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Abstract. Extracellular matrix (ECM) proteins serve a major 
role in the pathogenesis of aortic dissection (AD). The aim of 
the present study was to investigate the effect of osteoglycin 
(OGN), an ECM proteoglycan, on aortic dissection (AD), as 
well as the underlying mechanism. Thoracic aortic tissues from 
20 patients with AD and healthy thoracic aortic tissue from 
5 patients undergoing coronary artery bypass grafting were 
collected to detect OGN expression levels. Following OGN 
knockdown in rat aortic smooth muscle cells, cell proliferation 
was detected by performing Cell Counting Kit‑8 and BrdU 
assays, cell migration was assessed by performing the wound 
healing assay, cell invasion was detected by performing the 
Transwell assay, and VEGFR/AKT signaling pathway‑related 
protein expression levels were measured via western blotting. 
The results demonstrated that OGN expression was signifi‑
cantly downregulated in patients with AD compared with 
healthy controls. Compared with the si‑negative control (NC) 
group, OGN knockdown promoted RASMC proliferation and 
migration. Compared with the si‑NC group, OGN knock‑
down also significantly enhanced the phosphorylation of the 
downstream signaling molecules of VEGFR, including AKT 
and ERK1/2, in VEGF‑stimulated RASMCs. Collectively, 
the present study indicated that OGN knockdown facilitated 
RASMC proliferation and migration by activating AKT and 
ERK1/2 signaling. Therefore, OGN may serve as a novel 
therapeutic target for AD.

Introduction

Aortic dissection (AD) is a major complication of thoracic 
aortic disease, which is initiated by tears in the aortic 
intima and media. The tears allow blood to enter into the 
media and separate the medial layer along the long axis of 
the aorta, thus leading to the formation of a false lumen (1,2). 
Multiple factors, including poorly controlled hyperten‑
sion, older age, male gender, smoking, genetic conditions, 
pre‑existing aortic diseases, aortic instrumentation or surgery, 
and immune/inflammatory diseases, are associated with an 
increased risk of AD (3‑5). Although AD is an uncommon 
disease with an estimated annual incidence of 5‑30 cases per 
million individuals (6), the disease displays high mortality 
and is ranked among the most lethal vascular diseases world‑
wide  (7‑9). Despite advances in therapeutic strategies, the 
cellular and molecular mechanisms underlying AD are not 
completely understood and require further investigation.

AD is pathologically characterized by the degeneration of 
the aortic media, which includes depletion of smooth muscle 
cells, destruction of elastic fibers and disruption of the extra‑
cellular matrix (ECM) network (10,11). ECM components in 
the aortic wall not only provide structural support for vascular 
cells, but also integrate extracellular signals and modulate 
cellular responses  (12). Alterations in ECM components 
serve critical roles in the pathogenesis of AD (13). Increasing 
evidence has suggested that an increase in the expression of 
proteoglycans, a major group of nonfibrillar ECM components, 
is a crucial event in AD and is closely associated with the 
degeneration of the aortic media (12,14). Therefore, exploring 
the expression profiles of proteoglycans and their functional 
effects on medial smooth muscle cells is important for under‑
standing the development of AD.

In our previous study, 99 aortic tissue samples from 
patients with AD were collected, and the genomic profiles 
were analyzed  (15). A total of 3,425,873 SNPs, 685,245 
insertion‑deletions and 1,177 copy number variations were 
identified. By performing disease correlation analysis, 20 candi‑
date genes were identified. A number of identified genes, such 
as myosin heavy chain 11, fibrillin 1 and actin α2, smooth 
muscle, were consistent with previous studies (16‑18), whereas, 
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to the best of our knowledge, MAX dimerization protein MLX, 
DAB2 interacting protein, E1A binding protein p300, zinc 
finger FYVE‑type containing 9, PML nuclear body scaffold, 
protein kinase C‑δ and osteoglycin (OGN) were identified as 
AD‑associated genes for the first time in our previous study.

OGN, which belongs to cluster III of the small leucine‑rich 
proteoglycans (SLRP), is an ECM component that modulates 
various biological processes, including cell proliferation, 
inflammation and collagen fibrillogenesis (19‑21). OGN is 
involved in numerous pathological conditions, including bone 
disease, eye disease, neurological damage and cancer (22). 
Plasma OGN expression levels are lower in patients with 
coronary artery disease with complex atherosclerotic lesions 
compared with patients with coronary artery disease without 
lesions (23). Proteomic analysis has demonstrated decreased 
OGN expression levels in calcified abdominal aortic aneurysm 
tissues compared with healthy adjacent aortic tissues (24). 
Although emerging evidence has revealed the effects of OGN 
on vascular diseases, the exact role of OGN in AD formation 
requires further investigation.

The present study aimed to investigate the effect of OGN, 
an ECM proteoglycan, on AD, as well as the underlying mech‑
anism. Therefore, OGN expression profiles in thoracic aortic 
tissues from patients with AD and healthy thoracic aortic 
tissues from control subjects were determined. The effect 
of OGN on cellular proliferation and migration was deter‑
mined in cultured rat aortic smooth muscle cells (RASMCs). 
RASMCs are typically used to study alterations in cellular and 
molecular biology during the progression of vascular disease 
under the influence of internal and external factors, and are a 
good model for studying mechanisms in vitro (25). The present 
study investigated the possible mechanisms underlying OGN 
in the pathological process of AD.

Materials and methods

Cell culture.  RASMCs (Procel l  Life Science & 
Technology Co., Ltd.) were cultured in DMEM (Procell 
Life Science & Technology Co., Ltd.) supplemented with 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.) and 1% 
penicillin/streptomycin in a humidified incubator at 37˚C with 
5% CO2. RASMCs at passage 3‑6 were used for subsequent 
experiments. Following transfection, cells were treated with 
recombinant human VEGF protein (10 ng/ml; R&D Systems 
China Co., Ltd.) for 5, 15 or 30 min at 37˚C.

Sample collection. In the present study, all volunteers were 
recruited from Fuwai Hospital Chinese Academy of Medical 
Sciences Shenzhen, although volunteers were from residence 
across China. Pathological aortic tissues from 20 patients with 
AD (age, 45‑62 years; 16 male patients and 4 female patients) 
and healthy aortic tissues from 5 patients who underwent coro‑
nary artery bypass grafting surgery (age, 55‑74 years; 3 male 
patients and 2 female patients) were collected between October 
2018 and October 2019. The following inclusion criteria were 
used in the present study: Pain symptoms for <48 h; and 
diagnosed with acute AD after aorta computed tomography 
angiography examination. The following exclusion criteria 
were used in the present study: Heart failure, acute myocardial 
infarction, connective tissue disease or tumor disease.

The present study was approved by the Research Ethics 
Committee of Fuwai Hospital Chinese Academy of Medical 
Sciences Shenzhen (approval  no.  SP2019004). Written 
informed consent was obtained from each patient.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from each sample using TRIzol® 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to 
the manufacturer's protocol. Total RNA was reverse tran‑
scribed into cDNA using PrimeScript™ RT Master Mix 
[cat. no. RR036A; Takara Biomedical Technology (Beijing) Co., 
Ltd.] according to the manufacturer's protocol. Subsequently, 
qPCR was performed using SYBR green fluorescence [Takara 
Biomedical Technology (Beijing) Co., Ltd.]. The following 
primers were used for qPCR: OGN forward, 5'‑TCT​ACA​CTT​
CTC​CTG​TTA​CTG​CT‑3' and reverse, 5'‑GAG​GTG​GTG​GTG​
TT‑ATT​GCC​TCA‑3'; and GAPDH forward, 5'‑GGC​AGT​GAT​
GGC​ATG​GAC​TGT‑3' and reverse, 5'‑CCT​TCA​TTG​ACC​
TCA​ACT​ACA‑3'. The following thermocycling conditions 
were used for qPCR: 95˚C for 2 min; followed by 40 cycles 
of 95˚C for 5 sec, 60˚C for 30 sec and 72˚C for 60 sec. mRNA 
expression levels were quantified using the 2‑∆∆Cq method (26) 
and normalized to the internal reference gene GAPDH.

Western blotting. Total protein was extracted from tissues 
or cultured cells using RIPA lysis buffer (Beijing Solarbio 
Science & Technology Co., Ltd.). Protein concentration was 
determined using a BCA Protein Assay kit (Beijing Solarbio 
Science & Technology Co., Ltd.). Equal amounts of protein 
(30 µg) were separated via 10% SDS‑PAGE and transferred 
to PVDF membranes. Following blocking with 5% skimmed 
milk in TBST (0.05% Tween‑20) for 1 h at room temperature, 
the membranes were incubated at 4˚C overnight with the 
following primary antibodies: anti‑GAPDH (cat. no. 5174; 
1:10,000; Cell Signaling Technology, Inc.), anti‑Tubulin 
(cat.  no. 2148; 1:10,000; Cell Signaling Technology, Inc.), 
anti‑OGN (cat. no. ab211456; 1:2,000; Abcam), anti‑phos‑
phorylated (p)‑AKT (cat. no. 4060; 1:2,000; Cell Signaling 
Technology, Inc.), anti‑total AKT (cat. no. 9272; 1:2,000; Cell 
Signaling Technology, Inc.), anti‑p‑ERK1/2 (cat. no. 9102; 
1:1,000; Cell Signaling Technology, Inc.), anti‑total ERK1/2 
(cat.  no.  9101; 1:1,000; Cell Signaling Technology, Inc.), 
anti‑p‑VEGFR2 (cat.  no.  2478; 1:2,000; Cell Signaling 
Technology, Inc.) and anti‑total VEGFR2 (cat.  no.  9698; 
1:2,000; Cell Signaling Technology, Inc.). After washing with 
TBST for three times for 5 min each, the membranes were 
incubated with an anti‑rabbit IgG (cat. no. 7074; 1:10,000; Cell 
Signaling Technology, Inc.) secondary antibody for 1 h at room 
temperature. Following washing with TBST for three times for 
5 min each, protein bands were visualized using SuperSignal 
West Femto Maximum Sensitivity Substrate (Thermo Fisher 
Scientific, Inc.) and an iBright bioimaging system (Invitrogen; 
Thermo Fisher Scientific, Inc.). Protein expression levels 
were semi‑quantified using Quantity One Analysis software 
(version 4.0; Bio‑Rad Laboratories, Inc.) with GAPDH or 
Tubulin as the loading control.

Transfection of OGN‑targeting small interfering (si)
RNA. At 80% confluence, RASMCs were transfected 
with 50 nM OGN‑specific siRNA or control siRNA using 
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Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) at 37˚C for 48 h. The OGN‑specific siRNA (si‑OGN; 
forward, 5'‑GUG​CCC​ACC​AAG​AAA​GAA​ATT‑3' and reverse, 
5'‑UUU​CUU​UCU​UGG​UGG​GCA​CTT‑3') and control siRNA 
[si‑negative control (NC); non‑specific; forward, 5'‑ACA​ACG​
AAC​AAG​CGA​ACA​ACA‑3' and reverse, 5'‑UGU​UGU​UCG​
CUU​GUU​CGU​UGU‑3'] were synthesized by Sangon Biotech 
Co., Ltd. Cells were divided into three groups: i) Blank, cells 
were left untreated; ii) NC, cells were transfected with si‑NC; 
and iii) OGN (marked as OGN‑Rat‑401), cells were transfected 
with si‑OGN. At 48 h post‑transfection, cells were used for 
subsequent experiments. 

Cell proliferation assay. The effect of OGN knockdown 
on RASMC viability was assessed by performing a Cell 
Counting Kit‑8 (CCK‑8) assay. Briefly, RASMCs were seeded 
(2.5x103 cells/well) into 96‑well plates. At 48 h post‑trans‑
fection, platelet‑derived growth factor‑BB (PDGF‑BB; final 
concentration, 60 µg/l; Cyagen Biosciences, Inc.) was added 
to the culture medium to stimulate cell proliferation for 24 h at 
37˚C. Subsequently, 10 µl CCK‑8 reagent (Dojindo Molecular 
Technologies, Inc.) was added to each well and incubated in 
the dark for 1.5 h at 37˚C. The optical density was measured 
at a wavelength of 450 nm using a microplate reader (Promega 
Corporation).

A BrdU immunofluorescence assay was performed 
on OGN‑knockdown RASMCs. RASMCs were seeded 
(2x104 cells/well) into 6‑well plates. At 48 h post‑transfection, 
cells were incubated with 50 µM BrdU for 12 h at 37˚C in 
humidified incubator with 5% CO2. Cells were fixed with 
4% paraformaldehyde at room temperature for 20  min. 
Subsequently, cells were washed with PBS and desaturated 
with 2 M HCl at 37˚C for 10 min. H3BO3 (pH 8.5) was used 
for renaturation at room temperature for 10 min. Samples were 
washed three times with PBS for 5 min. Cells were permeabi‑
lised using 0.5% Triton X‑100 at room temperature for 15 min. 
Cells were washed three times with PBS for 5 min, blocked with 
non‑immunized goat serum (Beijing Dingguo Changsheng 
Biotechnology Co., Ltd.; 1:1,000) at 37˚C for 30 min and incu‑
bated with a BrdU primary antibody (cat. no. ab8152; 1:100; 
Abcam) overnight at 4˚C. Following washing three times with 
PBS for 5 min, cells were incubated with the secondary anti‑
body (cat. no. 8890; 1:1,000; Cell Signaling Technology, Inc.) 
at 37˚C for 2 h. Samples were washed three times with PBS and 

then were incubated with DAPI (1:100) at room temperature 
for 5 min. Following two washes with PBS for 5 min, samples 
were washed with distilled water. The slides were dried and 
sealed with 50% glycerin. Stained sections were observed in 
five fields of view using an LH‑M100CB inverted fluorescence 
microscope (Nikon Corporation; magnification, x200).

Wound healing assay. For the wound healing assay, RASMCs 
were seeded into 6‑well plates. At 95% confluence, the cell 
monolayer was mechanically scraped using a sterile pipette tip 
to create a single scratch. Cells were maintained in serum‑free 
medium. At 0, 24 and 48 h, the wound was observed using 
a light optical microscope (magnification, x40). The results 
are presented as the distance of wound healing, which was 
measured using ImageJ software (version 1.8.0.112; National 
Institutes of Health).

Cell invasion assay. RASMCs were seeded (5x104 cells/well) 
into the upper chamber of the Matrigel‑coated Transwell plate 
(pore size, 8 µm). DMEM supplemented with 10% FBS was 
plated into the lower chambers. Following incubation for 48 h 
at 37˚C, invading cells were fixed with 4% paraformaldehyde 
at room temperature for 20 min, and stained with 0.5% crystal 
violet solution at room temperature for 10 min. Invading cells 
were visualized in five randomly selected fields of view using 
a light microscope (magnification, x200).

Statistical analysis. Statistical analyses were performed using 
GraphPad Prism software (version 6; GraphPad Software, 
Inc.). Comparisons among multiple groups were analyzed 
using one‑way ANOVA followed by Dunnett's post hoc test. 
Comparisons between two groups were analyzed using an 
unpaired Student's t‑test. Data are presented as the mean ± SD 
of three independently repeated experiments. P<0.05 was 
considered to indicate a statistically significant difference.

Results

OGN is downregulated in aortic tissues from patients with 
AD. OGN mRNA expression levels were significantly lower 
in the thoracic aortic tissues of 20 patients with AD compared 
with the healthy thoracic aortic tissues of 5 control subjects 
(Fig. 1A). The western blotting results demonstrated that the 
protein expression levels of OGN in the thoracic aortic tissues 

Figure 1. OGN expression levels in patients with AD and healthy control subjects. Thoracic aortic tissues from 20 patients with AD and healthy thoracic aortic 
tissues from 5 control subjects were collected. In two of the healthy thoracic aortic tissue samples, total protein extraction and OGN protein expression analysis 
failed. OGN (A) mRNA and (B) protein expression levels. *P<0.05. OGN, osteoglycin; AD, aortic dissection; Con, control; M, male; F, female; C, control; A, AD.
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from 20 patients with AD were markedly reduced compared 
with the thoracic aortic tissues from 3 out of the 5 control 
subjects (Fig. 1B).

OGN knockdown enhances RASMC proliferation and 
migration. Following transfection with si‑OGN, OGN mRNA 
expression levels were significantly decreased compared 
with the si‑NC group  (Fig.  2A). The CCK‑8 assay was 
performed to investigate whether OGN knockdown affected 
PDGF‑BB‑induced cell proliferation and survival. OGN 
knockdown significantly enhanced RASMC proliferation at 
24, 48 and 72 h compared with the si‑NC group (Fig. 2B). The 
immunofluorescence assay displayed similar results (Fig. 2C); 
cell proliferation was also notably increased in the si‑OGN 
group compared with the si‑NC group.

To assess the effect of OGN on RASMC migration, 
wound healing and Transwell invasion assays were performed. 
Compared with the si‑NC group, OGN knockdown significantly 
decreased the width of the wound by 41.1 and 61.9% at 24 and 
48 h, respectively (Fig. 3A and B). Moreover, the number of 
invading RASMCs was decreased by ~30% in the si‑OGN group 
compared with the si‑NC group (Fig. 4A and B). The results 
indicated that OGN knockdown was associated with increased 
RASMC proliferation and migration, and decreased invasion.

OGN knockdown further increases the phosphorylation of 
AKT and ERK1/2 in VEGF‑treated RASMCs. In mouse models 

Figure 2. Effect of OGN knockdown on RASMC proliferation. Cells were divided into three groups: i) Blank, cells were left untreated; ii) NC, cells were 
transfected with si‑NC; and iii) OGN (marked as OGN‑Rat‑401), cells were transfected with si‑OGN. Transfected RASMCs were seeded into 96‑well plates 
and stimulated with 60 µg/l platelet‑derived growth factor‑BB. (A) Transfection efficiency of si‑OGN. (B) Cell proliferation was determined by performing 
the Cell Counting Kit‑8 assay. (C) Cell proliferation was also assessed by performing BrdU immunofluorescence staining (magnification, x200). **P<0.01 
and ****P<0.0001 vs. si‑NC. OGN, osteoglycin; RASMC, rat aortic smooth muscle cell; NC, negative control; si, small interfering RNA; OD, optical density.

Figure 3. Effect of OGN knockdown on RASMC migration. si‑OGN‑trans‑
fected RASMCs were seeded into 6‑well plates to form confluent monolayers. 
A sterile pipette was used to form a single scratch in the cell monolayer. The 
wound was observed at 0, 24 and 48 h using an optical microscope. Cell migra‑
tion was (A) determined by performing a wound healing assay (magnification, 
x40) and (B) quantified. *P<0.05 vs. si‑NC. OGN, osteoglycin; RASMC, rat 
aortic smooth muscle cell; si, small interfering RNA; NC, negative control.
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of limb ischemia, increased expression levels of OGN are 
closely related to inhibition of the VEGF/VEGFR2 signaling 
pathway  (27,28). In the present study, OGN‑knockdown 

RASMCs displayed significantly reduced VEGFR2 
phosphorylation compared with si‑NC‑transfected 
RASMCs (Fig. 5A and E). VEGF‑mediated stimulation of 

Figure 5. OGN regulates the VEGFR/AKT signaling pathway. Cells were transfected with si‑OGN or si‑NC for 48 h. Subsequently, cells were treated with VEGF 
(10 ng/ml) for 5, 15 or 30 min. Protein expression levels were (A) determined via western blotting and semi‑quantified for (B) VEGFR2, (C) AKT, (D) ERK1/2, 
(in si‑NC‑transfected cells) (E) p‑VEGFR2/VEGFR2, (F) p‑AKT/AKT and (G) p‑ERK1/2/ERK1/2. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 vs. si‑NC. 
OGN, osteoglycin; si, small interfering RNA; NC, negative control; p, phosphorylated.

Figure 4. Effect of OGN knockdown on RASMC invasion. si‑OGN transfected RASMCs were seeded (5x104 cells/well) into the upper chamber of the 
Transwell plate. DMEM supplemented with 10% FBS was plated into the lower chambers. Following incubation for 48 h, invading cells were fixed with cold 
methanol and 4% paraformaldehyde, and stained with 0.5% crystal violet solution. Invading cells were observed in five randomly selected fields of view. 
Cell invasion was (A) determined by performing a Transwell invasion assay (magnification, x200) and (B) quantified. *P<0.05 vs. si‑NC. OGN, osteoglycin; 
RASMC, rat aortic smooth muscle cell; si, small interfering RNA; NC, negative control.
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si‑NC‑transfected RASMCs significantly increased the levels 
of VEGPR2, and increased the expression level of AKT at 
5 min compared with 0 min, which returned to the baseline 
level at 30 min (Fig. 5A, B and C). The protein expression levels 
of ERK1/2 were not significantly altered among the different 
groups (Fig.  5A  and D ). In si‑NC‑transfected RASMCs, 
VEGF stimulation notably increased the phosphorylation 
levels of ERK1/2 and AKT in a time‑dependent manner 
(Fig. 5A, F and G). Moreover, ERK1/2 and AKT phosphoryla‑
tion levels were significantly increased in si‑OGN‑transfected 
RASMCs compared with si‑NC‑transfected RASMCs, although 
a significant difference in ERK1/2 phosphorylation between the 
si‑NC and si‑OGN groups was not observed following 30 min 
VEGF stimulation (Fig. 5A, F and G). The results suggested 
that OGN knockdown facilitated VEGF‑induced activation of 
AKT and ERK1/2.

Discussion

In the present study, the results demonstrated that OGN expres‑
sion levels were significantly downregulated in patients with 
AD compared with healthy controls. Furthermore, the results 
suggested that OGN expression was negatively associated 
with cell proliferation and migration. Inspired by our previous 
work and other previous studies, the present study indicated 
that OGN may regulate the downstream signaling molecules 
AKT and ERK1/2 via the VEGF/VEGFR2 signaling pathway, 
thereby affecting cell proliferation, migration and angiogenesis.

Increasing evidence has demonstrated that the altered 
expression of proteoglycans is associated with degeneration of 
the aortic wall in AD (29). Versican, a large chondroitin sulfate 
proteoglycan, is required for RASMC proliferation and migra‑
tion, and its degradation leads to fragmentation of elastin and 
predisposition to AD (30,31). Genetic depletion of biglycan, a 
member of the class I family of SLRPs, results in spontaneous 
AD and rupture (32). Alterations in the expression levels of 
OGN, which was originally identified as a modulator of bone 
formation, have been implicated in atherosclerosis, myocardial 
fibrosis, schaemia‑induced angiogenesis and other vascular 
diseases (28,33,34). The expression levels of OGN in aortas 
are increased in adult rats at 2 weeks post‑balloon injury 
and in 2‑week‑old neonatal rats (33). OGN mRNA expres‑
sion levels are downregulated in rat RASMCs stimulated 
with basic fibroblast growth factor, TGFβ, PDGF and angio‑
tensin II (33). Similarly, OGN expression levels are decreased 
in the hypertrophic aortas of sinoaortic‑denervated rats (35). 
Consistent with the aforementioned studies, the present study 
demonstrated that OGN expression levels were significantly 
downregulated in the thoracic aortic tissues of patients with 
AD compared with healthy controls, suggesting that OGN 
might be involved in the pathological progression of AD.

Aortic vascular smooth muscle cells, the predominant cell 
type in the medial layer of the aortic wall, serve an impor‑
tant role in maintaining structural integrity and regulating 
vascular tone  (36). RASMC proliferation and migration 
occur in response to various vascular injuries, and contribute 
to the development of pathological remodeling and vascular 
diseases (37). Mutations in genes encoding proteins required 
for SMC contraction leads to the occurrence of thoracic aortic 
aneurysms and dissections (38). The switch from a contractile 

RASMC phenotype to a synthetic, migratory and proliferative 
RASMC phenotype is a pivotal contributor to the development 
of AD (39). The present study indicated that compared with 
si‑NC‑transfected RASMCs, OGN‑knockdown RASMCs 
displayed enhanced proliferation and migration, which may 
facilitate the development of AD. Previous studies have 
indicated that OGN is closely related to proliferation and 
migration in a number of different cell types (40,41). OGN 
overexpression reduces proliferation and inhibits invasion in 
human colon cancer cell lines (20,42). In the present study, 
compared with si‑NC, OGN knockdown increased RASMC 
migration but decreased invasion. Therefore, it was hypothe‑
sized that RASMCs might respond to multiple growth factors, 
inflammatory cytokines and vasoactive substances, leading 
to OGN downregulation, which promotes cell proliferation 
and migration, and thereby modulating AD progression. The 
different effects of OGN knockdown on the invasion abilities 
of RASMCs and colon cancer cells may be attributed to the 
distinct extracellular stimuli and intracellular signaling path‑
ways of the two cell types.

The VEGF/VEGFR axis is involved in numerous 
physiological and pathological processes, including 
embryologic development, normal growth, tissue repair and 
tumorigenesis (43,44). In the process of angiogenesis, VEGF 
binds to VEGFR on endothelial cells, resulting in endothelial 
cell proliferation and migration  (45). OGN competitively 
binds to VEGFR2 in cultured human umbilical vein endo‑
thelial cells (HUVECs) (46), and a coimmunoprecipitation 
assay confirmed the direct interaction between OGN and 
VEGFR2. Wu et al (28) further reported that OGN negatively 
modulates the activation of VEGFR2 and its downstream 
signaling pathways. In the present study, no significant altera‑
tions in the levels of phosphorylated VEGFR2 after exposure 
to VEGF for 5‑30 min were observed between si‑NC‑ and 
si‑OGN‑transfected RASMCs; however, VEGF‑induced 
activation of AKT and ERK1/2 was significantly enhanced 
in OGN‑knockdown cells compared with si‑NC‑transfected 
cells. AKT and ERK1/2 are important downstream signaling 
molecules that are required for the VEGFR2‑induced prolif‑
eration and migration of lymphatic endothelial cells and 
human brain RASMCs (47,48). The results of the present study 
indicated that compared with the si‑NC group, OGN knock‑
down significantly enhanced the phosphorylation of AKT and 
ERK1/2 in RASMCs, which triggered cell proliferation and 
migration. The results of the present study were consistent 
with the finding that OGN knockdown in HUVECs resulted 
in enhanced AKT and ERK1/2 phosphorylation in response 
to VEGF (46).

Other VSMC‑related mechanisms may exist in AD. 
ECM softening serves a pivotal role in regulating the VSMC 
phenotype switch and provides a potential target for treating 
VSMC dysfunction and AD disease, which has been reported 
in Cardiovascular Toxicology (49). The aforementioned study 
focused on synthetic phenotype‑related genes and ECM soft‑
ening phenotype, whereas the present study focused on the 
role of OGN in VSMC proliferation and migration, providing 
two possible mechanisms underlying AD. The two identified 
mechanisms may display cross‑talk and share certain targets 
and factors, but further investigation is required. Synthetic 
phenotype‑related genes, including osteopontin, matrix 
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metalloproteinases and inflammatory cytokines, are upregu‑
lated in VSMCs (49). On the other hand, OGN is a component 
of the vascular extracellular matrix and may also influence 
the vascular system (50). Therefore, it was hypothesized that 
OGN may contribute to ECM softening in the regulation of the 
VSMC phenotype switch.

The present study had a number of limitations. First, the 
number of samples included in the present study was limited 
due to the low incidence of AD. The RASMC model used in 
the present study is a common tool used in AD research (25), 
but cell proliferation and migration can occur in a number of 
other vascular diseases, such as atherosclerosis and vascular 
neointima formation (51,52). In addition, the function of OGN 
in AD may be related to the process of angiogenesis. However, 
no angiogenesis‑related genes were analyzed in the AD tissues 
or in the RASMC model in the present study. If angiogenesis is 
the target of OGN, further research in vascular endothelial cells 
rather than vascular smooth muscle cells is required. Therefore, 
future studies should investigate the effect of OGN on angio‑
genesis in AD to reveal the possible underlying mechanisms.

In conclusion, the present study suggested that OGN 
knockdown facilitated the stimulatory effect of PDGF‑BB on 
RASMC proliferation and migration. The results indicated that 
OGN regulated the VEGF/VEGFR2 axis and the downstream 
signaling molecules AKT and ERK1/2, thus affecting the 
biological activity of RASMCs. Therefore, OGN may serve as 
a novel therapeutic target for AD. 
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