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Abstract. long non-coding rnas (lncrnas) and 
micrornas (mirs) have been reported to regulate disease 
progression in numerous types of disease, including retinoblas-
toma (rb). Therefore, the present study aimed to investigate the 
effects of the lncRNA FEZ family zinc finger 1 antisense RNA 1 
(FEZF1‑AS1) on Rb and to determine its possible mechanism 
of action. reverse transcription-quantitative Pcr and western 
blot analysis were conducted to detect the gene or protein 
expression. cell counting Kit-8, wound healing and transwell 
invasion assays were performed to estimate the capabilities of 
cell viability, invasion and migration. The potential associa-
tion between FEZF1‑AS1 and miR‑1236‑3p in Y79 cells was 
measured via dual-luciferase reporter assay. The results of 
the present study revealed that the levels of FEZF1‑AS1 were 
significantly upregulated in different Rb cell lines, with the 
most prominent upregulation observed in Y79 cells. In addi-
tion, the cell viability, invasive and migratory abilities, and the 
ability to undergo epithelial-mesenchymal transition (eMT), 
were significantly inhibited following the transfection of short 
hairpin RNA (shRNA)‑FEZF1‑AS1 into Y79 cells. Further 
experimental validation confirmed that miR‑1236‑3p may 
be a direct target of FEZF1‑AS1. Notably, the miR‑1236‑3p 
inhibitor was discovered to reverse the inhibitory effects of 

shRNA‑FEZF1‑AS1 on cell viability, invasion, migration and 
EMT. In conclusion, the findings of the present study suggested 
that lncRNA‑FEZF1‑AS1 may promote the viability, migration, 
invasion and EMT of Rb cells by modulating miR‑1236‑3p.

Introduction

retinoblastoma (rb) is one of the most common types of intra-
ocular malignant tumor to occur in children; the annual global 
incidence rate in children <15 years is 3.5 cases per million 
children (1). It demonstrates a high invasive and metastatic 
ability, which corresponds with a poor prognosis and visual 
impairment in children, endangering lives (2-4). Previous 
studies have demonstrated that tumor invasion and metastasis 
may derive from epithelial-mesenchymal transition (eMT), 
a basic physiological phenomena which is characterized 
by the transition of epithelial cells into active mesenchymal 
cells capable of moving freely between cell substrates (5‑7). 
currently, several therapeutic options exist for rb, including 
ophthalmectomy, or radiation, chemical, drug, laser photo-
coagulation, photodynamic, thermo-, freezing and gene 
therapies (8‑11). Notably, due to its targeting effect and minor 
toxicity, gene therapy has become the focus of numerous 
studies (12,13).

long non-coding rnas (lncrnas) are non-protein coding 
rnas of >200 nucleotides in length, which are found in 
abundance in eukaryotic and mammalian cells (14). Emerging 
evidence has revealed that lncrnas serve an important role in 
the migration, invasion and eMT of tumors, including breast 
cancer, colorectal cancer, hepatocellular carcinoma, prostate 
cancer and Rb (15‑17). Interestingly, lncRNAs have been 
previously used as therapeutic targets and prognostic markers 
in numerous types of tumor, including glioblastoma, as well as 
gastric and colorectal cancer (18,19). FEZ family zinc finger 1 
antisense RNA 1 (FEZF1‑AS1) is a more recently discovered 
lncRNA of 2,564 bp in length, located on chromosome 7 (20). 
a previous study demonstrated that the expression levels of 
FEZF1‑AS1 were upregulated in Rb cell lines and tissues, 
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whereby these upregulated expression levels of FEZF1‑AS1 
were discovered to be an independent unfavorable prognostic 
factor that promoted the proliferation, invasion and migration 
of Rb cells (21).

MicroRNAs (miRs/miRNAs) are non‑coding, single‑ 
stranded rna molecules of ~22 nucleotides in length, 
encoded by endogenous genes (22). The abnormal expression 
of mirnas has been reported in various types of cancer, such 
as hepatocellular carcinoma, gastric cancer and retinoblas-
toma (23,24). notably, previous studies have demonstrated that 
miR‑1236‑3p inhibited the migration and invasion of A549 and 
ovarian cancer cells by targeting Kruppel-like factor 8 or zinc 
finger E‑box‑binding homeobox 1 (25,26). However, to the best 
of our knowledge, studies on the effects of miR‑1236‑3p in Rb 
have not been reported. In the present study, LncBase software 
was used to predict that FEZF1‑AS1 may bind to miR‑1236‑3p. 
Therefore, it was hypothesized that FEZF1‑AS1 may interact 
with miR‑1236‑3p to regulate the viability, invasion, migration 
and eMT of rb cells.

Materials and methods

Cell culture and transfection. normal retinal epithelial 
ARPE‑19 cells (control) and the human Rb cell line Y79 
were purchased from BeNa Culture Collection; Beijing 
Beina Chuanglian Biotechnology Research Institute. The 
human rb cell line So-rb50 was obtained from Qincheng 
Biotechnology, the human Rb cell line Weri‑Rb‑1 was 
purchased from The Cell Bank of Type Culture Collection 
of the chinese academy of Sciences and the human rb cell 
line RBL‑13 was purchased from the American Type 
Culture Collection. All cells were cultured in RPMI‑1640 
medium (american Type culture collection), supple-
mented with 10% FBS (Gibco; Thermo Fisher Scientific, 
Inc.), and maintained in a humidified incubator at 37˚C 
with 5% CO2.

Synthetic sequences of short hairpin rna (shrna) 
targeting FEZF1‑AS1 (shRNA‑FEZF1‑AS1; Shanghai 
GenePharma co., ltd.) and non-targeting shrna (shrna-nc) 
were inserted into pGPU6/Neo vector (Shanghai GenePharma 
Co., Ltd.). 2x104 cells/well were seed into a 24‑well plate, 
then 0.8 µg shRNA was added into each well at confluence 
of 40‑60% using Lipofectamine® 2000 reagent (invitrogen; 
Thermo Fisher Scientific, Inc.). The miR‑1236‑3p mimic 
and negative control (NC; miR‑NC mimic), miR‑1236‑3p 
inhibitor and mir-nc inhibitor were generated from Shanghai 
GenePharma Co., Ltd., 1x105 cells/well were seed into a 
6‑well plate, 100 nM miR‑1236‑3p mimic/miR‑NC mimic 
or 200 nM miR‑1236‑3p inhibitor/miR‑NC inhibitor was 
transfected into Y79 cells at confluence of 40‑60% using 
lipofectamine® 2000 reagent. Following 48 h of transfection 
at 37˚C, the transfection efficiency was validated using reverse 
transcription-quantitative Pcr (rT-qPcr). all sequences are 
listed in Table i.

Bioinformatics analysis. LncBase V.2 software (carolina.imis.
athena‑ innovation.gr/diana_tools/web/index.php?r=lncbasev2% 
2Findex) was used to predict interactions between FEZF1‑AS1 
and miR‑1236‑3p by searching for the binding sites between the 
two sequences.

RT‑qPCR. Total rna was extracted from transfectedcells using 
Trizol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.). 
PrimeScript™ RT reagent kit (Takara Bio, Inc.) was used 
for cDNA generation of FEZF1‑AS1, using the following 
reaction conditions: 42˚C for 15 min followed by 3 cycles 
and 85˚C for 5 sec. For miR‑1236‑3p, a TaqMan MicroRNA 
reverse Transcription kit (Thermo Fisher Scientific, inc.) 
was used for cdna generation using the following reaction 
conditions: 50˚C for 5 min and 80˚C for 2 min. Subsequently, 
the reaction templates were mixed in tubes according to the 
manufacturer's instructions of SYBR Premix Ex Taq™ II kit 
(Takara Bio, Inc.), centrifuged gently (111 x g) for 5 sec at 
4˚C and run through a 7500 Real‑Time PCR system (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). Amplification 
condition were: 95˚C for 10 sec, followed by 40 cycles of 5 sec 
at 95˚C and 30 sec at 60˚C. The following primer sequences 
were used for the qPCR: FEZF1‑AS1 forward, 5'‑TTA GGA 
GGc TTG TTc TGT GT-3' and reverse, 5'-GcG caG GTa 
cTT aaG aaa Ga-3'; GaPdH forward, 5'-Gca ccG Tca 
aGG cTG aGa ac-3' and reverse, 5'-TGG TGa aGa cGc 
CAG TGG A‑3'; miR‑1236‑3p forward, 5'‑CCA ATC AGC CTC 
TTc ccc TT-3' and reverse, 5'-TaT GGT TGT Tca cGa cTc 
cTT cac-3'; and u6 forward, 5'-aTT GGa acG aTa caG 
aGa aGa TT-3' and reverse, 5'-GGa acG cTT cac Gaa 
TTT G‑3'. The relative expression levels of miR‑1236‑3p and 
FEZF1‑AS1 were calculated using the 2-ΔΔct method (27), and 
FEZF1‑AS1 expression levels were normalized to GAPDH 
and miR‑1236‑3p expression levels to U6.

Western blotting. Total protein was extracted from cells using 
RIPA lysis buffer (Beyotime Institute of Biotechnology), 
according to the manufacturer's protocol. Total protein was 
quantified by BCA Protein Assay kit (Beyotime Institute 
of Biotechnology) and equivalent amount of 20 µg protein 
samples were separated by 10% SDS‑PAGE (Beyotime 
Institute of Biotechnology). The separated proteins 
were subsequently transferred onto PVDF membranes 
(EMD Millipore) and blocked with 5% non‑fat milk for 2 h 
at room temperature. The membranes were then incubated 
with the following primary antibodies at 4˚C overnight: 
Anti‑Vimentin (1:1,000; cat. no. 3932; Cell Signaling 
Technology, Inc.), anti‑Snail (1:1,000; cat. no. 3879; Cell 
Signaling Technology, Inc.), anti‑Slug (1:1,000; cat. no. 9585; 
Cell Signaling Technology, Inc.), anti‑Claudin‑1 (1:1,000; 
cat. no. 4933; Cell Signaling Technology, Inc.), anti‑β-catenin 
(1:500; cat. no. sc‑59737; Santa Cruz Biotechnology, Inc.), 
anti‑N‑cadherin (1:500; cat. no. sc‑59987; Santa Cruz 
Biotechnology, Inc.), anti‑E‑cadherin (1:500; cat. no. sc‑8426; 
Santa Cruz Biotechnology, Inc.), anti‑matrix metalloproteinase 
(MMP) 2 (1:1,000; cat. no. 10373‑2‑AP; ProteinTech Group, 
Inc.), anti‑MMP9 (1:1,000; cat. no. 10375‑2‑AP; ProteinTech 
Group, Inc.) and anti‑GAPDH (1:1,000; cat. no. SAB5600208; 
Sigma-aldrich; Merck KGaa). Subsequently, the membranes 
were incubated with the following secondary antibodies: 
Horseradish peroxidase (HRP)‑conjugated Affinipure Goat 
Anti‑Mouse IgG (H+L) (1:10,000; cat. no. SA00001‑1; 
ProteinTech Group, inc.) and HrP-conjugated affinipure 
Goat Anti‑Rabbit IgG (H+L) (1:10,000; cat. no. SA00001‑2; 
ProteinTech Group, inc.). Protein bands were visual-
ized via immobilon Western chemilum HrP Substrate 
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(cat. no. WBKLS0100; EMD Millipore) and the expression 
levels of each protein were analyzed using image lab software 
version 4.1 (Bio‑Rad Laboratories, Inc.).

Cell Counting Kit‑8 (CCK‑8) assay. Y79 cells (1x103 cells/well) 
were seed into a 96‑well plate in a humidified incubator at 
37˚C for 24 h. Cell viability was determined using a CCK‑8 
assay kit (Beyotime Institute of Biotechnology), according to 
the manufacturer's protocol. A total of 10 µl CCK‑8 reagent 
was added into each well and incubated for 1 h at 37˚C. The 
absorbance was analyzed at 450 and 490 nm (reference wave-
length) using a Multiskan™ Go microplate spectrophotometer 
(Thermo Fisher Scientific, Inc.).

Wound healing assay. The cell migratory ability was analyzed 
using a wound healing assay. Briefly, 5x105 cells/well were 
plated into a six‑well plate and cultured to 100% confluence. 
a 200-µl pipette tip was used to scratch a wound in the cell 
monolayer and then the cells were cultured in serum-free 
RPMI‑1640 medium for 24 h at 37˚C. The width of the wound 
in each group was photographed at 0 and 24 h using a light 
microscope (magnification, x100, Olympus Corporation) 
and analyzed using Image J software version 1.8.0 (National 
institutes of Health).

Transwell Matrigel assay. Transwell chambers (costar; 
corning, inc.) were used to determine the invasive ability of the 
cells. Matrigel (BD Biosciences) was diluted with serum‑free 
RPMI‑1640 medium at a 1:9 ratio and then used to precoat 
the membrane of the upper chambers at 37˚C for 2 h. PBS and 
serum‑free RPMI‑1640 medium were used once each to wash 
Y79 cells and then 2x105 transfected cells were suspended in 
1 ml serum‑free RPMI‑1640 medium, 200 µl cell suspension 
was added into the upper chambers of the Transwell plates. 
RPMI‑1640 medium supplemented with 10% FBS was plated 
in the lower chambers. Following incubation for 24 h at 37˚C, 
the Transwell chamber was removed and the invasive cells in 
the lower chamber were washed twice with PBS, prior to being 
fixed with 4% formaldehyde for 30 min at room temperature 
and stained with 0.1% crystal violet for 60 min at room 

temperature. Stained cells were counted at least six random 
microscopic fields (magnification, x100) using a light micro-
scope (olympus corporation).

Dual‑luciferase reporter assay. The binding sites between the 
two sequences of FEZF1‑AS1 and miR‑1236‑3p were predicted 
via LncBase V.2 software. The 3'untranslated region (UTR) 
fragments from FEZF1‑AS1 cDNA containing the predicted 
miR‑1236‑3p‑binding sites were synthesized and inserted 
downstream of the luciferase gene in the pGL3 Basic vector 
(Promega Corporation), to create FEZF1‑AS1‑wild‑type (WT) 
vectors. The FEZF1‑AS1‑mutant (MUT) vectors (Promega 
corporation) were synthesized using mutant sequences 
of FEZF1‑AS1. Y79 cells (1x105) were co-transfected 
with 0.6 µg FEZF1‑AS1‑WT or FEZF1‑AS1‑MUT vectors 
and 100 nM miR‑1236‑3p mimic or miR‑NC mimic using 
lipofectamine® 2000 reagent. Firefly luciferase activity 
was analyzed via a dual luciferase assay kit (Promega 
corporation) and normalized to Renilla luciferase activity 
after 48 h of transfection at 37˚C.

RNA immunoprecipitat ion (RIP) assay. riP was 
performed using the Magna RIP RNA‑Binding Protein 
immunoprecipitation kit (eMd Millipore), according to the 
manufacturer's protocol. Briefly, 2x107 cells were washed 
with cold PBS twice, then incubated with 100 µl RIP Lysis 
Buffer (EMD Millipore) for 5 min at 4˚C, the obtained cell 
lysate was centrifugated (43,512 x g) at 4˚C for 10 min, and 
incubated with magnetic beads that were conjugated with 
either an anti‑Argonaute 2 antibody (Ago2; cat. no. 2897; Cell 
Signaling Technology) or anti‑IgG antibody (cat. no. PP64B; 
eMd Millipore). igG group served as a negative control. 
Proteinase K (eMd Millipore) was used to digest proteins at 
55˚C for 30 min prior to the isolation of immunoprecipitated 
RNA. The expression levels of FEZF1‑AS1 and miR‑1236‑3p 
in the immunoprecipitated rna were measured by rT-qPcr.

Statistical analysis. Statistical analysis was performed using 
SPSS 22.0 software (IBM Corp.) and data are presented as the 
mean ± SeM. Statistical differences between 2 groups were 

Table i. oligonucleotide sequences used for the transfection experiments.

name Sequence (5'→3')

miR‑1236‑3p mimic F: CGCGGATCCCTGGCCCTCACTTACCTC
 r: ccGaaTTcccaTcTacaTTccaacTTGGaG
mir-nc mimic F: uucuccGaacGuGucacGuTT
 r: acGuGacacGuucGGaGaaTT
miR‑1236‑3p inhibitor CUGGAGAGACAAGGGGAAGAGG
mir-nc inhibitor caGuacuuuuGuGuaGuacaa
shrna-FeZ family zinc F: ccGGcccacGaaGTTTaaaGcaTaacTcGaGTTaTGcTTTaaacTTcGTGGGTTTTTG
finger 1 antisense RNA 1 R: AATTCAAAAACCCACGAAGTTTAAAGCATA ACTCGAGTTATGCTTTAAACTTCGTGGG
shrna-nc F: ccGGTTcTccGaacGTGTcacGTaacTcGaGTTacGTGacacGTTcGGaGaaTTTTTG
 r: aaTTcaaaaaTTcTccGaacGTGTcacGTaacTcGaGTTacGTGacacGTTcGGaGaa 

mir, microrna; nc, negative control; shrna, short hairpin rna; F, forward; r, reverse.
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determined using an unpaired Student's t-test, whereas statis-
tical differences between multiple groups were determined 
using an one‑way ANOVA, followed by a Tukey's post hoc 
test. Each experiment was performed ≥3 times. P<0.05 was 
considered to indicate a statistically significant difference.

Results

FEZF1‑AS1 expression levels are upregulated in Rb cells. 
To investigate the role of FEZF1‑AS1 in Rb progression, the 

mRNA expression levels of FEZF1‑AS1 in four Rb cell lines 
were determined. The results revealed that FEZF1‑AS1 expres-
sion levels were significantly upregulated in Rb cell lines, 
particularly in Y79 cells, compared with the control ARPE‑19 
cells (Fig. 1A). Thus, Y79 cells were chosen for subsequent 
experiments. To investigate the function of FEZF1‑AS1 in 
Rb cells, shRNA‑FEZF1‑AS1 was transfected into Y79 cells. 
The transfection efficiency was confirmed by RT‑qPCR, which 
demonstrated a significant downregulation of FEZF1‑AS1 
expression levels in the shRNA‑FEZF1‑AS1‑transfected 

Figure 2. Silencing FEZF1‑AS1 inhibits cell viability, migration and invasion. (A) Cell viability was determined in Y79 cells transfected with shRNA‑NC or 
shRNA‑FEZF1‑AS1 using a Cell Counting Kit‑8 assay. (B) Cell migratory rate was determined in Y79 cells transfected with shRNA‑NC or shRNA‑FEZF1‑AS1 
using a wound healing assay. Magnification, x100. (C) Cell invasive rate was determined in Y79 cells transfected with shRNA‑NC or shRNA‑FEZF1‑AS1 using a 
Transwell Matrigel invasion assay. Magnification x100. All data are expressed as the mean ± SEM. ***P<0.001 vs. shRNA‑NC group. FEZF1‑AS1, FEZ family 
zinc finger 1 antisense RNA 1; shRNA, short hairpin RNA; NC, negative control.

Figure 1. Overexpression of FEZF1‑AS1 in Rb cells. (A) Expression levels of FEZF1‑AS1 were analyzed in four Rb cell lines and ARPE‑19 cells (control) 
using rT-qPcr. **P<0.01, ***P<0.001 vs. control. (B) RT‑qPCR analysis of the transfection efficiency of shRNA‑FEZF1‑AS1. ***P<0.001 vs. shRNA‑NC group. 
All data are expressed as the mean ± SEM. Rb, retinoblastoma; FEZF1‑AS1, FEZ family zinc finger 1 antisense RNA 1; RT‑qPCR, reverse transcription‑ 
quantitative Pcr; shrna, short hairpin rna; nc, negative control.
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cells compared with the shRNA‑NC group (Fig. 1B). Thus, 
the results suggested that FEZF1‑AS1 expression levels may 
be upregulated in Rb cells and shRNA‑FEZF1‑AS1 was 
successful in silencing FEZF1‑AS1 expression in vitro.

Silencing FEZF1‑AS1 inhibits cell viability, migration and 
invasion. Subsequently, a ccK-8 assay was performed 
to determine the function of shRNA‑FEZF1‑AS1 on cell 
viability. The data indicated that shRNA‑FEZF1‑AS1 
significantly decreased the cell viability compared with the 
shrna-nc group (Fig. 2a). in addition, the wound healing 
assay revealed that the genetic knockdown of FEZF1‑AS1 
significantly reduced the cell migration rate compared 
with the shRNA‑NC group (Fig. 2B). The results of the cell 
invasion assay were consistent with those of the migration 
assay; the cell invasive rate was significantly decreased in 
the shRNA‑FEZF1‑AS1‑transfected cells compared with the 
shrna-nc group (Fig. 2c). collectively, these data suggested 
that FEZF1‑AS1 may regulate the viability, migration and 
invasion of rb cells.

EMT of Rb cells is suppressed by shRNA‑FEZF1‑AS1. eMT 
has a critical role in tumor invasion and metastasis, thus 
serving an important role in tumor progression (5‑7). In the 

present study, western blotting was used to analyze the expres-
sion levels of eMT-related proteins, including cytoskeletal 
proteins (Vimentin, Snail, Slug and β-catenin), cell-cell 
surface junction proteins (n-cadherin, e-cadherin and 
Claudin‑1) and cell‑extracellular matrix proteins (MMP2 and 
MMP9). The expression levels of Vimentin, Snail and Slug 
were significantly downregulated in cells transfected with 
shRNA‑FEZF1‑AS1, whereas those of β‑catenin were signifi-
cantly upregulated, compared with the shrna-nc-transfected 
cells (Fig. 3a). in addition, the expression levels of n-cadherin 
were also observed to be significantly downregulated in 
shRNA‑FEZF1‑AS1‑transfected cells, while the expres-
sion levels of E‑cadherin and Claudin‑1 were significantly 
upregulated, compared with the shrna-nc-transfected 
cells (Fig. 3B). Finally, the protein expression levels of 
ECM proteins, MMP2 and MMP9, in the cells transfected 
with shRNA‑FEZF1‑AS1 were significantly downregulated 
compared with the shrna-nc group (Fig. 3c). overall, these 
results indicated that the genetic knockdown of FEZF1‑AS1 
may inhibit the EMT of Y79 cells.

miR‑1236‑3p is a direct target of FEZF1‑AS. lncrnas 
contain binding sites that are complementary to mirnas, 
which permits them to serve as miRNA ‘sponges’ (28,29). The 

Figure 3. Epithelial‑mesenchymal transition of retinoblastoma cells is suppressed by shRNA‑FEZF1‑AS1. Western blotting was used to analyze the protein 
expression levels of (A) Vimentin, Snail, Slug and β‑catenin, (B) N‑cadherin, E‑cadherin, Claudin‑1 and (C) MMP2 and MMP9 in Y79 cells transfected with 
shRNA‑NC or shRNA‑FEZF1‑AS1. All data are expressed as the mean ± SEM. **P<0.01, ***P<0.001 vs. shRNA‑NC group. FEZF1‑AS1, FEZ family zinc 
finger 1 antisense RNA 1; shRNA, short hairpin RNA; NC, negative control; MMP, matrix metalloproteinase.
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potential binding site between miR‑1236‑3p and FEZF1‑AS1 
was predicted using LncBase v2 (Fig. 4A). The RIP assay 
revealed that both FEZF1‑AS1 and miR‑1236‑3p expression 
levels were significantly increased in the anti‑Ago2 groups 
compared with their respective anti-igG groups, indicating 
that FEZF1‑AS1 may serve as a sponge for miR‑1236‑3p 
(Fig. 4B). The expression levels of miR‑1236‑3p in Y79 cells 
were significantly upregulated following the transfection of 
the miR‑1236‑3p mimic compared with the miR‑NC mimic 
(Fig. S1A). Subsequently, a dual‑luciferase reporter assay 
revealed that luciferase activity was notably decreased in 
Y79 cells co‑transfected with FEZF1‑AS1‑WT vector and 
miR‑1236‑3p mimic, while no significant differences were 
observed in the other three groups (Fig. 4c), validating that 
miR‑1236‑3p may directly bind to FEZF1‑AS1.

Further experiments were conducted to determine the asso-
ciation between FEZF1‑AS1 and miR‑1236‑3p. The genetic 
silencing of FEZF1‑AS1 resulted in the significant upregula-
tion of miR‑1236‑3p expression levels compared with the 

shRNA‑NC‑transfected cells (Fig. 4D), while the miR‑1236‑3p 
mimic‑transfected cells were identified to have significantly 
downregulated expression levels of FEZF1‑AS1 compared 
with mir-nc mimic-transfected cells (Fig. 4e), suggesting 
that FEZF1‑AS1 may negatively regulate the expression of 
miR‑1236‑3p. Taken together, these results indicated that 
FEZF1‑AS1 may directly target miR‑1236‑3p in Y79 cells.

miR‑1236‑3p inhibitor reverses FEZF1‑AS1‑induced cell 
viability, migration and invasion. To investigate whether 
miR‑1236‑3p was involved in the effects regulated by 
FEZF1‑AS1 in Rb cells, a miR‑1236‑3p inhibitor was trans-
fected into Y79 cells. The expression levels of miR‑1236‑3p 
in Y79 cells were significantly downregulated following the 
transfection with the miR‑1236‑3p inhibitor compared with the 
miR‑NC inhibitor‑transfected cells (Fig. S1B). It was subse-
quently demonstrated that the cell viability was significantly 
increased in cells co‑transfected with shRNA‑FEZF1‑AS1 
and miR‑1236‑3p inhibitor compared with cells co‑transfected 

Figure 4. miR‑1236‑3p is a direct target of FEZF1‑AS1 in retinoblastoma cells. (A) Binding sites between FEZF1‑AS1 and miR‑1236‑3p were predicted using 
LncBase v.2 software. (B) RNA immunoprecipitation assay was performed to analyze the interaction between miR‑1236‑3p and FEZF1‑AS1 in Y79 cells 
co‑transfected with miR‑1236‑3p mimic or miR‑NC mimic and FEZF1‑AS1‑WT or FEZF1‑AS1‑MUT. ***P<0.001 vs. IgG group. (C) Relative luciferase 
activity was determined using a dual‑luciferase reporter assay in cells co‑transfected with miR‑1236‑3p mimic or miR‑NC mimic and FEZF1‑AS1‑WT or 
FEZF1‑AS1‑MUT. ***P<0.001 vs. miR‑NC mimic group. (D) Expression levels of miR‑1236‑3p were detected in Y79 cells transfected with shRNA‑NC or 
shRNA‑FEZF1‑AS1 using RT‑qPCR. ***P<0.001 vs. shRNA‑NC group. (E) Expression levels of FEZF1‑AS1 were analyzed in Y79 cells transfected with 
miR‑NC mimic or miR‑1236‑3p mimic by RT‑qPCR. **P<0.01 vs. miR‑NC mimic group. All data are expressed as the mean ± SEM. FEZF1‑AS1, FEZ 
family zinc finger 1 antisense RNA 1; shRNA, short hairpin RNA; NC, negative control; miR, microRNA; WT, wild‑type; MUT, mutant; RT‑qPCR, reverse 
transcription-quantitative Pcr.
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with shRNA‑FEZF1‑AS1 and miR‑NC inhibitor (Fig. 5A). 
Similar results were observed in the cell migration and inva-
sion assays (Fig. 5B‑E). These results further suggested that 
miR‑1236‑3p may be required for the effects of FEZF1‑AS1 
on cell viability, migration and invasion.

Inhibition of miR‑1236‑3p reverses the effects of shRNA‑ 
FEZF1‑AS1 on EMT. The expression levels of eMT-related 
proteins were subsequently determined using western blot-
ting. The shRNA‑FEZF1‑AS1 group was identified to have 
significantly upregulated expression levels of β-catenin 
compared with the shrna-nc group; however, the expression 
levels were partially reversed by the co-transfection with the 
miR‑1236‑3p inhibitor. The levels of Vimentin, Snail and Slug 
showed an opposite trend with β-catenin (Fig. 6a). in addition, 
the expression levels of N‑cadherin were significantly down-
regulated at the protein level in Y79 cells transfected with 
shRNA‑FEZF1‑AS1 compared with the shRNA‑NC‑trans-
fected cells, while the miR‑1236‑3p inhibitor was discovered 
to partially weaken the effect of shRNA‑FEZF1‑AS1 (Fig. 6B). 
The protein levels of E‑Cadherin and Claudin‑1 presented an 

opposite trend with n-cadherin. Moreover, the co-transfection 
of the miR‑1236‑3p inhibitor with shRNA‑FEZF1‑AS1 
reversed the downregulation of MMP2 and MMP9 expression 
levels mediated by shRNA‑FEZF1‑AS1 (Fig. 6C). Collectively, 
these results suggested that the inhibition of miR‑1236‑3p may 
reverse the modulatory effects of shRNA‑FEZF1‑AS1 on 
EMT in Y79 cells.

Discussion

Dysregulated lncRNA profiles have been revealed to serve as 
both oncogenes or tumor suppressor genes, where they have 
been widely reported to be involved in the initial metastasis 
of tumors by controlling cellular processes, such as migration 
and invasion (30). although there are a number of studies 
investigating lncrnas, to the best of our knowledge, few 
lncRNAs have been functionally clarified. Antisense RNAs, 
as one part of lncrnas, which are transcribed from the 
antisense strand, are known to have specific functions (31), 
including exerting significant modulatory effects and regulate 
gene translation (32,33). FEZF1‑AS1 is a newly discovered 

Figure 5. miR‑1236‑3p inhibitor reverses shRNA‑FEZF1‑AS1‑induced suppression over cell viability, migration and invasion. (A) Cell viability was determined 
in Y79 cells transfected with shRNA‑NC or shRNA‑FEZF1‑AS1 with or without miR‑1236‑3p inhibitor or miR‑NC inhibitor using a Cell‑Counting Kit‑8 
assay. (B and D) Migratory rates were determined in Y79 cells transfected with shRNA‑NC or shRNA‑FEZF1‑AS1 with or without miR‑1236‑3p inhibitor 
or miR‑NC inhibitor using wound healing assay. Magnification, x100. (C and E) Invasive rates were determined in Y79 cells transfected with shRNA‑NC or 
shRNA‑FEZF1‑AS1 with or without miR‑1236‑3p inhibitor or miR‑NC inhibitor using Transwell Matrigel assay. Magnification, x100. All data are expressed 
as the mean ± SeM. ***P<0.001 vs. shRNA‑NC group; ##P<0.01 vs. shRNA‑FEZF1‑AS1 + miR‑NC inhibitor group. FEZF1‑AS1, FEZ family zinc finger 1 
antisense RNA 1; shRNA, short hairpin RNA; NC, negative control; miR, microRNA.
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Figure 6. Continued. Inhibition of miR‑1236‑3p reverses the effects of shRNA‑FEZF1‑AS1 on epithelial‑mesenchymal transition. (A) Western blotting was 
used to analyze the protein expression levels of (A) Vimentin, Snail, Slug and β‑catenin, (B) N‑cadherin, E‑cadherin and Claudin‑1, and (C) MMP2 and MMP9 
in Y79 cells transfected with shRNA‑NC or shRNA‑FEZF1‑AS1 with or without miR‑1236‑3p inhibitor or miR‑NC inhibitor. All data are expressed as the 
mean ± SeM. ***P<0.001 vs. shRNA‑NC group; #P<0.05, ##P<0.01, ###P<0.001 vs. shRNA‑FEZF1‑AS1 + miR‑NC inhibitor group. FEZF1‑AS1, FEZ family 
zinc finger 1 antisense RNA 1; shRNA, short hairpin RNA; NC, negative control; miR, microRNA; MMP, matrix metalloproteinase.
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antisense rna that was identified to be overexpressed in 
numerous types of tumor. For example, one study reported 
that the expression levels of FEZF1‑AS1 were associated 
with a poor prognosis and the dysregulation of FEZF1‑AS1 
contributed to the progression of lung adenocarcinoma (34). 
in addition, Gong et al (29) reported that FEZF1‑AS1 served 
as an oncogene in hepatocellular carcinoma. upregulated 
FEZF1‑AS1 was also observed in breast cancer tissues (35). 
FEZF1‑AS1 also promoted tumorigenesis via the activa-
tion of the Wnt signaling pathway in gastric cancer, which 
subsequently predicted a poor prognosis (36).

a previous study reported that the overexpression of 
miR‑1236‑3p significantly inhibited the invasion, metas-
tasis and progression of eMT in gastric cancer by targeting 
metastasis‑associated protein MTA2 (37). In lung cancer cells, 
miR‑1236‑3p reversed cisplatin resistance by modulating 
translationally‑controlled tumor protein and serine/threo-
nine-protein kinase pim-3 (38). another study revealed that 
miR‑1236‑3p served an important role in regulating colorectal 
cancer progression (39). Additionally, miR‑1236‑3p inhibited 
non-small-cell lung carcinoma cell growth by upregulating 
p21 expression (40). The aforementioned studies suggest a 
wide variety of functions for miR‑1236‑3p in various types 
of tumor; however, to the best of our knowledge, the role of 
miR‑1236‑3p in Rb and the interaction between miR‑1236‑3p 
and FEZF1‑AS1 has not been fully elucidated.

The present study focused on FEZF1‑AS1 and revealed 
its function in rb cells. The result demonstrated that 
FEZF1‑AS1 expression levels were significantly upregulated 
in human Rb cell lines, especially Y79 cells. The genetic 
silencing of FEZF1‑AS1 was discovered to inhibit the cell 
viability, and invasive and migratory ability of Y79 cells, in 
addition to the eMT process. Furthermore, the binding sites 
of miR‑1236‑3p on the FEZF1‑AS1 sequence were identified. 
Notably, the miR‑1236‑3p inhibitor reversed the inhibitory 
effects of shRNA‑FEZF1‑AS1 on cell viability, invasion, 
migration and eMT, indicating a potential therapeutic target 
for treating rb.

The subcellular locations of β-catenin and e-cadherin 
determine the status of the eMT process; thus, a limitation 
of the present study was that the subcellular locations of 
these proteins were not investigated. Moreover, only in vitro 
experiments were included in the present study, therefore, 
further verification using tumor tissues from patients with Rb 
or tumor-bearing animals will be necessary to validate the 
current findings.

in conclusion, the results of the present study demonstrated 
that the expression levels of FEZF1‑AS1 were significantly 
upregulated in Rb cell lines, which indicated that FEZF1‑AS1 
may be considered as an oncogene. In addition, the findings of 
the present study indicated that FEZF1‑AS1 may promote the 
cell viability, invasion, migration and eMT of rb cells, while 
these effects were inhibited by transfecting with miR‑1236‑3p. 
Thus, lncRNA‑FEZF1‑AS1 may promote the viability, 
invasion, migration and eMT of rb cells via regulating 
miR‑1236‑3p.
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