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Abstract. Hepatitis C virus (HCV) infection is a global public 
health problem. Cirrhosis and hepatocellular carcinoma 
are the main causes of death in patients with chronic hepa-
titis C (CHC) infection. Liver fibrosis is an important cause 
of cirrhosis and end‑stage liver disease after CHC infection. 
Along with the course of infection, liver fibrosis exhibits a 
progressive exacerbation. Hepatic stellate cells (HSCs) are 
involved in both physiological and pathological processes of 
the liver. During the chronic liver injury process, the activated 
HSCs transform into myofibroblasts, which are important 
cells in the development of liver fibrosis. At present, HCV 
infection still lacks specific markers for the accurate detec-
tion of the disease condition and progression. Therefore, the 
present review focused on HSCs, which are closely related 
to HCV‑infected liver fibrosis, and analyzed the changes in 
the HSCs, including their surface‑specific markers, cytokine 
production, activation, cell function and morphological struc-
ture. The present review aimed to propose novel diagnostic 
markers, at both the cellular and molecular level, which would 
be of great significance for the timely diagnosis of the disease. 
According to this aim, the characteristic changes of HSCs 
during HCV infection were reviewed in the present article.
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1. Introduction

Hepatitis C virus (HCV) is an infectious disease of global 
concern. The World Health Organization suggests that there 
are >71 million individuals infected with HCV worldwide and 
~475,000 deaths are caused by HCV infections annually (1,2). 
The prevalence and incidence of HCV infections are the 
highest in low‑ and middle‑income countries (3,4). The HCV 
can cause chronic liver disease, which is long‑lasting and can 
progress to fibrosis, cirrhosis and hepatocellular carcinoma 
(HCC) if it is not treated in a timely manner (5‑7). The dormant 
period of the HCV is long, sometimes up to 20‑30 years, and 
the clinical symptoms are not obvious, thus they are easy to 
ignore once infected (8,9).

During the early course of HCV infection, the activation 
and proliferation of hepatic stellate cells (HSCs) is the central 
link in the development of liver fibrosis  (10,11). When the 
HCV infection causes damage to the liver, cytokines and reac-
tive oxygen species released by the tissues activate HSCs to 
develop into myofibroblasts (MFBs), which undergo consider-
able proliferation, and secrete collagen and metalloproteinase 
inhibitors (12‑14), the secretion of which notably increases 
extracellular matrix deposition and decreases its degradation, 
respectively (15). The excessive deposition of the extracellular 
matrix results in the destruction of the structure of the liver, 
eventually leading to the development of liver fibrosis (16).

At present, several serological makers and viral antigens 
in the serum, such as HCV antibody (Ab), HCV core antigen 
(cAg) and HCV‑RNA, are routinely assessed for to diagnose 
the status of the HCV infection and liver disease associated 
with the HCV (17‑19). Nevertheless, given the complexity 
and variability in HCV infections, the levels of serological 
markers do not sufficiently reflect the status of HCV infection 
and disease progression (20,21). Therefore, it is necessary to 
identify additional indices that may be used to differentiate 
varying degrees of HCV progression. The changes in the 
function and status of HSCs was discovered to be closely 
associated with the course of HCV infection (22). Therefore, 
in the present review, the functional changes of important cell 
populations, such as HSCs, during alterations to liver immune 
function following the infection with HCV are described, 
with the aim of highlighting avenues for the identification of 
complementary laboratory indices that may be used for the 
diagnosis of HCV infection.
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2. Functional characteristics of HSCs

Activation of HSCs. As early as the 19th century, German 
scientist von Kuffer first discovered the presence of stellate 
cells in the hepatic sinus space (23). In 1996, international 
standardization stipulated that such stellate cells were named 
HSCs (24). In addition to the known functions of storing lipid 
droplets and participating in fibrosis, HSCs also possess several 
other important functions, such as their role in mediating the 
immune response of the liver (25‑27). Previous studies have 
reported that HSCs were heterogeneous and plastic in the liver, 
and different subsets of HSC phenotypes exist, which all have 
various functions (28‑30). In the physiological liver, HSCs 
exist in a quiescent non‑proliferative state, termed quiescent 
(q)HSCs (31). qHSCs were discovered to serve a role in the 
storage and transport of retinoids (vitamin A compounds), 
and the quantity of vitamin A lipid droplets in the cytoplasm 
of qHSCs in the liver may account for up to 45‑72% of the 
total content in the human body (32). Nervous system markers, 
such as glial fibril acidic protein and neurotensin, nerve 
growth factor receptor and desmin were also discovered to be 
expressed in qHSCs (33,34). qHSCs can also secrete extracel-
lular matrix protein and protein substances, such as laminin, 
polysaccharide protein and type I V collagen, which are 
required for the formation of the basement membrane (35‑37).

Following chronic liver damage as a result of alcoholic 
steatohepatitis, non‑alcoholic fatty liver disease, hepatitis B 
or HCV infection, or cholestatic liver injury, several external 
stimuli and cell types converge upon HSCs to promote their 
activation and development into MFB cells (38‑40). The other 
cell types involved in the activation of HSCs include liver 
macrophages, hepatic sinusoidal endothelial cells, natural killer 
(NK) cells, B cells and hepatocytes (41). These cells secrete 
various components, including oxidative stress products, 
cytokines and apoptotic bodies, amongst others, to activate 
the HSCs (42‑44). MFBs possess a potent ability to contract 
and migrate through the upregulation of fibrosis markers, 
such as type I collagen, α‑smooth muscle actin (SMA), matrix 
metalloproteinases and tissue inhibitor of matrix metallopro-
teinases (45‑47). α‑SMA is present in vascular smooth muscle 
cells and fibroblasts, and is a widely recognized marker of HSC 
activation (48,49). In addition, previous studies have identified 
that cytokine receptor‑like factor 1, secreted phosphoprotein 1, 
lysyl oxidase, lysyl oxidase‑like 2 and IL‑17 receptor A are also 
recognized markers associated with the activated phenotype 
of qHSCs, and are upregulated following activation (50‑54).

HSCs also secrete chemokines to recruit cells and regulate 
the local immune microenvironment (55). Current studies have 
reported that HSCs expressed chemokine receptors, such as 
C‑C chemokine receptor type (CCR)5, CCR7 and C‑X‑C motif 
chemokine receptor (CXCR)3, and secreted the chemokines 
C‑C motif chemokine (CCL)5, CCL3, CCL2, C‑X‑C motif 
chemokine ligand (CXCL)10, CXCL9 and CXCL8 (56,57).

Immune function of HSCs. HSCs serve an important role 
in regulating the immune environment in the liver (58). The 
liver is rich in macrophages, which are an important innate 
immune system response cell group physiologically (59,60). 
The interactions between macrophages and HSCs were 
discovered to serve vital roles in the development of liver 

diseases; for example, a previous study revealed that HSCs 
induced monocytes to differentiate into specific CD14+/human 
leukocyte antigen‑‑DR‑ phenotypes when activated HSCs 
were co‑cultured with mature peripheral blood mononuclear 
cells (61). HSCs are activated via pattern recognition receptor 
pathways, such as Toll‑like receptors (TLR)4 and TLR2, 
inflammatory markers produced by hepatic macrophages 
(TNF‑α, NLR family pyrin domain containing 3, IL‑1β, IL‑6 
and CCL5) and chemokines (CCL2, CCL8 and CX3 chemo-
kine receptor 1) that directly influence HSC activation (62). A 
previous study illustrated that NK cells served an important 
role in inhibiting liver fibrosis by producing the antifibrotic 
cytokine IFN‑γ to selectively kill or age the early‑activated 
HSCs (63). After the activation of early HSCs, vitamin A is 
metabolized to retinoic acid, and the expression of retinoic acid 
early inducible gene 1 is upregulated, which in‑turn promotes 
the killing ability of NK cells (64). Increased retinoic acid 
metabolism in late‑activated HSCs was discovered to inhibit 
the IFN‑γ/STAT1 signaling pathway, increase the secretion of 
TGF‑β, inhibit the activity of NK cells and reduce the antifi-
brotic function of NK cells (43,65). It was reported that activated 
HSCs functioned as antigen presenting cells, which triggered 
T cell proliferation (27). HSCs were also discovered to express 
the immunomodulatory programmed cell death receptor 1, 
which binds to programmed death‑ligand 1 presented on the 
T cell surface to induce T cell apoptosis (44,66). In summary, 
HSCs possess a diverse and complex array of functions, serve 
an important role in the liver microenvironment, participate in 
a variety of physiological and pathological reactions and are 
closely associated with changes in immune function.

3. Role of HSCs in the process of HCV infection

Chronic HCV infection can cause liver damage and result in a 
range of mild to more severe diseases, such as chronic hepatitis 
C (CHC), fibrosis and cirrhosis (67). The activation of HSCs 
was identified as an important signal in the control of extracel-
lular matrix synthesis and degradation in HCV‑induced liver 
fibrosis (68). At the cellular level, the activatory properties 
on HSCs are considered to be associated with the amino 
domain of HCV core protein (69). Furthermore, HCV infec-
tion was discovered to stimulate the innate immune response, 
and changes in the functions of HSCs were also affected by 
other important immune cells, such as NK cells, natural killer 
T (NKT) cells and macrophages (70,71). At the molecular 
level, during HCV infection, two types of cytokines that are 
closely associated with the activation of HSCs were discov-
ered to serve different roles; one type of chemokine primarily 
promoted fibrosis, such as CXCL9, CXCL10, CXCL11, IL‑4, 
IL‑13, IL‑17 and TGF‑β, while the other type of cytokine 
contributed to the inflammatory response, such as IL‑5, 
IL‑20, IL‑22, IFN‑γ, TNF‑α and CCL5 (72). At the mRNA 
level, previous studies have illustrated that several different 
microRNAs (miRNAs/miRs) were abnormally expressed in 
HCV‑induced liver fibrosis, such as miR‑16, miR‑21, miR‑122, 
miR‑150, miR‑214 and miR‑221, where they were involved in 
the activation of HSCs (Fig. 1) (73‑75).

Properties of immune cells in CHC infection. HSCs can express 
several HCV co‑receptors that interact with the HCV proteins 
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to promote liver fibrosis (76). For example, the binding of the 
HCV E2 protein and CD81 on the surface of HSCs may result 
in an increase in the fibrogenic effects occur to HSCs (77,78). 
In addition, the expression of HCV core and NS3‑NS5 proteins 
was suggested to promote HSC proliferation and induce the 
secretion of proinflammatory cytokines in HSCs, such as IL‑8 
and monocyte‑chemotactic protein‑1 (79,80).

Exosomes are small extracellular vesicles that are secreted 
by the majority of cells through the endocytic pathway; 
however, there is no direct contact between the different cells. 
Exosomes carry different biomolecules and are therefore an 
important vehicle for intracellular and intercellular commu-
nication (81). Notably, previous studies have confirmed the 
existence of exosome‑mediated communications between 
HCV‑infected hepatocytes and HSCs  (82,83). Exosomes 
secreted from HCV‑infected hepatocytes (HCV‑exo) were 
discovered to possess the potential to activate HSCs (84). A 
high expression of miR‑19a in exosomes was observed from 
HCV‑exo, which in turn enhances fibrosis marker genes and 
activates the STAT3‑mediated TGF‑β signaling pathway (85). 
In a previous study on the activation and function of NK 
cells in the pathogenesis of HCV infection, hepatocytes were 
reported to produce a host of cytokines, including IFN‑α/β, 
which activated NK cells and enhanced NK cell‑mediated 
cell cytotoxicity (86). NK cells generally display antifibrotic 
properties, including the inhibition of liver fibrosis by selec-
tively expressing death receptor ligands for the receptors on 
activated HSCs and by producing the antifibrotic cytokine 
IFN‑γ (87). In addition, NKT cells were revealed to perform 
similar antifibrotic functions as NK cells by killing HSCs 
and producing IFN‑γ (88). However, NKT cells also produce 

profibrotic cytokines to promote liver fibrogenesis; for example, 
the secretion of IL‑4 and IL‑13 from NKT cells were signifi-
cantly increased in patients with HCV with cirrhosis  (89). 
Macrophages are divided into two phenotypically and func-
tionally distinct subsets, classically and alternatively (M2) 
activated macrophages (90). M2 macrophages are considered 
to possess anti‑inflammatory and profibrotic effects by 
producing profibrotic cytokines (CCL3, CCL5, TGF‑β and 
TNF‑α)  (91). Clinically, it has also been reported that the 
expression levels of CCL5 are upregulated in the serum and 
liver of patients with HCV (56).

Effect of chemokines and ILs in CHC infection. Chemokines 
are divided into four groups: CC, CXC, CX3C and C fami-
lies (92). HSCs primarily express receptors, such as CXCR4 
and CXCR3, and can secrete chemokines, such as CXCL10, 
CXCL9 and CXCL8, which participate in the induction process 
of liver fibrosis by recruiting inflammatory immune cells and 
inhibiting the secretion of collagen I by HSCs, all of which 
exhibit immunomodulatory functions in the liver  (93‑95). 
Following HCV infection in the liver, CXCR4 expression 
levels were revealed to be upregulated, which subsequently 
activated HSCs (96). CXCR4 was found to bind to its ligand 
CXCL12 to stimulate the activation of HSCs, increasing the 
secretion of CXCL12 and leading to further proliferation and 
activation (97). Following the initial HCV infection, TLR3 
and retinoic acid‑inducible gene I were identified to activate 
CXCR3 ligands, such as CXCL10, in infected hepatocytes, 
thereby increasing their activity and stimulating the produc-
tion of IFN‑γ (98). During acute HCV infection, the presence 
of CXCR3‑related ligands, such as CXCL9, CXCL10, CXCL11 

Figure 1. Indicators associated with HSCs in patients with CHC infection. In HCV‑related liver fibrosis, the activation of HSCs is a dynamic process. On the 
one hand, NK cells generally help clear senescent‑activated HSCs, including via directly killing of activated HSCs and by producing IFN‑γ. M1 macrophages 
promote antifibrotic differentiation of HSCs and are associated with proinflammatory response, which involves proinflammatory and antifibrotic cytokines, 
such as IL‑5, IL‑20, IL‑22, IFN‑γ, TNF‑α, NLRP3 and CCL5. Antifibrotic miRNAs include miR‑214, miR‑16, miR‑122 and miR‑150. On the other hand, NKT 
cells and M2 macrophages exert profibrotic effects by producing CXCL9, CXCL10, CXCL11, IL‑4, IL‑13, IL‑17 and TGF‑β. Profibrogenic miRNAs include 
miR‑21, miR‑221 and miR‑222. HSC, hepatic stellate cell; HCV, hepatitis C virus; CHC, chronic hepatitis C; NK, natural killer; NKT, natural killer T; CXCL, 
C‑X‑C motif chemokine ligand; miR, microRNA; CCL5, C‑C motif chemokine ligand 5; NLRP3, NLR family pyrin domain containing 3; M1, classically 
activated; M2, alternatively activated.
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and other chemokines, increases rapidly within a few weeks of 
viral infection (99). For instance, Zeremski et al (100) demon-
strated that CXCL9‑11 induction began at 38‑53 days and 
peaked at 72‑83 days after viral infection. In the process of 
HCV infection, the upregulation of CXCL12, CXCL9, CXCL10, 
CXCL11 and other chemokines significantly accelerates the 
process of fibrosis, which gradually advances to cirrhosis and 
potentially even liver cancer, both of which are considerably 
harder to treat (101‑103). Therefore, studies have proposed that 
chemokines, such as CXCL9, CXCL10 and CXCL11, related to 
CXCR3 in the peripheral blood of patients with CHC infection 
may be used as markers of fibrosis, and changes in their secre-
tion may be useful to evaluate the degree of fibrosis for more 
targeted and effective treatment options (104‑106).

IL‑15 and its high‑affinity receptor IL‑15 receptor (R)α are 
widely expressed in immune cells and liver cells (107,108). NK 
cells, NKT cells and CD8+ T cells generate IL‑15 to maintain 
system homeostasis and promote liver regeneration  (109). 
A previous study confirmed that IL‑15 and IFN‑γ exhibited 
protective effects against HCV via the ERK signaling pathway 
in vitro (110). Jiao et al (108) reported that increased fibrosis 
was observed in IL‑15Rα knockout (KO) mice. Furthermore, 
the study demonstrated that collagen production was increased 
in HSCs isolated from IL‑15RαKO mice. Therefore, IL‑15 
and IL‑15Rα may serve a protective role in the development 

of liver fibrosis by regulating the expression levels of fibrotic 
molecules and collagen in HSCs and maintaining the balance 
of NK cells in vivo.

IL‑17 was discovered to be important in the development 
of liver fibrosis in mice (111). It was reported that IL‑17 was 
strongly associated with an improved prognosis in patients 
with CHC (112). Thus, IL‑17 may be a therapeutic target for 
the treatment of fibrosis. IL‑17 regulates fibrosis through two 
separate mechanisms. First, IL‑17 stimulates macrophages to 
express the inflammatory cytokines IL‑6, IL‑1β and TNF‑α, 
as well as the major fibrogenic cytokine, TGF‑β1  (113). 
Additionally, IL‑17 directly stimulates HSCs to express type I 
collagen and promotes their activation, and MFBs were 
discovered to be formed through the STAT3 signaling pathway 
during the fibrosis of HSCs (114‑116).

IL‑20, a proinflammatory cytokine in the IL‑10 cytokine 
family, reportedly activates qHSCs and upregulates TGF‑β 
expression levels (117,118). In a mouse model of cell injury 
induced by CCL4, the use of antibodies to neutralize IL‑20 
or IL‑20 receptors inhibited HSC activation and liver fibrosis, 
and downregulated TGF‑β production (119).

IL‑22 is also a member of the IL‑10 cytokine family that 
activates the STAT3 signaling pathway in hepatocytes, which 
has been illustrated to promote the development of HCC (120). 
IL‑22 simultaneously expresses IL‑10 receptor 2 and IL‑22 

Table I. Comparison of different methods for detecting HCV.

Diagnostic marker	 Technology	A dvantages	D isadvantages	 (Refs.)

HCV	ELI SA, chemilumine	 Sensitive and specific.	E asily susceptible to	 (140‑143)
antibodies, HCV	 scence immunoassays, gold		  interference and produces	
core antigen	 immunochro		  false positive and false	
	 matographic assay,		  negative results.	
	 recombinant immunoblot assay			 
HCV‑RNA	 Reverse	 Higher specificity and	 Inaccurate quantification due	 (17)
	 transcription‑quantitative	 often used as a	 to numerous sources of variation.	
	 PCR, transcription	 confirmatory		
	 mediated amplification	 experiment.		
HCV genetic	 PCR‑sequence specific	 Helps to determine	 Troublesome operation and	 (2,144,146)
	 primers, line	 the establishment of	 expensive equipment and	
	 probe assay, PCR‑restriction	 different treatment	 reagents.	
	 fragment length polymorphism	 methods.		
Fibrosis	 APRI, FIB‑4 score	 Improve prediction of	 Low sensitivity of APRI and	 (23,154)
		  advanced fibrosis and	 FIB‑4 in gauging	
		  cirrhosis in patients with	 improvements in liver	
		  chronic hepatitis C	 fibrosis following therapy.	
		  infection.		
Other indicators	 hematoxylin and eosin	 More intuitive	 Invasive and only provides	 (150,153)
	 staining, immunohisto	 observation.	 an auxiliary diagnosis.	
	 chemical staining, abdominal			 
	 ultrasound examination,			 
	C T, magnetic resonance			 
	 imaging			 

HCV, hepatitis C virus; APRI, aspartate aminotransferase to platelet ratio index; FIB‑4, fibrosis‑4.
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receptor 1, both of which were identified to induce the senes-
cence of HSCs, thereby improving liver fibrosis (121). Previous 
studies have revealed that the increase in IL‑22 in the liver of 
mice reduced the expression of fibrosis‑associated genes, and 
accelerated the recovery of the liver damage caused by fibrosis 
by increasing the number of senescent HSCs and decreasing 
the expression levels of α‑SMA (122‑124).

Role of miRNAs in CHC infection. miRNAs are small non‑coding 
RNAs of ~22 nucleotides in length that regulate post‑transcrip-
tional gene expression by altering mRNA degradation (125). The 
abnormal expression of different miRNAs, such as miR‑122, 
miR‑126, miR‑129, miR‑199a and miR‑155, in HCV‑induced 
liver fibrosis and HCC has been previously reported  (126). 
Activated HSCs were discovered to express a low number of 
miRNAs (n=259), of which 47 were downregulated and 212 were 
upregulated upon activation (127). Clinical data also revealed 
that miR‑21 expression levels were associated with the viral load, 
fibrosis and serum liver transaminase levels (128). It was also 
identified that miR‑221/222 expression levels were upregulated 
in the human liver, and the upregulation was dependent on the 
progression of fibrosis (129). In addition, the increased expres-
sion levels of miR‑221/222 have also been confirmed in a mouse 
model of liver fibrosis (130). By contrast, antifibrotic miRNAs 
include miR‑19 (85), miR‑214 (131), miR‑16 (132), miR‑122 (133) 
and miR‑150 (134), amongst others. For example, connective 
tissue growth factor 2 (CCN2) was discovered to drive fibro-
genesis in HSCs (135), while in the fibrotic or steatotic liver, the 
upregulation of CCN2 was associated with the mutual down-
regulation of miR‑214 (131). The expression levels of miR‑122 
were also discovered to be negatively correlated with fibrosis, 
liver transaminase levels and patient age in another study (134).

4. Indicators for the detection of CHC infection

Serological test. At present, the primary markers used to 
detect the presence of the HCV in the laboratory include 
HCV‑Ab, HCV‑cAg, HCV‑RNA, and the presence of an HCV 
genotype and subtype (136,137). For the initial diagnosis, the 
most commonly used methods for detection are ELISAs and 
chemiluminescence immunoassays (CLIAs) for analyzing the 
presence of HCV‑Ab in the blood, as they are relatively easy 
to perform and provide results quickly (138,139). However, the 
HCV‑Ab test often provides false‑positive results in patients 
with a chronic infectious disease  (140‑142). For example, 
it was reported that in 477 individuals with an anti‑HCV 
response analyzed using a recombinant immunoblot assay 
(RIBA), 105 (22%) were confirmed as false positives (143). 
Thus, if a sample is reactive in the primary screening test, 
further tests are required to confirm this result. The additional 
tests usually used are RIBAs or nucleic acid amplification 
assays (NATs) (2,144). NATs are more specific than ELISAs or 
CLIAs and have a higher detection accuracy, but a shorter time 
window for detection (145). In addition, NATs require specific 
laboratory equipment and trained personnel; thus, it is difficult 
to perform this assay in conventional laboratories (146).

Diagnosis of fibrosis. Liver biopsies to measure liver fibrosis 
have been almost completely replaced by noninvasive 
methods, including the detection of biochemical markers, 

such as alanine aminotransferase (ALT) and aspartate amino-
transferase (AST), as well as scoring systems, such as the 
AST to platelet ratio index (APRI) score and fibrosis (FIB)‑4 
score (147,148). The scoring systems of APRI and FIB 4 are 
generally cheap and simple to use for the evaluation of liver 
fibrosis; however, FIB‑4 and APRI have been shown to have 
a considerably higher rate of false‑negatives or false‑positives 
in the detection of both fibrosis and cirrhosis (20). Thus, the 
results should be further confirmed using more accurate tests.

Other diagnostic methods. Aberrant lymphocyte proliferation 
is a primary characteristic of CHC, with evidence of focal 
and bridging necrosis and lobular degeneration in the portal 
area  (149). These lesions can be observed by pathological 
examination, such as hematoxylin and eosin staining and 
immunohistochemical staining (150). However, the pathogen-
esis and mechanism underlying the formation of liver lesions 
in the process of CHC infection has not been fully determined; 
therefore, it is difficult to accurately diagnose HCV infection 
through pathological methods (151). Other diagnostic methods, 
such as image‑based examinations, including abdominal ultra-
sound examination, CT, magnetic resonance (MR) imaging 
or MR scans, can be used for the partial screening of liver 
diseases (152); however, these methods are not without their 
own problems. For example, regarding specificity, it is difficult 
to determine whether the presence of lesions was caused by 
the HCV infection or not and it is hard to accurately detect the 
course of HCV (153). A breakdown of the markers, methods 
and their advantages and disadvantages are described in Table I.

5. Conclusions

Despite numerous studies investigating the role of HSCs in 
different models of liver fibrosis caused by various types of 
disease, there remains a lack of research into the changes in the 
characteristics and functions of HSCs following HCV infec-
tion. At present, routine laboratory serological examinations, 
pathological examinations and other methods are used for the 
diagnosis of HCV infection; however, each technique has its 
limitations. For example, considering that HCV infection is a 
dynamic process, the serum indicators are unstable and patients 
with varying degrees of HCV infection and courses have differing 
serum marker levels. Thus, a new test is required to supplement 
or replace preliminary screening, particularly in patients who 
are diagnosed as positive, to assess the extent and status of 
HCV infection. HSCs are a vital immune cell population acti-
vated during HCV infection. Following an HCV infection, the 
expression of specific molecular markers and chemokines or the 
secretion of cytokines associated with HSCs are synchronously 
altered. At present, to the best of our knowledge, there remains 
a lack of studies investigating the alterations to HSC‑related 
indicators. If the expression of one or several of the markers are 
discovered to be consistently altered during the course of HCV 
infection, they may serve as a suitable marker to assess the stage 
of HCV infection and they may also highlight novel avenues for 
understanding and eventually treating an HCV infection.
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