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Abstract. In recent years, obesity has become a major public 
health concern. Obesity has been previously associated with 
low‑grade inflammation and TNF‑α induction in adipose 
tissue, which subsequently disrupts adipocyte metabolism. 
MicroRNAs (miRNAs/miRs) are important metabolic 
factors and their dysregulation has been associated with 
obesity‑related metabolic syndromes. In fact, it has been 
directly suggested that miR‑424 may be functionally associ‑
ated with adipogenesis, although its exact role in this process 
remains unclear. The present study aimed to identify the 
function of miR‑424 in adipogenesis. In the present study, 
miR‑424 expression levels were analyzed during adipogenesis 
and the differential expression of this miRNA in the adipose 
tissue of obese and non‑obese children was also assessed. 
Furthermore, the interaction between miR‑424 and the adipo‑
cytokine TNF‑α was determined. Finally, miR‑424 target 
genes and downstream signaling pathways were predicted 
via bioinformatics and analyzed by performing a luciferase 
reporter assay to elucidate the functional mechanisms of 
miR‑424 in adipogenesis of visceral adipocytes. The results 
revealed that the expression levels of miR‑424 upregulated 
in the adipose tissue biopsies from obese children compared 
with the biopsies of non‑obese children. However, in cultured 
adipocytes, the expression levels of miR‑424 were discov‑
ered to be gradually downregulated during the adipogenesis 
process. TNF‑α treatment significantly downregulated the 

expression levels of miR‑424 via binding to its promoter 
region and reducing its transcriptional activity. Through 
bioinformatic prediction analysis, miR‑424 target genes were 
analyzed, of which several were identified to be involved in 
signaling pathways that are known to regulate adipogenesis, 
such as the Wnt signaling pathway. In conclusion, the present 
study indicated that miR‑424 was regulated by TNF‑α and 
served an important role in adipogenesis.

Introduction

Obesity has been a serious health problem worldwide for 
decades and it is now considered as a potential trigger of 
other metabolic disorders, including cardiovascular diseases, 
diabetes and cancer (1,2). The accumulation of adipose tissue 
is the most common cause of obesity (3). It has been reported 
that 30% of adipose tissue is derived from preadipocytes that 
undergo adipogenesis and develop into mature adipocytes (4). 
Adipogenesis is a multifactorial process that is regulated by 
various elements, including microRNAs (miRNAs/miRs), 
transcription factors, epigenetic regulators and diverse 
signaling pathways, such as PPARγ/MAPK, PI3K/Akt and 
Wnt/β‑catenin (5). In addition, the development of obesity is 
known to be accompanied by low‑grade inflammation (6). In 
this context, adipose tissue functions as an endocrine organ, 
secreting a variety of inflammation‑related adipocytokines, 
including IL‑6, TNF‑α and IL‑8 (2). TNF‑α is highly induced 
in adipose tissue compared with in other tissues and its 
expression has been discovered to affect adipocyte metabo‑
lism, including glucose consumption, lipolysis and adipocyte 
differentiation (7).

miRNAs are a class of small non‑coding RNAs of 
20‑24 nucleotides in length, which negatively regulate the 
expression of target proteins. Therefore, miRNAs are involved 
in a variety of biological events, including stem cell differentia‑
tion, cell proliferation and death, neurogenesis, hematopoiesis 
and immune responses (8,9). In adipocytes, miRNAs function 
as regulators of differentiation by targeting adipocyte‑related 
factors, such as peroxisome proliferator‑activated receptor 
(PPAR)‑γ, which was reported to be downregulated by 
miR‑27b, miR‑31 and miR‑138, resulting in the inhibition of 
the adipogenic process (9‑12). The dysfunction or abnormal 
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expression of miRNAs has been associated with the develop‑
ment of cancer (13,14), cardiovascular diseases (15), diabetes 
and obesity (16,17). Therefore, the potential association of 
miRNA dysregulation and the onset of obesity has rapidly 
become a topic of interest. For example, Ortega et al  (18) 
compared the miRNA expression profiles in pre‑ and mature 
adipocytes of obese and non‑obese people, and observed 
significant differences in the expression of 71 distinct miRNAs 
between the two groups.

miR‑424 in an intragenic miRNA, and a member of the 
miR‑16 family, which clusters with miR‑503 on chromosome 
Xq26.3 (19). Previous studies have reported the functional 
relationship between miR‑424 and several types of disease 
and biological processes, including cancer  (20‑23), cell 
differentiation (24), diabetes (25), angiogenesis (26), vascular 
diseases (27) and inflammatory diseases (28,29). The role of 
miR‑424 in adipogenesis has been studied in recent years, 
and its expression has been associated with waist‑to‑hip ratio 
and to body fat mass related parameters (30,31). Functionally, 
the expression of miR‑424 was identified to be regulated by 
PPAR‑γ, an important transcription factor during adipogen‑
esis (32). Interestingly, in non‑obese women, those with higher 
fat droplet measurements had upregulated expression levels of 
miR‑424 (30). These reports provided novel information about 
the role of miR‑424 in obesity. However, to the best of our 
knowledge, the molecular mechanisms of this miRNA during 
adipogenesis are yet to be determined.

A previous study revealed that miR‑424 expres‑
sion levels were closely associated with fat deposition in 
women (30); hence, in the present study, it was questioned 
whether a similar expression pattern would be observed 
in children. In the current study, the expression levels of 
miR‑424 in the adipose tissue of obese and non‑obese chil‑
dren were compared. To further elucidate the mechanisms 
of miR‑424, the changes in miR‑424 expression levels 
during adipogenesis were also analyzed. Furthermore, 
the association between miR‑424 and the adipocytokine 
TNF‑α was investigated, and the results demonstrated a 
negative regulatory effect of TNF‑α on miR‑424. Finally, 
TargetScan, PicTar and microRNA.org softwares were used 
to predict the target genes of miR‑424. The putative down‑
stream miR‑424 signaling pathways were analyzed and 
an association between miR‑424 and signaling pathways 
closely associated with adipogenesis, including the Wnt 
signaling pathway, were identified.

Materials and methods

Study participants. A total of 40  male pediatric patients 
(age, 6‑12 years) undergoing surgery for abdominal disorders 
were prospectively chosen to obtain abdominal fat biopsies 
in The Affiliated Hospital of Nantong University between 
August 2019 and September 2019. The following exclusion 
criteria were used: Presence of malignancy, an endocrine 
disorder or severe systemic illness. Subjects considered obese 
were chosen according to the Working Group on Obesity 
in China (WGOC) in 2003 [body mass index (BMI) above 
the age‑ and sex‑appropriate 95th percentile]  (33). Written 
informed consent was obtained from the parents or legal 
guardians of all participants. The methods and experiments 

were approved by the Ethics Committee of The Affiliated 
Hospital of Nantong University (approval no. 2019‑K050; 
Nantong, China).

Cell culture. Human visceral preadipocytes (HPA‑V cells) 
were obtained from ScienCell Research Laboratories, Inc. 
Preadipocyte medium (PAM) containing 1%  preadipocyte 
growth supplement, 1% penicillin/streptomycin solution and 
5% FBS was also obtained from ScienCell Research Laboratories, 
Inc. (cat. no. 7211). Preadipocytes were cultured in a humidified 
atmosphere at 37˚C with 5% CO2. Serum‑free PAM (containing 
100 nM dexamethasone, 0.5 mM 3‑isobutyl‑1‑methylxanthine, 
50 nM insulin and 100 mM rosiglitazone) was used to induce 
the differentiation of confluent human preadipocytes at day 0, 
followed by replacement of the medium every 2 days for the 
next 4 days in the 37˚C incubator. Subsequently, the medium 
was replaced with serum‑free PAM (containing 50 nM insulin), 
which was then replaced every 2 days until lipid droplets started 
accumulating in the cells (day 15). Cells were collected at 
different time periods (days 0, 1, 4, 7, 10 and 15) during the cell 
culture period during the adipogenesis.

Human preadipocytes were cultured at 37˚C overnight 
in serum‑free PAM media. Following the incubation, the 
cells were treated with 10 ng/ml TNF‑α (Sigma‑Aldrich; 
Merck KGaA) or the same volume of PBS for 0, 12, 24 and 48 h 
at 37˚C, as previously described (34). 293T cells (American 
Type Culture Collection) were cultured in DMEM (Gibco; 
Thermo Fisher Scientific, Inc.) containing 10% FBS (Gibco; 
Thermo Fisher Scientific, Inc.) in a humidified atmosphere at 
37˚C with 5% CO2.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was extracted from the human 
adipocytes and tissues using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. DNA was removed by DNaseI digestion (Takara, 
Bio, Inc.). Total RNA was then reverse transcribed into cDNA 
using the Reverse Transcriptase kit (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) with 200 ng total RNA as 
the template. qPCR was subsequently performed using 
SYBRGreen kits (Vazyme Biotech Co., Ltd.) on an Applied 
Biosystems 7500 Sequence Detection system (Thermo Fisher 
Scientific, Inc.), according to the manufacturer's instruc‑
tions. The following thermocycling conditions were used for 
qPCR: Initial denaturation of 95˚C for 10 min; followed by 
40 cycles of 95˚C for 15 sec and 60˚C for 1. miRNA expres‑
sion levels were quantified using the 2‑ΔΔCq method (35) and 
normalized to the internal reference gene U6. miR‑424 and 
U6 snRNA were designed and synthesized by Guangzhou 
RiboBio Co., Ltd. (36,37).

Fluorescence reporter constructs and dual luciferase reporter 
assay. The potential TNF‑α binding sites were predicted 
using Genomatix software (www.genomatix.de). Luciferase 
wild‑type  (WT) and mutant  (mut) miR‑424 reporter plas‑
mids, pro‑miR‑424‑WT and pro‑miR‑424‑mut, respectively, 
were synthesized and inserted into the luciferase reporter 
cloning vector pEZX‑FR01 (GeneCopoeia, Inc.) by Shanghai 
Generay Biotech Co., Ltd. Both plasmids contained the 
1,500 bp proximal promoter sequences of miR‑424 (chrX: 
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134546712‑134548211). The pro‑miR‑424‑mut reporter 
plasmid had a mutated fragment of 5'‑TTA​TTT​TAG​GAA​
GGA‑3' at chrX: 134546762‑134546776 to replace the original 
sequence 5'‑GGC​GGG​GCT​TCC​TTC‑3'.

Brief ly, 293T cells were seeded in six‑well plates 
(5x105/well) and incubated at 37˚C for 24 h before transfec‑
tion. Following the incubation, 250 ng/well pro‑miR‑424‑WT 
and pro‑miR‑424‑mut plasmids were co‑transfected with 
25 ng/well of Renilla luciferase vector (pRLTK; Invitrogen; 
Thermo Fisher Scientific, Inc.), using Lipofectamine® 2000 
(Thermo Fisher Scientific, Inc.). Following 24 h of incubation 
at 37˚C, 10 ng/ml TNF‑α was added to the cells, together 
with culture medium replacement for an additional 24  h 
of incubation. Finally, the relative luciferase activity was 
measured using a Dual Luciferase Reporter Assay system 
(cat.  no.  E1901; Promega Corporation), according to the 
manufacturer's protocol. Luciferase activity was normalized 
to Renilla luciferase activity.

miRNA target prediction and functional annotation. 
TargetScan (www.targetscan.org/vert_72; version  7.0), 
PicTar (pictar.mdc‑berlin.de) and microRNA.org programs 
(www.microrna.org) were used to predict the target genes of 
miR‑424, using the default parameters. miRNA targets were 
obtained by manually selecting the intersecting elements 
identified in the miR‑424 target prediction program. All target 
genes were annotated using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG; www.genome.jp/kegg/pathway.html) 
and Gene Ontology (GO) databases (geneontology.org). GO 
functional term enrichment analysis, which organizes genes 
into hierarchical categories and uncovers the gene regula‑
tory network on the basis of biological processes was used to 
analyze the main functions of the miR‑424 target genes (38,39). 
Specifically, a two‑sided Fisher's exact test and a χ2 test were 
used to classify the GO category. Multiple‑test correction was 
performed by calculating the false discovery rate (FDR) (40). 
The FDR was defined as FDR=1‑(Nk)/T, where Nk was the 
number of Fisher's test P‑values <χ2 test P‑values and T was 
the theoretical frequency. P‑values were computed for the 
GOs of all the miR‑424 target genes. Enrichment provides 
a measure of the significance of the function: As the enrich‑
ment increases, the corresponding function is more specific, 
which helps to identify GO terms with more concrete func‑
tion description in the experiment. Within the significant 
category, the enrichment (Re) was given by the equation: 
Re=(nf/n)/(Nf/N) where nf was the number of flagged genes 
within the particular category, n is the total number of genes 
within the same category, Nf is the number of flagged genes in 
the entire microarray and N is the total number of genes in the 
microarray (41,42).

Signaling pathway enrichment analysis was performed 
for the differentially expressed genes, using KEGG  (43), 
Biocarta  (44) and Reactome databases  (45). Significant 
signaling pathways were selected on the basis of the Fisher's 
exact test and χ2 test, and the threshold of significance was 
defined by the P‑value (P<0.01) and FDR (q<0.05). The 
enrichment Re was calculated as above (46‑48).

Statistical analysis. All experiments were performed indepen‑
dently ≥3 times and the data are presented as the mean ± SEM. 

Statistical analyses were performed using GraphPad Prism 
software (version 5.0; GraphPad Software, Inc.). One‑way 
ANOVA followed by Tukey's post hoc test was used to compare 
data of ≥3 groups, whereas a paired Student's t‑test was used 
to compare the statistical differences between two groups. 
P≤0.05 was considered to indicate a statistically significant 
difference.

Results

Differential miR‑424 expression levels between obese and 
non‑obese individuals. Concerning the clinicopathological 
data of the study participants (Table SI), there was no differ‑
ences identified between age, whereas subjects in the obese 
group exhibited significantly increased BMIs compared with 
subjects in the non‑obese group. To determine the association 
between miR‑424 and obesity in children, miR‑424 expres‑
sion levels were analyzed in the abdominal fat biopsies from 
patients undergoing surgery for abdominal disorders. The 
results revealed that the miR‑424 expression levels were 
significantly upregulated in the biopsies from obese patients 
compared with non‑obese patients, suggesting a positive 
association between miR‑424 expression levels and obesity in 
children (Fig. 1).

miR‑424 expression levels are downregulated during the 
maturation of human preadipocytes. The variation in 
miR‑424 expression levels during different stages of human 
preadipocyte maturation was investigated. As shown in Fig. 2, 
miR‑424 expression levels were the highest in the preadipo‑
cytes, and then continuously decreased with the maturation 
progression and reached the lowest point between days 7‑15. 
According to the literature review (49,50), it was predicted that 
at day 10 after induction, >80% of cells exhibited a typical 
adipocyte phenotype, suggesting that miR‑424 expression 
levels may be downregulated during the differentiation of 
human preadipocytes into adipocytes.

miR‑424 expression levels are downregulated by TNF‑α in 
human adipocytes. To determine whether proinflammatory 
cytokines were involved in regulating miR‑424 expression 
levels, the effects of IL‑6 and TNF‑α on the expression 

Figure 1. miR‑424 expression levels in obese and non‑obese children. 
miR‑424 expression levels in abdominal fat biopsies from obese (n=14) and 
non‑obese (n=26) participants were determined using reverse transcription-
quantitative PCR. **P<0.01 vs. non‑obese. miR, microRNA.
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levels of miR‑424 in human adipocytes were investigated. 
Mature adipocytes were treated with 10 ng/ml TNF‑α and 
the miR‑424 expression levels were analyzed at different 
time points (12, 24 and 48 h) following normalization to U6 
expression levels. While IL‑6 had no significant effects on 
miR‑424 expression levels (data not shown), TNF‑α treatment 
significantly downregulated the expression levels of miR‑424 
at 12, 24 and 48 h compared with the control cells (Fig. 3). 
The lowest expression levels of miR‑424 were observed at 12 h 
post TNF‑α treatment, with ~2.17‑fold lower expression levels 
compared with the control group. These results suggested 
that TNF‑α may downregulate miR‑424 expression levels in 
adipocytes.

TNF‑α downregulates miR‑424 expression levels by reducing 
its promoter activity. To support the aforementioned find‑
ings, dual luciferase reporter assays were performed using 
293T cells. The 1.5 kB upstream sequence of the miR‑424 
precursor (chrX: 134546712‑134548211) was selected as the 
candidate promoter fragment, synthesized and inserted into the 

pEZX‑FR01 vector to generate a pro‑miR‑424‑WT plasmid. 
The results revealed that pro‑miR‑424‑WT had promoter 
activity, which drove the expression of the downstream 
reporter gene when compared with the vector alone (Fig. 4).

It was hypothesized that TNF‑α may bind to the 
promoter region of miR‑424, therefore, the potential 
TNF‑α binding sites were predicted using Genomatix soft‑
ware. One of the predicted binding sites, located at chrX: 
134546762‑134546776, was selected for experimental vali‑
dation and then mutated to generate the pro‑miR‑424‑mut 
plasmid. To analyze and compare the effects of TNF‑α on 
pro‑miR‑424‑WT and pro‑miR‑424‑mut, 293T cells were 
used. TNF‑α treatment lead to a decrease in the relative lucif‑
erase activities of both miR‑424 promoters; however, only the 
pro‑miR‑424‑WT showed a significant reduction in relative 
luciferase activity following TNF‑α treatment compared with 
the pro‑miR‑424‑WT alone (Fig. 4), indicating that the effect 
of TNF‑α may be attenuated by a mutation at the promoter 
binding site. Overall, these results suggested that TNF‑α may 
inhibit miR‑424 transcription by binding to specific sites in its 
promoter region.

GO functional term and signaling pathway enrichment 
analyses of miR‑424 target genes. To study the biological 
implications of miR‑424, target genes of miR‑424 were 
predicted through GO functional term enrichment analysis. 
Three areas, including biological process, molecular function 
and cellular component are primarily covered in GO annota‑
tion, which provides controlled annotations to describe genes 
and their products in a given organism (51). As the present 
study aimed to identify the function of miR‑424, biological 
process was assessed. The GO analysis results identified 
that the target genes of miR‑424 were classified into diverse 
categories, among which the most frequent GO term was 
‘Catabolism’ followed by ‘protein ubiquitination during 

Figure 3. miR‑424 expression levels in mature adipocytes treated with 
TNF‑α. miR‑424 expression levels in mature adipocytes treated with 
10 ng/ml TNF‑α for different time points (0, 12, 24 and 48 h). Control cells 
were treated with an equivalent volume of PBS. Data were normalized to U6 
expression levels. **P<0.01 vs. control at each time point. n=3 independent 
biological replicates. miR, microRNA.

Figure 2. miR‑424 expression levels throughout preadipocyte differentia‑
tion. Cells were collected at different time points (day 0, 1, 4, 7, 10 and 15) 
throughout preadipocyte differentiation and the expression levels of miR‑424 
were determined using reverse transcription‑quantitative PCR. U6 was used 
as the internal control. **P<0.01, ***P<0.001. n=3 independent biological 
replicates. miR, microRNA.

Figure 4. Dual luciferase reporter assays were performed following cell trans‑
fection with pro‑miR‑424‑WT or pro‑miR‑424‑mut and treatment with or 
without of TNF‑α in 293T cells. **P<0.01 vs. pro‑miR‑424‑WT and ##P<0.01 
vs. Empty vector. n=3 independent biological replicates. miR, microRNA; 
WT, wild‑type; Mut, mutated.
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ubiquitin‑dependent protein’ and ‘G1/S transition of mitotic 
cell cycle’ (Fig. 5A). Moreover, signaling pathway enrichment 
analysis predicted that the miR‑424 target genes were involved 
in diverse processes, including ‘Wnt signaling pathway’, 
‘p53 signaling pathway’, ‘Ubiquitin mediated proteolysis’, 
‘SNARE interactions in vesicular transport’, ‘Focal adhesion’ 
and ‘Cell cycle’ (Fig. 5B). These results further implied that 
miR‑424 may target genes in prostate cancer, melanoma and 
lung cancer (small‑cell and non‑small cell).

Discussion

Obesity has become a serious public health problem, with the 
number of affected individuals increasing worldwide. Since 
1980, the number of cases of obesity has doubled in >70 coun‑
tries. In 2015, there were 100 million and 600 million cases of 
obesity reported in children and adults, respectively (52). The 
dysregulation of preadipocyte differentiation is a main cause of 
obesity (53). Therefore, it is important to study the regulatory 
mechanisms of preadipocyte differentiation. miRNAs have 
been discovered to have an important role in the regulation of 
inflammatory responses by adipocytes, and are thus associated 
with the development of obesity (34,54). miR‑424, an inflam‑
mation‑related miRNA implicated in diverse cellular events 
and diseases, has been studied for its potential as a clinical 

and diagnostic biomarker of cancer (55), heart failure (56) 
and diabetes (57,58). In the context of obesity, miR‑424 was 
identified to negatively regulate adipocyte differentiation (59). 
However, the mechanistic details on the miR‑424‑mediated 
inhibition of adipocyte differentiation remain unclear.

In the present study, the differential expression levels of 
miR‑424 in abdominal fat biopsies of obese and non‑obese chil‑
dren were analyzed. BMI is the gold standard measurement of 
obesity; however, children cannot be identified as obese by only 
calculating BMI. According to the WGOC in 2003, the criteria for 
determining obesity in children is a BMI > age‑ and sex‑appro‑
priate 95th percentile (33). For example, 6‑year‑old children 
with a BMI of >18.1 are categorized as obese, while 11‑year‑old 
children with the same BMI are recognized as non‑obese, and 
are diagnosed as obese when the BMI is >22.7 (60). Thus, BMI 
is not suitable for the diagnosis of obesity in children and is not 
useful for detecting the relevance between BMI and miRNA 
expression, the present study revealed that the expression levels 
of miR‑424 in the adipose tissue were positively associated with 
obesity. Our previous data using a miRNA microarray demon‑
strated that the expression levels of miR‑424 were upregulated 
in mature adipocytes compared with in preadipocytes, both in 
human adipose‑derived mesenchymal stem cells and human 
stromal vascular cells (61). However, in subsequent PCR analysis, 
miR‑424 expression levels were observed to continuously decline 

Figure 5. Analysis of miR‑424 target genes. (A) GO functional term enrichment analysis was used to determine the main functions of the miR‑424 target 
genes. (B) Signaling pathway enrichment analysis was used to determine the significantly represented pathways according to KEGG, Biocarta and Reactome 
databases. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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during preadipocyte differentiation, maintaining an low, but 
steady, level in mature adipocytes (59). Aiming to find an appro‑
priate explanation for these opposing results, Gene Expression 
Omnibus (GEO) datasets related to miR‑424 and obesity were 
searched. Interestingly, one of the profiles (ID: 30947926; www.
ncbi.nlm.nih.gov/geoprofiles/?term=30947926) revealed that the 
expression levels of miR‑424 were downregulated during preadi‑
pocyte differentiation in subcutaneous and mesenteric adipose 
cells (62,63). Conversely, in omental cells, miR‑424 expression 
levels were upregulated, suggesting that miR‑424 expression 
may be tissue or cell‑dependent. Therefore, it was hypothesized 
that the results of the present study may be caused by environ‑
mental factors in the patient abdominal tissues, which are absent 
from cultured adipocyte cells (30). Another possibility is that 
miR‑424 may be downregulated during adipocyte differentia‑
tion due to its negative roles in adipogenesis. However, when an 
elevated number of adipocytes accumulate, there may be a feed‑
back effect, which in turn would upregulate miR‑424 to exert its 
inhibitory functions, thereby restricting the further development 
of adipose tissues (64).

Proinflammatory cytokines are essential factors in 
regulating adipocyte maturation  (65). TNF‑α, a secreted 
inflammatory factor, was discovered to be positively associ‑
ated with obesity, both in adults and children (66,67) and has 
been shown to affect adipogenesis by regulating gene expres‑
sion (7). Our previous studies revealed that several miRNAs 
are positively regulated by TNF‑α during preadipocyte differ‑
entiation, including miR‑1908 and miR‑146b (34,54,58,68). 
In the present study, it was observed that miR‑424 expression 
levels were inhibited by TNF‑α treatment in mature adipo‑
cytes, suggesting that miR‑424 may have opposing functions to 
TNF‑α, miR‑1908 and miR‑146b. This was further confirmed 
through dual luciferase reporter assays, in which TNF‑α 
significantly inhibited the transcription of a reporter gene via 
binding to the miR‑424 promoter.

In biological systems, miRNAs normally exert their 
cellular functions by regulating the expression of target 
proteins (69). Aiming to further understand the function of 
miR‑424 in adipogenesis, its target genes were predicted and 
their functions were bioinformatically analyzed. The target 
genes were found to be enriched in several processes, among 
which focal adhesion, the Wnt signaling pathway and ubiq‑
uitin mediated proteolysis have all been previously associated 
with adipogenesis (70‑72). These results improved the current 
understanding of the mechanisms through which miR‑424 
may regulate adipogenesis.

In conclusion, the results of the present study revealed that 
miR‑424 expression levels were upregulated in abdominal 
fat biopsies from obese children. In cell culture experiments, 
miR‑424 expression levels were discovered to be signifi‑
cantly downregulated during preadipocyte differentiation. 
Furthermore, TNF‑α treatment was discovered to down‑
regulate miR‑424 expression through binding to its promoter 
region. The prediction of miR‑424 target genes involved in 
adipogenesis revealed signaling pathways and biological 
processes that may regulate preadipocyte differentiation. 
However, additional studies on miR‑424 regulatory mecha‑
nisms are required to provide a deeper understanding of the 
function of miR‑424 in adipocyte differentiation and its poten‑
tial association with obesity onset. The present study provided 

novel insights into the association between adipogenesis and 
miR‑424 expression levels, opening the possibility of miR‑424 
being characterized in the future as a candidate biomarker for 
the diagnosis of obesity and related diseases.
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