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Abstract. Platelets are small pieces of cytoplasm that have 
become detached from the cytoplasm of mature megakaryo‑
cytes (MKs) in the bone marrow. Platelets modulate vascular 
system integrity and serve important role, particularly in 
hemostasis. With the rapid development of clinical medicine, 
the demand for platelet transfusion as a life‑saving interven‑
tion increases continuously. Stem cell technology appears to be 
highly promising for transfusion medicine, and the generation 
of platelets from stem cells would be of great value in the clinical 
setting. Furthermore, several studies have been undertaken to 
investigate the potential of producing platelets from stem cells. 
Initial success has been achieved in terms of the yields and 
function of platelets generated from stem cells. However, the 
requirements of clinical practice remain unmet. The aim of the 
present review was to focus on several sources of stem cells and 
factors that induce MK differentiation. Updated information on 
current research into the genetic regulation of megakaryocyto‑
poiesis and platelet generation was summarized. Additionally, 
advanced strategies of platelet generation were reviewed and 
the progress made in this field was discussed.
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1. Introduction

In healthy adults, the mean number of platelets in the blood 
is maintained at (150‑400) x103/µl, with a short life of 
7‑10 days (1,2). The platelet is an essential blood component 
that modulates vascular system integrity through coagula‑
tion mechanisms, but is also implicated in inflammation and 
cancer (3,4). Resting platelets are ~3 µm in diameter whilst 
circulating inside blood vessels (5), and are activated upon 
contact with the surface of non‑vascular intima, such as a 
surface injury accompanied by exposure of collagen and other 
agonists (6). The activated platelets then stimulate platelet 
glycoproteins and release molecules in order to enhance 
hemostasis (7).

A variety of circumstances, including cancer therapy, 
trauma, immune disorders, sepsis and inherited platelet 
defects, may result in thrombocytopenia (8,9). Platelet transfu‑
sion efficiently protects patients with severe thrombocytopenia 
from potentially life‑threatening hemorrhage (8). In addition, 
due to the aging of the population, and the increase in the rate 
of bone marrow (BM) transplantation (10‑12), the demand 
for platelet transfusion is constantly rising. However, platelet 
availability is solely donor‑dependent at present. The short 
life of 5 days (13), harsh preservation conditions and high risk 
of bacterial growth contribute toward the relatively limited 
supply for clinical use (14,15). Therefore, an increasing number 
of studies focus on investigating factors that induce mega‑
karyocyte (MK) differentiation and producing platelets from 
stem cells for clinical application (16,17). With the continuing 
research, various genetic factors regulating megakaryocyto‑
poiesis and platelet generation are becoming increasingly 
elucidated and initial success has been reported (13,18).

In addition to the urgent demand of platelets for clinical 
use, there is a serious problem among patients who require 
repeated transfusions, as they often develop platelet 
transfusion refractoriness (PTR) associated with alloimmu‑
nization (19). These patients not only face a marked increase 
in the costs of healthcare, but also have higher morbidity and 
mortality rates (20). Furthermore, adverse events may occur 
in transfusion recipients. Ex vivo generation of platelets in 
the laboratory (21) may solve this problem. The findings of 
recent studies may enable platelet production on a large scale 
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under specific conditions (22‑24). However, the clinical supply 
remains high.

Achieving highly efficient production of platelets ex vivo in 
the BM is a challenging task. A more detailed understanding 
of the process from platelet formation to release is urgently 
required. On this basis, the present review is focused on 
platelet development from stem cells.

2. Stem cell sources

Various types of stem cell may produce platelets, each with 
specific advantages and disadvantages in terms of scalability, 
platelet function and other aspects (25). Therefore, these 
must be taken into consideration during platelet production. 
Hematopoietic stem cells (HSCs) are a well‑known traditional 
stem cell source. However, they are not widely used due to 
their limited numbers. It has been demonstrated that induced 
pluripotent stem cells (iPSCs), human embryonic stem cells 
(hESCs) and other stem cell sources, may overcome the short‑
comings of HSCs (26), thereby providing a novel approach to 
large‑scale platelet production (Table I). All these types of cell 
are briefly described in the present review.

HSCs. HSCs, also known as CD34+ cells, are the simplest 
stem cell source for generating platelets. At present, HSCs are 
mainly obtained from the BM, umbilical cord blood (UCB) 
and peripheral blood (27,28).

UCB‑derived HSCs typically have a higher ability to 
proliferate compared with the other two types of cells (29). 
However, a previous study demonstrated that UCB‑derived 
CD34+ cells were difficult to mature fully, with <10% MKs 
induced from UCB identified as polyploid after one week 
of thrombopoietin (TPO) induction (30). Current UCB 
availability is also limited.

Compared with BM and UCB, peripheral blood is easier 
to obtain and the procedure is less invasive. An increasing 
number of studies preferentially use peripheral blood as a 
source of HSCs (31,32). Following procurement, HSCs may 
be isolated and further cultured into MKs. However, the main 
problem with peripheral blood is that HSCs are rare (<0.1% of 
all nucleated cells in the circulation), resulting in an insuf‑
ficient yield of MKs (33‑35). In addition, cell culture is very 
slow and labor‑intensive for large‑scale production (36).

iPSCs. iPSCs are created by artificially inducing non‑plurip‑
otent cells to express specific genes (37). Due to the limited 
availability of HSCs, further studies on iPSCs have been 
undertaken. Over the past years, iPSCs have shown great 
potential in biomedical research (38,39).

Feng et al (40) created a three‑step protocol to generate 
MKs and functional platelets from iPSCs in a scalable manner 
within 20 days. In addition, the MK progenitors produced with 
their method may be stored at low temperatures and proliferate 
rapidly within a short time. Further analyses demonstrated 
that iPSC‑derived platelets exhibited no major differences 
with platelets in the circulation. Subsequently, iPSC‑derived 
platelets without major histocompatibility antigen (HLA) were 
successfully generated by knocking out the β2‑microglobulin 
gene (40). Another study generated a stable HLA‑universal 
iPSC line by silencing the expression of HLA class I up to 

82% successfully (41). This HLA‑universal iPSC line was able 
to renew MKs and functional platelets with low immunoge‑
nicity. More importantly, iPSC‑derived HLA‑universal MKs 
had the ability to escape antibody‑dependent cell‑mediated 
cytotoxicity and produce platelets for transfusion. Once the 
HLA‑universal MKs and platelets are efficiently generated, the 
problem of PTR and limited platelet supply may be resolved.

hESCs. hESCs are primitive pluripotent stem cells derived 
from a human blastocyst inner cell mass. They can be propa‑
gated indefinitely in vitro, providing an ideal unlimited source 
for large‑scale production of platelets (2). Several methods for 
differentiating hESCs into MKs have been developed over 
time (42). Gaur et al (42) demonstrated that hESC‑derived 
CD41+/CD42+ MKs expressed von Willebrand factor and 
released functional platelets, but the final number of platelets 
was small. Subsequently, different culture approaches were 
described to improve the platelet yield. Lu et al (2) achieved 
60 MKs per starting hESC with a feeder‑free hESC culture 
approach. These hESC‑derived platelets were demonstrated 
to have the same characteristics of platelets in the blood. 
Recently, the TPO gene was inserted into the adeno‑associ‑
ated virus integration site 1 locus of the hESC genome (43), 
creating cell lines stably expressing and secreting TPO. As a 
result, the production of hESC‑derived platelets was increased, 
and the function of these platelets was comparable with that 
in the peripheral blood.

Adipose tissue‑derived stromal cells (ASCs). With further 
studies, more strategies for producing platelets have been 
designed for clinical use (13). ASCs represent an attractive 
choice for platelet production in vitro. As ASCs contain 
certain essential genes indispensable for MK differentiation 
and platelet production, they can differentiate without gene 
transfer (44). Furthermore, ASCs may secrete endogenous 
TPO that promotes platelet production (45). Tozawa et al (46) 
reported a manufacturing system for platelets from the ASC 
line (ASCL). In the aforementioned study, ASCs were cultured 
in MK lineage induction media. At day 8 of culture, the 
maximum number of ASCL‑derived MKs was achieved, and 
ASCL‑derived platelets were obtained, with a peak at day 12 
of culture. The inspection results of platelet‑related functions 
are satisfactory.

3. Gene regulation during megakaryopoiesis

MKs are considered to be the progenitors of platelets (47). 
Multiple extrinsic and intrinsic signaling pathways are 
involved in megakaryopoiesis, but this process is ultimately 
under the control of transcription factors (48), including GATA 
binding protein 1 (GATA‑1), friend of GATA‑1 (FOG‑1), 
friend leukemia virus integration 1 (FLI1) and runt‑related 
transcription factor 1 (RUNX1).

GATA‑1 has been reported to be a key factor during MK 
differentiation and maturation. GATA‑1 can recruit different 
co‑regulators to chromatin in order to participate in the 
process of megakaryopoiesis (49). Orkin et al (50) observed 
that MKs with GATA‑1 knockout required a longer time to 
mature and exhibited marked hyperproliferation; platelet yield 
was lower compared with normal platelets in vivo as well. 
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FOG‑1 is a multitype zinc finger protein that can interact with 
GATA‑1 (51). According to specific cell and promoter context, 
FOG‑1 can enhance or inhibit the activity of GATA‑1, which 
is important during MK differentiation (52,53).

FLI1 is an E26 transformation‑specific proto‑oncogene 
domain transcription factor. Several studies have demonstrated 
that FLI1 serves an important role in megakaryopoiesis (54‑56) 
and is a key regulator of megakaryopoiesis, working together 
with GATA‑1 (57). Recently, a study investigating the effect 
of FLI1 during megakaryopoiesis and platelet biology 
further elucidated this process (58). iPSCs obtained from a 
patient with Paris‑Trousseau syndrome and a control line 
with FLI1‑knockout were cultured. The results revealed 
that platelets production was decreased in the two cell lines. 
Overexpression of FLI1 was shown to increase the yield and 
functionality of platelets (58).

The transcription factor RUNX1 is pivotal in MK devel‑
opment. For example, Okada et al (59) demonstrated that the 
depletion of RUNX1 in UT‑7/GM cells led to overexpression 
of MK markers; however, cell proliferation was decreased at 
the same time.

The Tribbles Pseudokinase 3 gene (TRIB3) encodes a pleio‑
tropic protein (60) and further study revealed that it is involved 
in the regulation of cell differentiation. Butcher et al (61) built 
a cellular model system of hematopoietic lineage differen‑
tiation in vitro. Results from this model demonstrated that 
TRIB3 acted as a negative modulator during megakaryopoi‑
esis. In primary hematopoietic cell culture, TRIB3‑silencing 
enhanced MK differentiation. By contrast, overexpression of 
TRIB3 decreased MK differentiation (61).

C3G, also referred to RAPGEF1, is an activator of Rap1 
GTPases. It is involved in platelet activation and several other 
important biological processes (62,63). Ortiz‑Rivero et al (64) 
evaluated C3G function in megakaryopoiesis using a trans‑
genic mouse model. The results indicated that BM cells from 
transgenic C3G mice exhibited increased CD41 and CD61 
expression. Overexpression of C3G also increased the number 
of CD41+ MKs. Subsequently, three different cell lines were 
cultured, including K562, human erythroleukemia cell line and 
DAMI, with overexpression or silencing of C3G or GATA‑1. It 
was observed that GATA‑1 promoted C3G expression during 
MK differentiation (64).

4. Promotion of platelet production

Platelet production takes place under specific conditions in 
the BM microenvironment, with various chemokines, growth 
factors, calcium, oxygen and adhesive interactions regulating 
megakaryocytopoiesis and MK migration (48). Several 
advances have been made to date in the study of promoting 
platelet production.

Microenvironment of platelet production. The dimensions, 
hardness, matrix components and other conditions of the 
BM microenvironment accurately mediate the effects of 
environmental factors on platelet production. A variety of 
associated studies have improved our understanding of this 
process (65‑68).

A three‑dimensional environment expands the contact area 
of MKs with the surrounding environment. Platelet production 

may be promoted through the interaction of proplatelets with 
the microenvironment (65,66).

Transient receptor potential cation channel subfamily V 
member 4, sensitive to ion channels, can trigger calcium 
inf lux, β1 integrin activation and internalization, and 
human Akt phosphorylation in order to promote platelet 
production (67); this process only occurs when MKs 
adhere to a softer instead of a harder matrix. Experiments 
demonstrated that lysyl oxidase (LOX) may modulate the 
stiffness of the BM matrix via collagen crosslinking (68). 
Therefore, appropriate conditions, including increased 
LOX levels and a softer matrix, favor platelet production. 
Prior to blood cell release in the circulation, the interaction 
between progenitor cells and the vasculature is crucial (68). 
In order to simulate the vascular network, a custom perfu‑
sion chamber containing a multi‑channel lyophilized silk 
sponge was constructed (68), which increased platelet 
production efficiently.

Previous studies observed in vivo flow dynamics and have 
conducted a series of experiments (24,69). It was reported 
that turbulent flow was a crucial physical factor for platelet 
release (24). Based on this result, a novel bioreactor with a 
flow chamber and multiple pillars was developed, and further 
experiments produced a higher number of platelets (69).

Different induction factors of platelet production. The factors 
most widely used to promote platelet production include 
interleukin‑3 (IL‑3), IL‑6, IL‑9, IL‑11 and TPO (70‑72).

IL‑3, IL‑6, IL‑9 and IL‑11 affect TPO‑induced MK produc‑
tion indirectly (70‑72). Experiments in vitro indicated that the 
addition of mixed cytokines mentioned above could stimulate 
platelet production (73‑75). IL‑3 and TPO act synergistically 
in promoting MK differentiation (73). In the inflammatory 
state, IL‑6 promotes proplatelet formation by increasing the 
level of TPO (74). Stem cell factor also plays an important 
role in promoting cell proliferation in the early stage of MK 
differentiation (73).

TPO is a major regulator of platelet production and is mainly 
produced by liver cells in serum (75). TPO combines with Mpl 
to regulate the differentiation, development, maintenance and 
proliferation of HSCs and MKs (75). The level of free TPO in 
the plasma increases when the platelet count decreases, stimu‑
lating hematopoietic progenitor cells in the BM to differentiate 
into MK lines to produce more platelets (76).

Eltrombopag (EP) is a second‑generation TPO receptor 
(TPO‑R) agonist that promotes the differentiation and prolif‑
eration of MKs and platelet generation. It is combined with 
the c‑Mpl transmembrane area of the TPO‑R of MKs, leading 
to the activation of Janus kinase 2 and tyrosine kinase 2, and 
phosphorylation of related signaling pathways. All these 
processes induce proliferation and differentiation of MKs 
and platelet generation (77,78). All these processes induce 
proliferation and differentiation of MKs, as well as platelet 
generation (77). EP was first approved by the Food and Drug 
Administration for clinical use in 2008. Reported results 
to date have indicated that thrombocytopenia caused by 
chronic immune thrombocytopenic purpura (78), severe 
aplastic anemia (79) and chronic infection with the hepa‑
titis C virus (80) notably improved following administration 
of EP.
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Romiplostim is a synthetic polypeptide that activates down‑
stream signals and stimulates platelet production by binding to 
the TPO‑R on MKs (81). A multicenter study of romiplostim 
for chemotherapy‑induced thrombocytopenia was conducted 
in solid tumors and hematological malignancies; the results 
demonstrated that 71% of patients responded to romiplostim 
and weekly dosing was found to be superior to intracycle 
dosing (82). An analysis of five clinical trials proved that 
romiplostim self‑administration could achieve 95% response 
without adverse effects (83). Hosokawa et al (84) found that 
high‑dose romiplostim was highly effective in patients with 
AA who were refractory to EP. Furthermore, sequential 
therapy with EP followed by romiplostim may further improve 
the prognosis of patients with AA who are refractory to 
conventional therapy (84).

5. Conclusions

Significant advances have been made in terms of platelet 
production from stem cells, and this field is progressing steadily. 
Different stem cell sources display specific characteristics so 
that the most appropriate source may be selected based on 
various requirements. Associated studies on gene regulations, 
production microenvironment conditions and inducing factors 
may aid in providing more insight. Further progress must 
be made in platelet production in order to meet the clinical 
requirements. More accessible stem cell sources, large‑scale 
platelet production in vitro, more effective inducing factors 
and various other problems remain unresolved. However, 
despite these challenges, the continuous breakthroughs and 
developments may overcome these obstacles and achieve the 
final goal, which will hopefully prolong the life span of more 
patients in need of platelet transfusion.
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