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Abstract. Typically, tumor‑associated macrophages (TAMs), an 
abundant population of leukocytes in lung cancer, are affected 
by tumor microenvironment (TME) and shift towards either 
a pro‑tumor (M2‑like) or an anti‑tumor phenotype (M1‑like). 
M2‑polarized macrophages, are one of the primary tumor‑infil-
trating immune cells and were reported to be associated with 
the promotion of cancer cell growth, invasion, metastasis, and 
angiogenesis. TAMs are considered a potential target for adju-
vant anticancer therapies, and recent therapeutic approaches 
targeting the M2 polarization of TAMs have shown encouraging 
results. The present review discusses recent developments in the 
role of TAMs in cancer, in particular TAMs functions, clinical 
implication and prospective therapeutic strategies in lung cancer.
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1. Introduction

Lung cancer is one of the leading causes of cancer‑associated 
mortalities worldwide, with a 5‑year survival rate of <20% (1). 

Approximately 1.8 million new cases are diagnosed annu-
ally, of which 80% present with an advanced stage disease. 
Furthermore, ~50% of the patients are aged >65 years, while 
30‑40% are aged >70 years and are ineligible for surgery (2). 
In clinical practice, chemotherapy is the primary treatment 
modality for lung cancer. However, the majority of patients 
acquire chemoresistance and metastatic progression, which 
leads toward the failure of cancer‑targeted therapies.

Several advances in tumor immunology in the past decade 
have aided the body's natural immune system in combating 
cancer. The tumor microenvironment (TME), characterized 
by the lack of nutrients, acidic and hypoxic environment, 
consists of cancerous and non‑cancerous cells supporting 
tumor growth, invasion and metastasis  (3). Furthermore, 
immune cells lose their anti‑tumorigenic ability and 
antagonize antitumour activity. The mutual conversion of 
tumor‑associated macrophages (TAMs), an abundant popu-
lation of leukocytes in lung cancer, are determined by the 
TME (4). The TAM phenotypes dynamically alter during 
tumor progression. The M1‑like macrophages are initially 
activated, and they produce chemokines and cytokines to 
recruit the cytotoxic CD8+ T and NK cells, which express 
high levels of IFN‑γ and other cytokines to destroy the tumor 
cells (4). However, during tumor progression, the M2‑like 
TAMs protect the cancer cells from anti‑tumor immune 
responses, and promote their proliferation, angiogenesis, 
and metastasis. These M2‑like TAMs secrete TGF‑β to 
impede the cytotoxicity of NK cells, and express high levels 
of programmed cell death ligand 1 (PD‑L1) to restrict the 
anti‑tumor activity of T cells (5,6).

Clinical studies have suggested that increased TAM 
density correlates with a poor prognosis in solid tumors (5,7,8) 
Several animal model experiments have validated this 
observation by demonstrating that increased TAM density is 
associated with tumor progression and metastasis, and overex-
pression of macrophage growth factors or chemokines (9,10). 
The deletion or re‑differentiation of TAMs enhances immune 
cell‑mediated anti‑tumor responses and benefits from chemo-
therapy (11‑13). Therefore, targeting TAMs may be at the 
forefront of lung cancer research and a novel strategy for lung 
cancer therapy. The present review provides an overview of 
TAM biology and proposes a therapeutic strategy for targeting 
TAMs in lung cancer.
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2. Macrophage plasticity in lung cancer development

Origin of TAMs in lung cancer. Accumulating evidence has 
suggested that TAMs originate from blood monocytes, and are 
recruited at tumor sites by tumor‑derived chemotactic signals, 
including monocyte chemo‑attractant protein‑1 (MCP‑1), 
which is also known as CCL2 (11‑13). Furthermore, a small 
wave develops from in situ monocyte‑macrophage proliferation 
and splenic monocytes. However, lung cancer exhibits a high 
proportion of tissue‑resident macrophages, named alveolar 
macrophages (AMs), which are different to other solid tumors. 
The AMs are also derived from peripheral blood monocytes, 
but di-erentiated in response to interferon‑γ (IFN‑γ) and 
lipopolysaccharide (LPS) (14). The peripheral monocytes and 
resident mature monocytes significantly contribute toward the 
origin of TAMs in lung cancer. Furthermore, the functional 
diversity of TAMs is affected by local TME, and macrophage 
polarization occurs at any point in the tumorigenic process.

Opposite properties of M1 and M2 macrophages. Similarly 
to two polarized sets of T helper 1/2 (Th1/Th2) cells, the 
TAMs are divided by dichotomy as classically activated M1 
macrophages and alternatively activated M2 macrophages. 
The classical or M1 macrophages are activated by microbial 
products or interferon‑γ (IFN‑γ), conferring pro‑inflammatory 
and microbicidal functions, and the capacity to facilitate 
tumor cell destruction (15). The microbial products or IFN‑γ 
activate signal transducer and activator of transcription 1 
(STAT1), interferon regulatory factor (IRF) 3, IRF5, and 
NF‑κB, enable M1 macrophages to generate additional 
pro‑inflammatory mediators  (16). These are characterized 
by high production of nitric oxide (NO) and reactive oxygen 
intermediates (ROI), secretion of pro‑inflammatory cytokines, 
including TNF‑α, IL‑1, IL‑12 and IL‑23, and high levels of 
MHC molecules (15,17) (Fig. 1).

Additionally, Th2 cytokines, including IL‑4 and IL‑13, 
stimulate monocytes or macrophages to transform into the 
M2 phenotype (15). This macrophage subset triggers allergic 
reactions, promotes inflammation resolution and wound 
healing, and favors angiogenesis and tissue remodeling in 
cancer (Fig. 1). Apart from IL‑4 and IL‑13, other stimuli and 
signaling pathways, including IL‑10, glucocorticoid hormones 
and IL‑1R may also induce M2 macrophage polarization. 
There are central transcription regulators that activate the M2 
phenotype, including STAT1, STAT3, STAT6, peroxisome 
proliferator‑activated receptor (PPAR‑γ), cAMP response 
element binding protein (CREB)‑CCAAT/enhancer binding 
protein (C/EBP), hypoxia‑inducible factor (HIF), IRF4 and 
PI3K/Akt (18‑21).

Based on their functions, M2 macrophages are further clas-
sified into M2a, M2b, M2c and M2d (Fig. 2). M2a, induced by 
IL‑4 or IL‑13, as well as fungal and helminth infections, express 
high levels of mannose receptor (CD206), CD209, IL‑4R and 
FcεR, and secrete large amounts of TGF‑β and insulin‑like 
growth factor, which contribute toward wound healing and 
tissue repair  (22). M2b, stimulated in response to immune 
complexes, IL‑1β and bacterial LPS, are high producers of 
IL‑10, IL‑1β, IL‑6 and TNF‑α, which exert anti‑inflammatory 
effects (23). M2c, induced by IL‑10, TGF‑β and glucocorti-
coids, are considered to be involved in immunosuppression, 

tissue repair and matrix remodeling (24). These macrophages 
exhibit increased expression of RAGE, CD163 and CD206, 
and secrete large amounts of IL‑10 and TGF‑β (25). Finally, 
M2d, activated by leukocyte inhibitory factor, TLR ligands 
and adenosine, express low levels of CD206, but produce 
significant amounts of IL‑10, TGF‑β and VEGF to promote 
tumor progression by facilitating immunosuppression and 
angiogenesis (26).

TAMs display pro‑tumor M2 type macrophages. Compared 
to M1 macrophages, TAMs produce fewer ROIs and inflam-
matory cytokines (IL‑1β, TNF‑α, IL‑6, IL‑12, CCL3 and 
CCL4)  (27). While the NF‑κB pathway is a key regulator 
of inflammation, TAMs display defective NF‑κB activation, 
indicating low expression of NF‑κB‑dependent cytotoxic 
mediators and inflammatory cytokines  (16). By contrast, 
typical M2 markers, including the scavenger receptor‑A (SR‑A), 
mannose receptor (MR), arginase‑I (Arg‑I), YM1 and FIZZ1, 
and MGL2 showed higher expression in TAMs (16). Previous 
studies have suggested that TAMs present M2‑associated 
function by secreting pro‑angiogenic and tumor‑inducing 
chemokines, including epidermal growth factor (EGF), VEGF 
and TGF‑β (28,29). Therefore, the notion that TAMs resemble 
M2 macrophages has been supported in vitro and in vivo (30).

The M2‑type macrophages may be reversed to M1‑type 
under certain conditions. Macrophages are highly plastic cells 
that may be differentiated into several phenotypes. Polarization 
is dynamic and affected by the TME. The dichotomy of 
M1 and M2 subtypes is over‑generalized and only partially 
represents the continuity of polarization. For example, 5% of 
the AMs from lung cancer express M1 and M2 markers (31), 
and mixed polarization phenotypes (displaying M1 and M2 
characteristics, HLA‑DR, IL‑1β, TNF‑α, CD163 and IL10) 
have been described (32). Therefore, M1 and M2 markers may 
be used to distinguish macrophage populations to a certain 
extent.

3. Functional aspects of macrophages in lung cancer

TAMs in lung cancer initiation and progression. TAMs 
provide a suitable microenvironment to support growth, 
immunosuppression, invasion and therapeutic resistance in 
lung cancer, primarily by secreting TGF‑β, IL‑10, CCL18, 
matrix metalloproteases (MMPs), VEGF, COX2 and PDGF‑B 
(Fig. 1).

IL‑10. In vitro, the TAMs derived from THP‑1 cells co‑cultured 
with A549 and H1299 cells promoted epithelial‑to‑mesenchymal 
transition (EMT) and invasion in lung cancer cells (33,34). 
Furthermore, TAMs may activate and protect cancer stem 
cells (CSCs) to promote tumor progression by secreting 
IL‑10  (35). When tumor cell proliferation is uncontrolled, 
oxygen and nutrition are limited, leading to hypoxia. Hypoxia 
skews macrophages to the M2‑like phenotype with increased 
expression of IL‑10, HIF1α and VEGF (36). Hypoxia then 
drives macrophage diversity to facilitate lung cancer cell 
metastasis, angiogenesis, and immune evasion in vitro and 
in vivo (36,37). Clinical data have demonstrated that increased 
gene expression of macrophage‑derived IL‑10 in tumor tissues 
was significantly correlated with stage, tumor size, lymph 
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node metastasis, lymphovascular invasion, or histologically 
poor differentiation (38).

IL‑6. The macrophages derived from THP‑1 exhibit high 
expression of IL‑6 when co‑cultured with human non‑small 
cell lung cancer (NSCLC) A549 or H1299 cells, and enhances 
the invasive ability of lung cancer cells by regulating EMT (34). 
Additionally, IL‑6 may stimulate macrophages to express 
higher levels of IL‑10, and together, IL‑6 and IL‑10 induce 
M2 macrophage differentiation in an IL‑4‑dependent manner 
via STAT3 activation (39); while, IL‑6‑induced macrophage 
infiltration proceeds via the CCL2/CCL5 pathway in NSCLC. 
Abrogation or suppression of IL‑6 expression may inhibit 
TAM‑induced invasion and angiogenesis in lung cancer 
cells (34,40).

TGF‑β. TGF‑β, together with its co‑receptor endoglin, 
serves a vital role in tissue repair, and angiogenesis and 
lymphangiogenesis. A previous study reported an increase 
in the levels of endoglin during the process of monocyte 
transition to macrophages (41). Furthermore, macrophages 
and pro‑inflammatory cytokines are significantly down-
regulated in Eng+/− mice (42). The TGF‑β, released by tumor 
cells and M2 type macrophages, may suppress M1 polarized 
macrophages, and stimulate mature macrophages to polarize 

to the pro‑tumor M2 type. Maeda et al  (43) reported that 
IL‑10 expression in macrophages is positively associated 
with TGF‑β expression, and that TGF‑β enhances Mφ to 
secrete IL‑10, promoting tumor progression in tumor‑bearing 
mice (43). A previous study has shown that TGF‑β secreted 
by TAMs promotes EMT, and upregulates the expression of 
SOX9, which enhances tumor cell proliferation, migration 
and invasion (44). Furthermore, suppressing the expression 
of TGF‑β may inhibit TGF‑β1‑induced EMT in A549 lung 
cancer cells (45).

MMPs. Furthermore, TAMs induce lung cancer cell invasion 
by producing MMPs, including MMP‑9 and MMP‑2, and 
degrading the extracellular matrix. MMP‑9 expression is asso-
ciated with lymph node metastases, tumor progression and 
prognosis (46). IL‑10‑induced macrophages enhance MMP‑9 
and MMP‑2 expression and promote cancer cell invasion and 
migration (47). Therefore, inhibition of MMP production may 
reverse macrophage‑mediated cancer cell invasion and migra-
tion activity (46‑48).

Chemokines. Chemokines are a family of soluble and 
chemotactic cytokines that are secreted by and mediate the 
chemotaxis and migration of immune or tumor cells. Recent 
advances have indicated that chemokines originating from 

Figure 1. Macrophage polarization and function of TAMs in lung cancer. TAM, tumor‑associated macrophage. 
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TAMs, including CCL18, MIP‑3α, CCL5, CXCL8, and 
CCL22, serve critical roles in cancer progression by binding 
to their cognate receptors in carcinoma cells (49‑51). Early 
evidence has suggested that CCL22 is highly expressed 
in lung cancer, and is a predictive marker for disease‑free 
survival duration and tumor recurrence (49‑52). CCL22 may 
promote the bone metastasis of lung cancer cells that express 
CCR4 (53). CXCL8, an M2‑related chemokine secreted by 
TAMs, also serves a role in lung cancer. Previous studies have 
suggested that CXCL8 may induce EMT, and accelerate inva-
sion and migration via the MAPK/NF‑κB and JAK2/STAT3 
signaling pathways  (54,55). Therefore, therapies or drugs 

targeting CXCL8 may attenuate cell proliferation, invasion, 
and migration in lung cancer (55,56).

Angiogenesis. TAMs serve a key role in facilitating angio-
genesis by producing pro‑angiogenic factors, including IL‑8, 
VEGF, urokinase plasminogen activator (uPA), and MMPs, 
(Fig.  1). TAM density is associated with intra‑tumoral 
microvessel counts in NSCLC (57). Chen et al (58) reported 
that the THP‑1‑derived M2‑type macrophages may promote 
angiogenesis in NSCLC, by producing proangiogenic factors, 
including IL‑8, and supporting the generation of blood 
vessels (58). Hypoxia is a local attractant for TAMs in the 

Figure 2. Different types of M2‑like macrophages in lung cancer. Arg-1, arginase-1; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) 
ligand; Fizz1, found in inflammatory zone 1; VEGF, vascular endothelial growth factor.
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TME, which induces the expression of HIF‑1 and HIF‑2; and 
HIF‑2 may upregulate VEGF expression (59,60). Additionally, 
VEGF is also a chemoattractant for TAMs, which forms a 
positive feedback loop to promote tumor angiogenesis (61).

Immunosuppression. In TME, macrophages not only lose their 
anti‑cancer properties, but also impede the immunoregulatory 
functions of other immune cells. The TAMs upregulate the 
expression of PD‑L1 to suppress T‑cell toxicity and inhibit 
phagocytosis (5,62). The CD8+ T cells are excluded by TAMs, 
and thus cannot act near the cancer cells (63). Furthermore, 
TAMs produce cytokines and other proteins to maintain 
immunosuppression, including CCL‑22, CCL‑17, TGF‑β, 
arginase 1 and galectin‑3 (28,29). The AMs stimulated by the 
Th2 cells produce immunosuppressive cytokines, including 
IL‑10 and TGF‑β in the lung TME to reduce the number of 
tumor‑infiltrating lung dendritic cells (DCs) and block their 
maturation (64,65). Furthermore, IL‑10 triggers the immu-
nosuppression of T cells by upregulating PD‑L1 expression 
in tumor macrophages (38,66). The blockade or deficiency 
of IL‑10 may induce CD8+ T cell cytotoxicity and promote 

tumor‑resident CD8+ T cell expansion (66). Additionally, the 
macrophage‑derived CCL22 promotes an immunosuppressive 
tumor microenvironment by recruiting Tregs (67). Furthermore, 
Young et al (68) indicated that NK cell cytotoxicity is also 
suppressed and facilitates pulmonary metastases  (68). 
Depletion of the AM or reversal of M2 polarization may 
relieve immunosuppression imposed by the macrophages, and 
strengthen local Th1 anticancer activity (64).

Chemotherapy resistance. Resistance to chemotherapy increases 
the difficulty of therapeutic efficacy, and drives tumor progres-
sion, recurrence, and distant, bone and lymph node metastasis. 
A strong correlation has been demonstrated between TAMs and 
chemotherapy resistance (13,69). A previous study reported that 
abundant CD68+ and CD163+ macrophages accumulate inside 
or adjacent to tumors following chemotherapy (69). In a mouse 
Lewis lung carcinoma model (LLC1s), treatment with chemo-
therapeutic agents induces neoplastic cells that release CXCL12, 
which enhances the infiltration of CD206+ TAMs, inhibits tumor 
cell death, and assists in tumor relapse (13). Additionally, treat-
ment with cisplatin or carboplatin induces tumor cells to secrete 

Figure 3. Anti‑tumor therapies targeted TAMs in lung cancer. IL, interleukin; TGF‑β, transforming growth factor‑beta; MMPs, matrix metalloproteinases; 
VEGFA, vascular endothelial growth factor A; TAM, tumor‑associated macrophage. 
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IL‑6 and/or prostaglandin E2 (PGE2), which mediates M2 
macrophage polarization via activation of the STAT3, STAT1 
and STAT6 signaling pathways, and resists cytotoxic chemo-
therapy (70,71). Furthermore, DeNardo et al (72) illustrated 
that paclitaxel treatment boosts the infiltration of macrophages, 
which limits the recruitment and efficacy of CD8+ cytotoxic 
T cells, and inhibits the antitumor activity of paclitaxel (72). 
Recent large cohort clinical studies have reported a close 
correlation between the infiltration of M2‑macrophages, poor 
response to chemotherapy, and poor clinical outcomes (73,74). 
The elimination of TAMs by anti‑CSF‑1 or anti‑CCL2 anti-
bodies, preventing M2‑differentiation by COX inhibitors, 
and/or anti‑IL‑6R antibodies may enhance the cytotoxic effects 
of chemotherapeutic agents, including taxol, cisplatin, and 
doxorubicin (75,76). Therefore, concomitant therapy with an 
intervention strategy that reduces macrophage population or 
inhibits M2 polarization may amplify the antitumor activity of 
chemotherapeutic agents. 

4. Clinical implications of TAMs in lung cancer

Clinical studies have suggested that the density of macro-
phages, particularly M2 type, is associated with a poor 
prognosis in almost all human cancer types (7,8). However, 
there are conflicting data with regards to lung cancer. CD68, 
a common monocyte/macrophage marker, when used to label 
TAMs, indicated it to act as an independent prognostic factor, 
and a higher percentage of tumor islets were found to be 
correlated with improved outcomes (77,78). However, other 
studies observed no association between CD68+ macrophage 
densities and tumor islets or stroma with patients' survival 
duration (79,80). This is possibly due to involvement of the 
margin or central macrophages.

Usually, the CD68+CD163+ or CD68+CD206+ markers 
are used to identify M2 macrophages. Zhang et al (81) indi-
cated that levels of M2‑type (CD68+CD206+) were positively 
associated with peritumoral lymphatic microvessel density, 
but negatively associated with patients' prognoses (81). In line 
with this, emerging research has suggested that the accumula-
tion of CD163+ macrophages is closely correlated with a poor 
prognosis in lung cancer. Furthermore, an increased density 
of CD68+CD163+ macrophages in tumor nests and stroma was 
associated with lymph node metastases (81), but no such associ-
ation was observed with recurrence‑free survival (RFS), overall 
survival (OS), and TNM stages (80,82). However, Cao et al (7) 
found that levels of CD68+CD163+M2 were correlated with OS 
and DFS in NSCLC (7). Furthermore, increased infiltration of 
macrophages was observed in patients with lung squamous cell 
carcinoma (LUSC), wild‑type EGFR, and smoking habits (7).

Additionally, M2‑TAMs labeled with CD204+ serve a role 
in prognosis. High infiltration of CD204+TAMs in the stroma 
may be correlated with TNM stages, presence of vascular 
and pleural invasion, and OS and RFS in patients with stage 
II LUSC. However, no association was observed between the 
levels of CD204+ macrophages and poor patient outcomes (83).

Taken together, the different data or contradictory results 
of previous studies may be explained by the tumor histological 
type and origin in patients, methodologies applied in counting 
TAMs, and definition of islet and stroma. Furthermore, a 
recent meta‑analysis reported that M2‑type TAMs or M1/M2 

polarization in the lung cancer islets or stroma are associated 
with tumor progression. Therefore, targeting TAMs may be 
considered as a newer anti‑tumor strategy in lung cancer.

5. TAM‑targeted therapeutics

TAMs, the major component of leukocyte infiltration in tumors, 
serve an important role in tumor behavior, and thus therapies 
targeting TAMs are employed. To begin with, inhibition of macro-
phages infiltrating the tumor; CSF1‑CSF1R and CCL2‑CCR2 may 
induce macrophage recruitment, and blockade of CCL2‑CCR2 
or CSF1‑CSF1R may decrease TAM infiltration, reversing the 
immunosuppressive status (84) (Fig. 3), but anti‑CCL2 therapy 
may aggravate metastasis (85). A second strategy is that blockade 
of TAMs repolarize into the M2‑type: Few signaling components 
regulate M2 macrophage polarization, including the Toll‑like 
receptors (TLR), STAT6 and NK‑κB. When these signals are 
intervened, TAMs lose their ‘alternative’ activated phenotype. 
A third strategy would involve reeducating TAMs to M1‑type 
or switching M2 to M1: Several drugs, including BTH1677 
(a yeast β‑glucan immunomodulator), hydroxychloroquine, and 
celecoxib, switch M2‑like TAMs to an antitumor phenotype, or 
M1‑like TAMs (86‑88). A final strategy is based on the fact that 
decreasing the levels of critical TAM‑secreted cytokines involved 
in tumor biology: For example, CCL18, CCL22, and MIP‑3α, 
mainly produced by the M2‑type macrophages, confer malignant 
behaviors (9,10,49). Blockade of CCL18, CCL22, or MIP‑3α 
weakens the TAM‑mediated pro‑tumor ability (9,10,89).

The aforementioned strategies provide enhanced and 
promising therapeutic effects, although there are a few 
major issues or side effects that require attention, including 
the efficiency of specific drug delivery and nontargeting 
TAMs. Evidence has indicated that nanoparticles or nanopar-
ticle‑based drug delivery are more reliable and effective in 
regulating the macrophage phenotype by ensuring that the 
drug reaches the cancer site without off‑target activity. Several 
studies have demonstrated that nanodrugs offer superiority 
in mediating the polarization of macrophages with increased 
drug uptake. For instance, curcumin (Cur), baicalin (Bai), 
and ginseng‑derived nanoparticles have been reported to 
alter TAM polarization without discernible toxicity (90‑92). 
Compared to the drugs themselves, their nanoparticle deriva-
tives showed improved pharmacokinetics and bioavailability 
in systemic circulation, and thus contributed toward excellent 
antitumor responses (90‑92). Furthermore, few materials used 
in nanoparticle production, including TiO2 and Ag, may pref-
erentially polarize TAMs towards an M1 phenotype (93,94).

We hypothesize that every immune cell serves an equal 
role in the body, and macrophages have dual property; 
therefore, eliminating or decreasing macrophages is not a 
rational approach and has other disadvantages. By contrast, 
'reeducating' the macrophages or targeting the tumorigenic 
cytokines or chemokines secreted by the macrophages should 
be studied as a preferred strategy for combating cancer.

6. Conclusions

Several experimental and clinical studies have demonstrated 
that TAMs serve a seminal role in the growth, angiogenesis, 
metastasis, and invasion in lung cancer. Furthermore, TAMs 
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confer chemotherapy resistance and immunosuppression. 
Therefore, TAMs are now considered a promising target in 
the treatment of lung cancer. However, no appropriate drugs 
have been administered in the patients, and newer treatment 
approaches may ascertain improved clinical outcomes.
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