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Abstract. Early diagnosis and therapy in the first stages of 
a malignant disease is the most crucial factor for successful 
cancer treatment and recovery. currently, there is a high demand 
for novel diagnostic tools that indicate neoplasms in the first or 
pre-malignant stages. Micrornas (mirna or mir) are small 
non-coding rnas that may act as oncogenes and downregulate 
tumor-suppressor genes. The detection and mutual discrimina-
tion of the three common female malignant neoplasia types 
breast (Bc), ovarian (oc) and endometrial cancer (ec) 
could be enabled by identification of tumor entity‑specific 
miRNA expression differences. in the present study, the rela-
tive expression levels of 25 BC, EC and OC‑related miRNAs 
were assessed by reverse transcription-quantitative Pcr and 
determined using the 2‑ΔΔCq

 method for normalization against 
the mean of four housekeeping genes. Expression levels of all 
miRNAs were analyzed by regression against cell line as a 
factor. An expression level‑based discrimination between BC 
and OC cell types was obtained for a subgroup of ten different 
miRNA types. miR‑30 family genes, as well as three other 
miRNAs, were found to be uniformly upregulated in OC cells 
compared with Bc cells. Bc and ec cells could be distin-
guished by the expression profiles of six specific miRNAs. In 

addition, four miRNAs were differentially expressed between 
EC and OC cells. In conclusion, miRNAs were identified as 
a potential novel tool to detect and mutually discriminate 
between BC, OC and EC. Based on a subset of 25 clinically 
relevant human miRNA types, the present study could signifi-
cantly discriminate between these three female cancer types 
by means of their expression levels. For further verification and 
validation of miRNA‑based biomarker expression signatures 
that enable valuable tumor detection and characterization in 
routine screening or potential therapy monitoring, additional 
and extended in vitro analyses, followed by translational 
studies utilizing patients' tissue and liquid biopsy materials, 
are required.

Introduction

The success rate in the clinical treatment of neoplastic disease 
remains highly associated with early detection of pre‑malig-
nant or first stages of malignant tissues. To date, only few 
highly specific and sensitive biomarkers are routinely used in 
the clinic for early‑stage cancer screening or diagnostics.

Due to mammography screening, which was first intro-
duced in 2005 in Germany, breast cancer (BC) has been 
identified at earlier stages, when treatment options are most 
promising and prognosis is most favorable (1). For endome-
trial cancer (EC) and ovarian cancer (OC), no standardized 
screening has yet been established. Postmenopausal bleeding 
serves as an early indicator of EC (2,3) European studies have 
shown that the 5‑year survival rate of endometrial adenocar-
cinoma is >90% when detected at stage i compared with a 
survival rate of ~50% for advanced stages (II, III, IV) (3,4). 
OC remains one of the most challenging types of cancer to 
detect and treat. in most cases, tumor progression and metas-
tasis are unnoticed until the advanced stages (5). According 
to the Surveillance, epidemiology and end results Program 
(National Cancer Institute, USA) database, the 5‑year survival 
rate for localized disease is >90% in the USA population (6), 
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however only 20% of ovarian cancer cases are detected at such 
an early stage in the USA (5,7). 

One possible approach in the identification of novel poten-
tial biomarker candidates is based on expression profiling of 
different states, for example comparing malignant and healthy 
control expression profiles (7). In a stepwise filtering process, 
the discovery, qualification, verification, potential candidate 
prioritization and subsequent validation in adequate cohort 
sizes demonstrate the applicability of a biomarker for clinical 
practice implementation (7). Among a multitude of potential 
biomarker types, in previous years one group of nucleic acids 
has gained significant attention due to their diverse regulatory 
functions (8).

Micrornas (mirnas or mirs) are small non-coding rna 
molecules of ~22 nucleotides in length, which are involved in 
the post‑transcriptional regulation of gene expression, predomi-
nately via gene silencing. By binding to various mrna targets, 
upregulation of miRNA leads to reduced translation of mRNA or 
degradation of its transcript (9). In cancer, dysregulated miRNA 
expression plays an important role by upregulating oncogenes 
and downregulating tumor-suppressor genes, thus modu-
lating cell proliferation, differentiation, apoptosis and stress 
response (10). The regulatory influence of miRNAs in breast 
and gynecological cancer biology has been demonstrated in a 
growing number of studies (8,11‑17). The selection of miRNAs 
in the present study was based on an extensive literature search, 
with the major criterion being expression changes in the tumor 
types of BC, EC and OC (Table I), in combination with a proven 
detectability of all analyzed miRNA types in in vitro models as 
well as in human urine samples (18‑20). 

miRNA‑21 (miR‑21) is one of the most common miRNAs 
in epithelial cancer, and it generally promotes anti-apoptotic 
effects in various malignant tissues and cell lines, including 
Bc, oc and ec, by downregulating tumor suppressors, such 
as phosphatase and tensin homolog (21,22) and programmed 
cell death protein 4 (23). in patients with Bc, overexpression 
of miR‑21 in the tumor is associated with advanced tumor 
stage, lymph node metastasis and poor survival (24). Whereas, 
in OC cell lines, miR‑21 promotes pathways that enhance 
chemoresistance (25). 

In contrast to miR‑21, members of the miRNA family let‑7 
have most commonly been reported as tumor suppressors by 
downregulating Harvey rat sarcoma viral oncogene homolog 
and high‑mobility group AT‑hook 2 (26). However, studies 
have reported inconsistent results regarding the individual 
member let-7b. While some studies reported that high levels 
of let‑7b in serum and plasma was associated with a favorable 
prognosis in cancer (27,28), a previous meta-analysis demon-
strated reduced survival rates in high-grade serous oc with 
high tissue expression of let‑7b (29). The tumor suppressing 
miRNA family miR‑30 has been reported to exhibit pro‑apop-
totic effects by silencing ubiquitin‑conjugating enzyme 9 and 
integrin β3 (30). in Bc, mir-30a inhibits cell migration and 
invasion (31), whereas expression of miR‑30c in tissues is 
associated with benefits during endocrine treatment (32) and 
regulatory effects in chemotherapy resistance processes (33). 
Notably, high expression levels of miR‑30c and miR‑30e 
have been observed in OC compared with normal tissue; 
however, both mirnas are associated with an improved 
prognosis (34-36). 

A more homogenous profiling has been observed for 
miR‑125b and miR‑100. miR‑125b and miR‑100 mediate the 
Erb‑B2 receptor tyrosine kinase 2 and mechanistic target of 
rapamycin pathways, respectively, and downregulation of both 
mirnas has been reported in Bc, oc and ec tissue and cell 
lines (37‑41). The previously described functional implications 
of the investigated miRNAs in BC, EC and OC tumor biology 
are summarized in Table I.

due to recent investigations on mirnas that are commonly 
conducted based on different study designs and environ-
ments, the comparison and interpretation of results between 
multiple cancer types have become increasingly challenging. 
The goal of the present study was to evaluate differences 
of miRNA profiling in three of the most common female 
cancer types: BC, OC and EC. Instead of solely focusing on 
individual miRNA types or families, the present study aimed 
to investigate the expression patterns of miRNAs that have 
great potential to serve as promising diagnostic tools in the 
distinction of different tumor types. Based on three cell types 
for each type of malignancy, BC, OC and EC, the detected 
differences in quantitative expression levels of a set of 25 
miRNAs revealed diagnostic biomarker features clustered 
in tumor‑entity‑specific ‘miRNA signatures’. To this end, 
the in vitro models used were selected to represent a range 
of common subtypes/properties of the respective carcinomas. 
The data obtained in this first phase biomarker identification 
study serve as a basis to prioritize distinct miRNAs with diag-
nostic significance that will be investigated in future studies. 

Materials and methods

Cell culture conditions and treatments. The Bc cell lines BT-20 
(cat. no. 300130; CLS Cell Lines Service GmbH), BT‑474 (cat. 
no. 00131; CLS Cell Lines Service GmbH) and SK‑BR‑3 (cat. 
no. 300333; CLS Cell Lines Service GmbH), the EC cell lines 
Ishikawa (cat. no. 99040201; Sigma‑Aldrich; Merck KGaA), 
EFE‑184 (cat. no. ACC 230; Leibniz Institute DSMZ‑German 
Collection of Microorganisms and Cell Cultures GmbH) and 
AN3CA (cat. no. 300119; CLS Cell Lines Service GmbH), 
and the OC cell lines SK‑OV‑3 (cat. no. 300342; CLS Cell 
Lines Service GmbH), EFO‑27 (cat. no. ACC 191; Leibniz 
Institute DSMZ‑German Collection of Microorganisms and 
Cell Cultures GmbH) and OAW‑42 (cat. no. 300304; CLS 
Cell Lines Service GmbH) were incubated in a humidi-
fied atmosphere at 37˚C and 5% CO2. Ishikawa cells were 
cultured in RPMI‑1640 (Gibco; Thermo Fisher Scientific, Inc.) 
supplemented with 10% newborn calf serum (Gibco; Thermo 
Fisher Scientific, Inc.), 1% HEPES buffer (Gibco; Thermo 
Fisher Scientific, Inc.) and 100 U/ml Penicillin/Streptomycin 
(Sigma‑Aldrich; Merck KGaA). The BT‑20, SK‑BR‑2, 
EFE‑184, AN3CA, SK‑OV‑3 and EFO‑28 cells were cultured 
in DMEM/F12 (cat. no. 31331‑028; Thermo Fisher Scientific, 
Inc.) supplemented with 10% newborn calf serum, 1% HEPES 
buffer and 100 U/ml Penicillin/Streptomycin. The BT‑47 and 
OAW‑42 cells were cultured in DMEM/F12 supplemented 
with 2.5% insulin (Insuman rapid®; Sanofi S.A.). 

miRNA isolation. miRNA from cultured cells was isolated 
using the innuPREP Micro RNA kit (Analytik Jena US LLC), 
according to the manufacturer's instructions. Isolated RNA 
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was quantitatively determined using the NanoDrop ND1000 
(VWR International GmbH). RNA samples were stored at 
‑20˚C until further processing.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Total RNA was isolated using GeneMATRIX Universal 
RNA/miRNA Purification kit (cat. no. E3599; EURx®; 
Roboklon GmbH) according to manufacturer's protocol. A 
total of 1 µg isolated RNA per sample was used for RT. The 
RT reaction mix contained 5 µl RT‑buffer (5X), 1 µl 2.5 µM 
poly A adapter primer (Apara Bioscience GmbH), 0.5 µl 5 mM 
dNTPs (Jena Bioscience), 0.25 µl Maxima reverse transcriptase 
(Thermo Fisher Scientific, Inc.), 0.25 µl SUPERase In RNase 
inhibitor (Thermo Fisher Scientific, Inc.), 0.5 µl 10 mM ATP 
(New England Biolabs, Inc.), 0.25 µl poly A polymerase, and 
1 µg RNA sample. The reaction was performed on a thermal 
cycler (Eppendorf) at 37˚C for 60 min and stopped at 85˚C for 
10 min. Processed cDNA was stored at 4˚C.

The relative expression levels of specific miRNAs were 
assessed by qPCR using the SYBR‑Green assay in a duplicate 
analysis. A total of 1 µl cDNA per sample with a concentration 
of 5 ng/µl was mixed with 9 µl Master Mix, containing 1 µl 
buffer (10X), 0.5 µl 5 mM dNTPs (Jena Bioscience GmbH), 
0.5 µl 5 µM primer (Apara), 0.5 µl SYBR‑Green (Roche 
Diagnostics), 0.05 µl HotStart Taq (Jena Bioscience GmbH) 
and 6.45 µl nuclease‑free water (Analytik Jena US LLC). The 
primer pairs consisted of a universal reverse primer (30‑32) and 
a specific miRNA sense primer. The qPCR was performed on 
a lightcycler® 480 instrument (Roche Diagnostics) at 95˚C for 
5 min, followed by 40 cycles at 95˚C for 5 sec, 62˚C for 15 sec 
and 72˚C for 10 sec. Data were analyzed with the LightCycler® 
480 software (Roche Molecular Systems, Inc.; Version 1.5.1). 
The relative expression of each miRNA was determined 
using the 2‑ΔΔCq method (42,43) based on the housekeeping 
genes small nucleolar RNA, C/D box 48 (RNU48), miR‑26b, 
miR‑16 and miR‑103, with the ‘BestKeeper’ software tool 
(Version 1) (43). The specific primer sequences are listed in 
Table ii.

Statistical analysis. The expression levels of all BC, EC and 
OC‑associated miRNAs were determined as mean ΔCq values 
of the miRNA normalized against the geometric mean of 
the four housekeeping genes RNU48, miR‑16, miR‑26b and 
miR‑103. The expression levels of all miRNA types were 
separately analyzed using a linear model with cell line as the 
independent variable. The regression coefficients with 95% 
confidence intervals were tabulated. This led to color coded 
heatmaps in which red colors indicate strong deviations in the 
positive direction and blue colors indicate strong deviations in 
the negative direction from the expression level in the cell line 
that served as a reference (AN3CA, BT‑474 and BT‑20). Dark 
colors correspond to a P<0.00005, and light colors correspond 
to a P<0.00025. All other comparisons are presented in gray.

Results

miRNA expression profiles of the cell lines. in the present 
study, the expression levels of 25 BC, EC and OC‑associated 
miRNAs (let‑7a, let‑7b, let‑7d, miR‑7, ‑9, ‑15b, ‑17, ‑19b, ‑20a, 
‑20b, ‑21, ‑27a, ‑29a, ‑30a, ‑30c, ‑30e, ‑92a, ‑100, ‑106b, ‑125b, 

‑128.1, ‑200b, ‑200c, ‑221, ‑222) were quantified in three BC, 
EC and OC cell lines. The characteristics of each cell line are 
presented in Table iii.

The statistical analyses demonstrated that comparing the 
three different cell types (AN3CA, BT‑474 and BT‑20) revealed 
a range of moderately to highly differentially expressed 
miRNAs, which exhibited either marked upregulation or 
downregulation. By clustering mirnas with respect to their 
differential expression characteristics, subgroups of miRNAs 
featuring potential biomarkers to discriminate between 
Bc, oc and ec cells could be created. The expression data 
clearly revealed a Bc-associated mirna subpanel with 
significantly distinct expression levels compared with the 
gynecological tumor types EC and OC (miRs: let‑7b, ‑21, 
-27a, -30a, -30c, -30e). consecutively, mirna clusters with 

Table ii. Primer sequences.

Primer Sequence (5'→3')

miRNA poly  GAAGACTCAGTTGCACTCTACCAAT
A RT TAAGACGAACAGAGCCATACTTTTT
 TTTTTTTnn
Universal  GACTCAGTTGCACTCTACCAATTAA 
antisense
miR‑16‑5p GGCTAGCAGCACGTAAATATTG
miR‑26b‑5p GGCGTTCAAGTAATTCAGGATAG
RNU48 TGTGTCGCTGATGCCATC
miR‑103‑5p CGGAGCAGCATTGTACAGG
let‑7a‑5p CGGTGAGGTAGTAGGTTGTATAGTT
let‑7b‑5p CGTGAGGTAGTAGGTTGTGTG
let‑7d‑5p CGGAGAGGTAGTAGGTTGCATA
miR‑7‑5p CGGTGGAAGACTAGTGATTTTGTT 
miR‑9‑5p  CGGTCTTTGGTTATCTAGCTGTAT
miR‑15b‑5p  GCTAGCAGCACATCATGGTTTA
miR‑17‑5p GCAAAGTGCTTACAGTGCAG
miR‑19b‑3p  GTGTGCAAATCCATGCAAAACT
miR‑20a‑5p  CGGTAAAGTGCTTATAGTGCAGGTA
miR‑20b‑5p CAAAGTGCTCATAGTGCAGGTA 
miR‑21‑5p GGCTAGCTTATCAGACTGATGTT
miR‑27a‑3p GGCTTCACAGTGGCTAAGTT
miR‑29a‑3p GTAGCACCATCTGAAATCGGTT
miR‑30a‑5p  GTGTAAACATCCTCGACTGGAA
miR‑30c‑5p GCTGTAAACATCCTACACTCTCA
miR‑30e‑5p GGTGTAAACATCCTTGACTGGAA
miR‑92a‑3p GTATTGCACTTGTCCCGGC
miR‑100‑5p  GAACCCGTAGATCCGAACTT
miR‑106b‑5p  GCTAAAGTGCTGACAGTGCA
miR‑125b‑5p GCTCCCTGAGACCCTAACTT
miR‑128‑1‑3p  GTCACAGTGAACCGGTCTCTT
miR‑200b‑3p CGGTAATACTGCCTGGTAATGAT
miR‑200c‑3p  CGTAATACTGCCGGGTAATGAT 
miR‑221‑3p GCTACATTGTCTGCTGGGTT
miR‑222‑3p  CGAGCTACATCTGGCTACT

mir, microrna.
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statistical relevance were defined to allow for discrimination 
between the three tumor entities in a one-versus-one approach 
(Fig. 1 and Tables SI‑SIII).

miRNAs discriminating BC from OC cells. expression 
analyses could determine a subgroup of ten different miRNAs 
(miRs: let‑7b, ‑21, 30a, ‑30c, ‑30e, ‑27a, ‑222, ‑29a, ‑128.1, 
‑9) that facilitated an expression level‑based discrimination 
between the Bc and oc cell types. The notable types included 
let‑7b, miR‑21 and the miR‑30 family genes, which were 
uniformly upregulated in OC cells compared with BC cells. 
For example, compared with AN3CA cells, miR‑let‑7b was 
upregulated by a mean value of 5.08 (95% confidence interval, 
4.51, 5.65; P<0.001) in SK‑OV‑3, 8.37 (7.80, 8.94; P<0.001) in 
OAW‑42 cells, and 2.53 (1.96, 3.10; P<0.001) in EFO‑27 OC 
cells (Table Si). in contrast, regression analyses demonstrated 
no significant difference of miR‑let‑7b in all investigated 
BC cell lines (Fig. 2 and Table SII). The expression levels of 
mir-30a, mir-30c and mir-30e were also increased in all 

three investigated OC cell lines. Specifically, compared with 
AN3CA cells, the miR‑30a was significantly increased by a 
mean value of 0.22 (0.21, 0.23; P<0.001) in SK‑OV‑3, 0.12 (0.10, 
0.13; P<0.001) in OAW‑42 cells, and 0.43 (0.42, 0.44; P<0.001) 
in EFO‑27 OC cells. The expression levels of miR‑30c and 
miR‑30e were also upregulated by a mean value of 0.21 (0.17, 
0.25; P<0.001) and 0.07 (0.06, 0.08; P<0.001) in SK‑OV‑3 
cells, 0.12 (0.08, 0.16; P<0.001) and 0.03 (0.02, 0.04; P<0.001) 
in OAW‑42 cells, and 0.50 (0.46, 0.55; P<0.001) and 0.16 (0.15, 
0.17; P<0.001) in EFO‑27 OC cells (Table SI). No significant 
differences were identified among all BC cell lines (Table SII). 
mir-27 and mir-29a exhibited a moderate downregulation in 
BC cells, with few inconsistent results depending on the cell 
line comparison (an3ca or BT-474). By contrast, mir-9 and 
miR‑128.1 exhibited a general moderate downregulation in OC 
cells compared with BC cells (Fig. 2 and Tables SI and SII).

miRNAs discriminating BC from EC cells. among the 
25 miRNAs evaluated in the present study, six exhibited 

Figure 1. Mutual expression differences of distinct miRNA types in breast, endomometrial and ovarian cancer cell lines. The colors indicate either miRNA 
overexpression on a significant (light red, P<0.00025) or highly significant (red, P<0.00005) level, or decreased miRNA expression levels on a significant (light 
blue, P<0.00025) or highly significant (blue, P<0.00005) level. Gray indicates insignificant expression differences, and white indicates the reference parameter. 
mirna, microrna.
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distinguishing characteristics in regard to Bc compared with 
EC cell expression profiles (miRs: ‑30a, ‑30e, ‑29a, ‑15b, ‑200b, 
‑222). While miR‑29a, ‑30a, ‑30c and ‑200b were found to be 
upregulated in EC cells, miR‑15b and miR‑222 demonstrated 
downregulated expression levels in comparison to Bc cells. 
For example, miR‑200b was upregulated by a mean value of 
5.43 (5.27, 5.58; P<0.001) in Ishikawa cells and by 0.97 (0.81, 
1.12; P<0.001) in EFE‑184 EM cells. Notably, AN3CA cells 
did not fully comply to the EC‑specific expression level trends, 
which may be explained by cell‑specific molecular character-
istics (Fig. 3 and Tables SII and SIII).

miRNAs discriminating OC from EC cells. A total of 
four miRNAs (miR‑92a, ‑106b, ‑200b, ‑222) with altered 

expression levels that may serve a role in the determination of 
endometrial compared with ovarian malignancies were identi-
fied based on this in vitro approach. upregulated expression 
levels of miR‑92a, ‑106b and ‑200b in EC cell types, as well 
as an upregulation of miR‑222 in OC cells may help to mutu-
ally distinguish between these tumor types. compared with 
an3ca cells, mir-222 expression was increased by a mean 
value of 0.66 (0.52, 0.80; P<0.001) in SK‑OV‑3 cells and by 
0.85 (0.71, 0.99; P<0.001) in OAW‑42 OC cells. By contrast, a 
downregulation was identified in two EC cell lines by a mean 
value of 0.48 (‑0.62, ‑0.34; P<0.001) in Ishikawa cells and by 
0.18 (‑0.32, ‑0.04; P=0.018) in EFE‑184 EM cells. However, 
individual cell line‑specific differences need to be taken into 
account in the assessment of tumor type determination of a 

Figure 2. Mutual expression differences of miRNA types in the comparison of breast vs. ovarian cancer cell lines. The colors indicate either miRNA overex-
pression on a significant (light red, P<0.00025) or highly significant (red, P<0.00005) level, or decreased miRNA expression levels on a significant (light blue, 
P<0.00025) or highly significant (blue, P<0.00005) level. Gray indicates insignificant expression differences, and white indicates the reference parameter. 
mirna, microrna.

Figure 3. Mutual expression differences of miRNA types in the comparison of breast vs. endometrial cancer cell lines. The colors indicate either mirna 
overexpression on a significant (light red, P<0.00025) or highly significant (red, P<0.00005) level, or decreased miRNA expression levels on a significant (light 
blue, P<0.00025) or highly significant (blue, P<0.00005) level. Gray indicates insignificant expression differences, and white indicates the reference parameter. 
mirna, microrna.



Molecular Medicine rePorTS  22:  4048-4060,  20204056

potential mirna subpanel with diagnostic power in this 
regard (Fig. 4 and Tables SI and SIII).

Discussion

The search for clinically applicable biomarkers necessitates a 
stringent multi‑step selection process to singularize, evaluate 
and validate the usability of a potential biomolecule, or even 
grouped biomolecule expression profiles or signatures for clear 
diagnostic purposes. The present study focused on one possible 
initial step in the determination of potential novel biomarkers 
that help to detect and distinguish healthy women from patients 
with malignant disease of the breast, endometrium or ovaries. 
Based on an in vitro model approach, the proof of principle 
was accomplished to corroborate the initial hypothesis of 
discriminating diagnostic features of miRNA signatures in 
the diagnosis of breast and gynecological malignancies. In 
general, the detected intracellular mirna expression levels 
can be transferred to the extracellular setting of secreted 
miRNAs, as shown in a previous study (20). Therefore, the 
experimental design of the present study was targeted on the 
identification of miRNA signatures, based on tumor‑specific 
expression differences, that enable the mutual discrimination 
of the three common female cancer types BC, OC and EC. 
Since mirnas are robust and easily accessible biomolecules 
that can be quantified in a wide range of biomaterials, including 
tissue and liquid biopsies, they meet important require-
ments for modern and applicable diagnostic biomarkers (44). 
Thousands of different human miRNAs have been described, 
of which a clinically relevant subset of 25 different miRNAs 
with potential impacts in BC, EC and/or OC was pre‑selected 
for the present analytical in vitro approach. although certain 
differences in cell line‑based and in vivo settings need to be 
kept in consideration, the current study is intended to provide 
initial findings that guide further investigations in a promising 
direction.

Global expression profile analyses in the present study 
resulted in the identification of cancer type‑specific miRNA 
subgroups. These clusters of distinct miRNAs were character-
ized by differences in expression levels that can significantly 

discriminate between the tumor types Bc, oc and ec. 
However, no significant subtype‑specific miRNA expression 
signature differences could be detected among the respective 
cancer types analyzed.

A parallel comparison of entity‑specific clustering habits 
highlighted a BC‑specific miRNA subpanel of six miRNAs 
that exhibited significantly different expression levels 
compared with those observed in ec and oc in vitro models. 
In particularly, members of the miR‑30 family were identified 
in this respect.

Comparisons of miRNA expression signatures in either 
BC/OC, BC/EC or EC/OC clearly revealed the most miRNA 
expression profile differences in the comparison of BC vs. OC, 
with ten of the 25 miRNAs exhibiting significantly different 
expression levels in these tumor types. Members of the 
miR‑30 family were identified to be significantly differentially 
expressed, in addition to few more types, including miR‑9, 
which has previously been described as a prognostic marker 
in OC (45), as well as miR‑222 and miR‑29a, which are known 
triggers in breast cancer therapy resistance mechanisms (46). 
In previous studies, the let‑7 family has been reported to 
exhibit decreased expression levels in oc tissues as well as 
in OC cell lines, and has been identified to serve a role in OC 
progression (47,48). in contrast to the literature, in the present 
study, let‑7b was found to be upregulated in OC cells compared 
with Bc cells. 

A direct comparison of EC and BC miRNA expression 
signatures revealed six miRNAs with significantly different 
expression levels. Again, members of the miR‑30 family were 
prominent, but also miR‑15b and mi‑200b were identified in 
this comparison. miR‑15b has been described as an aberrantly 
regulated tumor suppressor (49), whereas mir-200b has a role 
in epithelial‑mesenchymal transition processes (50).

The miRNAs miR‑92a, miR‑106b, miR‑200b and miR‑222 
compose the smaller subgroup of four miRNAs that exhib-
ited significant expression differences in EC compared with 
oc in vitro models. consistent with a previous study by 
Záveský et al (51), the present data confirmed the differential 
expression of the miRNAs miR‑92a, miR‑106b and miR‑200b 
in EC compared with OC. Upregulated expression levels of 

Figure 4. Mutual expression differences of miRNA types in the comparison of endometrial vs. ovarian cancer cell lines. The colors indicate either miRNA 
overexpression on a significant (light red, P<0.00025) or highly significant (red, P<0.00005) level, or decreased miRNA expression levels on a significant (light 
blue, P<0.00025) or highly significant (blue, P<0.00005) level. Gray indicates insignificant expression differences, and white indicates the reference parameter. 
mirna, microrna.
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miR‑222 in OC cells were found to associated with epithelial 
OC in a previous investigation (52).

In conclusion, the diagnostic power and validity of 
entity‑specific miRNA clusters is partially limited due to 
individual cell type characteristics, such as receptor status 
or tumor origin (primary tumor or metastasis). For instance, 
in the present study the estrogen receptor (er) ec cell line 
exhibited a different miRNA expression compared with two 
er+ EC cell lines. In addition, EFO‑27 deviated from the other 
oc in vitro models to a certain extent, thus an intra-entity 
variation in miRNA expression signatures has to be taken 
into account. Furthermore, the present analyses revealed a 
notable difference in the molecular relationship of EC and 
OC compared with BC. Therefore, the number of miRNAs 
with distinguishing expression levels was markedly increased 
in ec and oc vs. Bc than in the comparison between ec vs. 
oc. 

To pursue the identification of a clinically valuable highly 
entity‑specific signature panel with diagnostic power for 
implementation in routine screening, the obtained data of the 
present discovery phase approach require further verification 
and validation. Thus, additional and extended in vitro anal-
yses, followed by translational studies using patients' tissues 
and liquid biopsy materials should be performed in further 
analyses to provide substantial evidence for miRNA‑based 
biomarker expression signatures that enable tumor detection, 
characterization and potential therapy monitoring.
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