. DNA methylation and immune‑associated competing endogenous RNA network. Circles represent miRNAs, triangles represent mRNAs and rect-
angles represent lncRNAs. For lncRNAs, red rectangles represent lncRNAs associated with the DNA methylation regions that were hypermethylated, and 
green rectangles represented hypomethylation. For miRNAs and mRNAs, red represents downregulation and green represents upregulation. miR/miRNA, 
microRNA; hsa, Homo sapiens (human).
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the expression levels of CHEK1 by competing with the 
binding of hsa‑miR‑373 and hsa‑miR‑195 from the ceRNA 
network and competitive relationships. Concerning the 
changes in DNA methylation regions and the corresponding 
lncRNAs, it can be deduced that the hypomethylation of the 
1101320‑1104290 regions of chromosome 1 resulted in the 
low expression levels of LINC00337, and that LINC00337 
may have affected the expression levels of CHEK1 by 

competitively binding with hsa‑miR‑373 and hsa‑miR‑195, 
thereby affecting tumor immune cells and overall survival 
rates in patients with LUAD.

DNA methylation‑associated immune genes analysis. In the 
process of constructing the ceRNA network, the correlations 
between RNA molecules were obtained by searching a large 
number of databases. In addition, 181 mRNAs associated 

Figure 4. Expression correlations between mRNAs and associated lncRNAs. The expression correlations between associated lncRNAs and (A) mRNA CHEK1 
and (B) mRNA CCNE1 were analyzed. The positive correlations were displayed in red. lnc, long non‑coding.

Figure 3. Survival curves of associated RNAs. The survival curves of (A) LINC00337, (B) MUC2, (C) TCEAL‑AS1, (D) STEAP2‑AS1, (E) CCNE1, (F) CHEK1 
and (G) SLC7A11. The vertical axis is the overall survival rate of LUAD samples. The horizontal axis is the survival ratios in LUAD samples with differentially 
expressed RNA molecules. LUAD, lung adenocarcinoma.
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with tumor immunity and clinical outcomes were identified. 
In order to investigate how these associated mRNAs influ-
ence survival rates in patients with LUAD, a multivariate Cox 
regression model was performed using 8 mRNA expression 
values (SEMA7A, ENTPD1, ORMDL3, STK17B, B4GALT1, 
ALK, CCNB1, SMAD3) to reflect the associations between 
gene expression levels and the survival rates in patients 
with LUAD (Fig. 5A). A survival rates analysis between 
the high‑risk group and the low‑risk group was conducted 
(Fig. 5B). The samples were divided based on the median 
value of the risk values. The risk value was derived from 
the multivariate Cox regression analysis. The cut‑off value 
for high‑risk samples was a risk value >0.956. Based on the 
survival curves between high‑risk and low‑risk patients, it 
can be seen that low‑risk patients have improved overall 
survival rates. In the present study, the area of the ROC 
curves was 0.716 (Fig. 5C). The area of the ROC curve indi-
cated the accuracy of diagnostic methods. The criterion of 
trustworthy accuracy was when the area of the ROC curves 

>0.7. The prediction of survival outcomes had reliable accu-
racy in patients with LUAD. The results demonstrated that 
the expression levels of the DNA methylation‑associated 
immune cells genes affected the prognosis of patients with 
LUAD.

Finally, the functional enrichment analysis of DNA 
methylation‑associated immune cells genes was conducted 
using the DAVID website. Some pathways were found to be 
associated with immune processes, including the pathway 
terms ‘B cell receptor signaling pathway’ and the ‘T cell 
receptor signaling pathway’. Several biological processes 
involving immune processes were also obtained, including 
the GO terms ‘Positive regulation of cell migration’ and the 
‘T cell receptor signaling pathway’ (Fig. 6). The results of 
the enrichment analysis also indicated that these associated 
genes served an important role in LUAD tumor immunity. 
From these results, it can be inferred that DNA methylation 
may have regulatory effects on the expression levels of the 
immune cells genes.

Figure 5. Cox regression model of genes associated with methylation and immunity. (A) Parameters of the model. The vertical axis is the selected mRNA 
molecules; the horizontal axis is the expression level‑associated parameters of mRNA molecules. (B) The survival curves of high‑risk and low‑risk samples. 
The vertical axis represents the survival rates of the LUAD samples, the horizontal axis represents survival time of the LUAD samples. (C) The ROC curve 
in the model. LUAD, lung adenocarcinoma; coef, correlation coefficient; exp (coef), risk ratio; se (coef) standard error; z, Wald test statistic; P, probability; 
ROC, receiver operating characteristic. 
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Discussion

Understanding tumor immune cells infiltration is crucial for 
investigating the differences in responses to cancer immu-
notherapies and for developing effective immunotherapies. 
DNA methylation may explain the variabilities in immune 
cells of lung cancer in response to antigens (7). However, it 
is not completely clear how DNA methylation affected tumor 
immune cell infiltration. The present study investigated how 
DNA methylation affected the interactions between tumors 
and immune cells from the perspective of DNA methylation 
affecting the interactions between RNA molecules. A ceRNA 
network with associated DNA methylation and immune cell 
genes was constructed to study the associations between DNA 
methylation and the expression levels of immune cell genes. 

In the present study, differential DNA methylation regions 
and DERNA molecules in lung adenocarcinoma (LUAD) samples 
were extracted. lncDM software (lncdm.r‑forge.r‑project.org/) 
was used to extract differential DNA methylation regions and 
their corresponding lncRNAs (18). The DEseq2 method was 
used to extract DElncRNAs, DEmiRNAs and DEmRNAs in 
LUAD samples (19). Then, to study the effects of differential 
DNA methylation on tumor immune infiltrating cells, tumor 
immune cells infiltration abundance was calculated. When 
calculating the infiltration abundance of tumor immune 
cells, CIBERSORTx (cibersortx.stanford.edu/) outperformed 
other algorithms in eliminating noise, estimating unknown 
mixture contents and accuracy. However, the algorithm was 
prone to bias due to the statistical collinear effect generated 

by the regression analysis, whereas the TIMER 1.0 algorithm 
(cistrome.dfci.harvard.edu/TIMER/) blocked immunological 
marker genes and highly expressed genes to eliminate bias 
effects and collinearity between immune cells, ensuring the 
accuracy of reasoning (20). Thus, the TIMER 1.0 algorithm 
was applied in the present study. Databases of molecular asso-
ciations between RNAs (Lnc2Meth 1.0, miRcode 1.0, Starbase 
v2.0, miRDB v3.0, miRTarBase 1.0 and TargetScan v7.2) were 
used to investigate the associations between RNA molecules 
and differential DNA methylation regions (13,23‑27). Based 
on the ceRNA hypothesis, a ceRNA regulatory network of 
immune genes was established to determine the regulatory 
associations between DNA methylation and RNA molecules 
in LUAD. By using mRNAs expressional data and clinical 
data associated with differential DNA methylation regions, 
a regression model was constructed to investigate the asso-
ciations between methylation‑associated tumor immune cells 
infiltration and overall survival rates (30).

Compared with previous studies (6‑8) that focus on the 
tumor immune cells infiltration, the present study further 
analyzed the regulatory roles in it. It was hypothesized that 
the hypomethylation of the 1101320‑1104290 regions of 
chromosome 1 may affect the expression levels of CHEK1, 
thereby affecting tumor immune cells and survival outcomes 
in patients with LUAD. The ceRNA network was further 
enriched from the perspective of DNA methylation. From the 
present study, it can be deduced that the hypomethylation of 
the 1101320‑1104290 regions of chromosome 1 resulted in 
the low expression levels of LINC00337, and that LINC00337 

Figure 6. Functional enrichment analysis of genes associated with immune and DNA methylation. The horizontal axis is the ratios of genes, the vertical axis is 
the description of pathway and biological process. The shape of the symbols was used to distinguish pathways and biological process. The color of the symbols 
represents probability and the size of the symbols represented the counts of enriched genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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may affect the expression levels of CHEK1 by competitively 
binding with hsa‑miR‑373 and hsa‑miR‑195.

The present study was performed based on theoretical 
research described in previous studies  (7‑9,16). There is 
evidence that lncRNAs play important roles in directing the 
development of various immune cells and controlling dynamic 
transcriptional programs, which are hallmarks of immune 
cell activation (7). Additionally, a ceRNA is an RNA with an 
miRNA binding site that competitively binds to an miRNA to 
inhibit its target gene regulation (16). Pseudogenes, lncRNAs, 
miRNAs and other types of RNA, can be regulated by ceRNA 
mechanisms (7). Therefore, the ceRNA hypothesis provided 
an approach to investigate the regulatory mechanisms of 
RNA molecules. In addition, it was possible to construct a 
ceRNA network using existing databases of the interactions 
between DNA methylation and RNA molecules. In addition, 
previous studies have shown that DNA methylation directly 
regulates lncRNAs through interactions with their promoter 
regions (8,9). For example, in the cis‑methylated lncRNAs 
group, DNA methylation adjacent to an lncRNA locus, such 
as the promoter or the imprinting control region, directly 
modulates the expression levels of target lncRNAs as a 
cis‑regulator (9). 

DERNA molecules and DEDNA methylation regions 
associated with the lncRNAs were extracted in the present 
study to understand the RNAs and methylation regions that 
have undergone significant changes in tumor and control 
tissues. In order to investigate the regulatory mechanisms of 
genes expression levels associated with immune cells from 
the perspective of DNA methylation, a DNA methylation and 
immune‑associated ceRNA network was constructed based on 
the internal competitive RNA hypothesis. Next, the associa-
tions between the expression levels of RNA molecules in the 
network and the survival rates of patients were investigated. 
Then, correlational analyses of potential lncRNA‑mRNA pairs 
in LUAD was conducted to further investigate the competi-
tive relationships. Subsequently, how these associated genes 
affected survival rates was investigated in the present study, 
and analyses of the DNA methylation‑associated immune cells 
genes were performed. Finally, enrichment analyses of DNA 
methylation‑associated immune cells genes were performed.

According to the analysis of the results, it can be inferred 
that hypomethylation of the 1101320‑1104290 regions of 
chromosome 1 resulted in the low expression levels of 
LINC00337, and that LINC00337 may affect the expression 
levels of CHEK1 by competitively binding with hsa‑miR‑373 
and hsa‑miR‑195, thereby affecting tumor immune cells and 
survival outcomes in patients with LUAD.

To verify the hypothesis, several studies (32‑42) on the RNA 
molecules in the ceRNA network were searched. Previous 
studies (32‑39) have also indicated that these RNAs showed 
important correlations in cancer, tumor immunity and DNA 
methylation. For example, CCNE1 is significantly associated 
with TRIM58 methylation and the treatment of lung squamous 
cell carcinoma and may be used as a potential prognostic 
biomarker (32). Previous studies (33‑35) have also shown that 
CCNE1 is the most common amplified gene in lung cancer, and 
that its gene amplification was a therapeutic target for survival 
and lung cancer. Therefore, CCNE1‑targeted therapy may 
be beneficial for CCNE1 amplification in patients with lung 

cancer (33). HOXC13, which is directly targeted by miR‑141, is 
highly expressed in LUAD and promotes the proliferation of 
LUAD by modulating the expression of CCNE1 (34). Cyclin E1, 
encoded by the CCNE1 gene, promotes G1/S phase transition 
and chromosome instability (35). Cyclin E1 is downregulated 
by both miR‑497 and miR‑34a, which synergistically retard 
the growth of human lung cancer cells (35). 

In addition, smoking can induce the high expression 
levels of SLC7A11 in oral cancer cells, which suggested that 
the expression levels of SLC7A11 may encourage lung tumor 
progression (36‑38). In addition, a previous study (36) demon-
strated that SLC7A11 regulates metabolic requirements during 
lung cancer progression and is a potential therapeutic target 
in non‑small cell lung cancer. The transporter gene SLC7A11 
exhibits significant changes in enhancer DNA methylation and 
gene expression levels during pregnancy (37). In the present 
study, marker SLC7A11 expression levels were determined in 
lung cancer cell lines using microarray data and Kaplan‑Meier 
survival analyses were performed for each marker using 
patient clinical data (38). High expression levels of the marker 
SLC7A11 are significantly associated with worse survival 
rates (38).

In a previous study (39), among the five associated pathways 
in LUAD, the p53 signaling pathway was the most signifi-
cant, with CHEK1 being identified as a hub gene. Previous 
studies (39‑43) have also shown that miRNAs (hsa‑miR‑195 
and hsa‑miR‑372) in the network play important roles in tumor 
immunity and DNA methylation. For example, hsa‑miR‑195 
suppresses tumor growth and is associated with improved 
survival outcomes in several types of malignancy, including 
non‑small cell lung cancer. The expression of hsa‑miR‑195 
is lower in tumor tissues and is associated with poor survival 
outcomes  (39). The overexpression of miR‑195 suppresses 
tumor cell growth, migration and invasion. CHEK1 is a direct 
target of miR‑195, which decreases the expression levels of 
CHEK1 in lung cancer cells. Therefore, the high expression 
levels of CHEK1 in lung tumors are associated with poor 
overall survival rates (39). 

In addition, hsa‑miR‑195 suppresses non‑small lung cell 
cancer and is a predictive factor for lung cancer prognosis (39). 
A previous study  (40) demonstrated that the expression 
levels of hsa‑miR‑195 and O‑6‑methylguanine‑DNA meth-
yltransferase methylation status are associated with the 
clinical outcomes of the primary malignancy (40). In addi-
tion, miR‑372‑3p enhances the proliferation and invasion of 
lung squamous cell carcinoma cells by inhibiting FGF9 (41). 
A previous study (42) conducted a comparative proteomic 
analysis of non‑small‑cell lung carcinoma (NSCLC) CL1‑0 
cells expressing miRNA‑372 and/or a vector only using 
two‑dimensional gel electrophoresis, two‑dimensional differ-
ence gel electrophoresis and liquid chromatography tandem 
mass spectrometry. Proteins identified as up‑ or down-
regulated were further classified according to their biological 
functions  (42). A number of the proteins identified in the 
study (42) may be potential diagnostic biomarkers of NSCLC, 
particularly phosphorylated eIF4A‑I. In the corresponding 
study (43), to clarify the molecular mechanisms underlying 
the tumor suppressive roles of propofol in the human lung 
cancer cell line A549, the study detected the expression levels 
of miR‑372 and analyzed the mediating effects of miR‑372 on 
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the proliferation and metastasis of A549 cells (43). A previous 
study demonstrated that the expression levels of LINC00473 
can serve as a robust biomarker for the tumor LKB1 func-
tional status that can be integrated into clinical trials for 
patient selection and treatment evaluation, and implicated 
LINC00473 as a therapeutic target for LKB1‑inactivated 
NSCLC (44).

The present study was primarily focused on the biological 
information analyses section, and so all the results were from 
the biological information analyses without biological verifi-
cations; for example, the direct validation experiments of the 
associations between DNA methylation and the expression 
levels of immune genes, the direct validation experiments of 
the associations between DNA methylation and tumor immune 
cells and survival outcomes in patients with LUAD. However, 
in order to verify the hypothesis of the present study, relevant 
studies were searched and some analyses were added in this 
discussion section.

The present study investigated the way in which DNA 
methylation affects the reactions between tumors and immune 
cells by constructing a ceRNA network. To further determine 
how the DNA methylation regions influenced the expression 
levels of immune genes by regulating the ceRNA network, 
the associations between the expression levels of RNAs, the 
overall survival rates of patients with LUAD and the competi-
tive relationships between RNAs were investigated. Finally, 
a multivariate Cox regression model was constructed using 
8 mRNAs expression values to investigate how these associ-
ated genes affected survival in patients with LUAD. The 
results revealed that hypomethylation of the 1101320‑1104290 
regions of chromosome 1 resulted in the low expression levels 
of LINC00337 and that LINC00337 may affect the expression 
levels of CHEK1 by competitively binding with hsa‑miR‑373 
and hsa‑miR‑195, thereby affecting tumor immune cells 
and survival outcomes in patients with LUAD. The RNA 
molecules in the ceRNA network served important roles in 
DNA methylation and immunotherapies and can be used as 
biomarkers of immunotherapies in patients with LUAD. The 
results of the present study may provide a new perspective for 
the exploration of cancer‑immune interactions.
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