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Abstract. Understanding the molecular and cellular processes 
in skin wound healing can pave the way for devising innovative 
concepts by turning the identified natural effectors into thera‑
peutic tools. Based on the concept of broad‑scale engagement 
of members of the family of galactoside‑binding lectins (galec‑
tins) in pathophysiological processes, such as cancer or tissue 
repair/regeneration, the present study investigated the potential 
of galectins‑1 (Gal‑1) and ‑3 (Gal‑3) in wound healing. Human 
dermal fibroblasts, which are key cells involved in skin wound 

healing, responded to galectin exposure (Gal‑1 at 300 or Gal‑3 
at 600 ng/ml) with selective changes in gene expression among 
a panel of 84 wound‑healing‑related genes, as well as remod‑
eling of the extracellular matrix. In the case of Gal‑3, positive 
expression of Ki67 and cell number increased when using a 
decellularized matrix produced by Gal‑3‑treated fibroblasts 
as substrate for culture of interfollicular keratinocytes. In vivo 
wounds were topically treated with 20 µg/ml Gal‑1 or ‑3, and 
collagen score was found to be elevated in excisional wound 
repair in rats treated with Gal‑3. The tensile strength measured 
in incisions was significantly increased from 79.5±17.5 g/mm2 
in controls to 103.1±21.4 g/mm2 after 21 days of healing. These 
data warrant further testing mixtures of galectins and other 
types of compounds, for example a combination of galectins 
and TGF‑β1.

Introduction

It is commonly known that acute and chronic wounds 
pose serious and unresolved treatment issues that increase 
morbidity and mortality, thus leading to increased healthcare 
costs. Bioinspired approaches derived from insights into 
mechanisms of healing can help to find solutions that improve 
skin repair. Initial steps in the direction of finding practical 
possibilities in this respect have been taken by exposing organ 
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cultured human skin and wounded adult newts to plant agglu‑
tinins, such as phytohemagglutinin or concanavalin A (1,2). 
Endogenous lectins in the skin, which are involved in healing 
pathways, would be superior candidates over exogenous 
reagents. Indeed, the skin is home to a variety of glycan 
receptors, including C‑type lectins and galactoside‑binding 
lectins, or galectins.

Galectins are a family of β‑sheet proteins synthesized on 
free ribosomes that exert various context‑specific activities 
both intracellularly and following non‑conventional secretion 
that do not involve the endo reticulum‑Golgi route (3‑12). First 
detected (as Mac‑2 antigen) in the keratinocytes of murine 
skin  (13) and also human skin (SL66) fibroblasts  (14,15), 
galectin‑3 (Gal‑3) has become a focus of research in this type 
of lectin in dermatology (16‑23). In addition to its ability to 
bridge cell surface counterreceptors, thus reducing the rate of 
their dynamic endocytosis, Gal‑3 is able to trigger changes in 
gene expression profiles by outside‑in signaling, not only in 
human skin fibroblasts, but also in other types of cells (24‑26). 
This evidence has prompted further exploration beyond Gal‑3 
to obtain a full view on galectin representation in skin. Since 
the presence of galectins has been described in human skin as 
a network (27), our previous studies examined their expres‑
sion profiles in pig and rat skin during wound healing (28,29). 
Based on the presence of several galectins in the skin and 
emerging insights into their regulation during wound healing, 
together with their known multifunctionality, it may be 
hypothesized that galectins may mechanistically be involved 
in this regenerative process.

In our previous study, this hypothesis was tested for six 
galectins in vitro, demonstrating their capacity to convert 
dermal fibroblasts into myofibroblasts and to remodel the 
extracellular matrix (ECM) (30). Moreover, these observations 
were dependent on galectin type and provided evidence that 
Gal‑1 could reduce the area of an excisional wound in vivo 
in rats  (30). In the present study, expression profiling of 
wound‑healing‑related genes was carried out in human dermal 
fibroblasts in vitro following exposure to Gal‑1 and ‑3. Moreover, 
immunocytochemical analysis of keratinocytes cultured on an 
ECM substratum derived from the galectin‑treated fibroblasts, 
histology of rat skin wounds, including collagen staining, 
and measurements of tensile strength of an incisional wound 
were also conducted in vivo. The present findings pointed to a 
potential beneficial role for human Gal‑3 in the healing of skin 
incisions.

Materials and methods

Galectins. Human wild‑type (WT) Gal‑1 and ‑3 were obtained 
by recombinant production and purified by affinity chroma‑
tography on lactosylated Sepharose 4B prepared by ligand 
conjugation after activation of resin by divinyl sulfone. In the 
case His‑tagged Gal‑1 (E71Q) mutant (mutant that lost lectin 
activity by the site‑directed mutagenesis), Ni‑CAMTM HC 
(Sigma‑Aldrich; Merck KGaA) was used. This was followed 
by the removal of any lipopolysaccharide contamination and 
desorption of bound (His‑tagged) proteins by histidine (31,32). 
Product analysis was performed using one‑ and two‑dimen‑
sional gel electrophoresis, gel filtration and mass spectrometry, 
as well as carbohydrate‑inhibitable hemagglutination and 

solid‑phase assays in order to ascertain β‑galactoside binding 
(or its loss) (33,34).

Human dermal fibroblast (HDF) and human interfollicular 
keratinocyte (HIK) primary culture. HDFs and HIKs were 
isolated from the skin of healthy donors who underwent 
routine aesthetic surgery at the Department of Aesthetic 
Surgery, Third Faculty of Medicine, Charles University 
(Prague, Czech Republic). Written informed consent was 
obtained from all donors, in agreement with the Declaration 
of Helsinki and with approval from The Ethics Committee of 
University Hospital Kralovske Vinohrady and Third Faculty 
of Medicine, Charles University (approval no. 100/1947/2005). 
HDF cultures were expanded in Dulbecco's modified Eagle 
medium (DMEM) supplemented with 10% FBS (both from 
Biochrom, Ltd.) and penicillin (100 U /ml)/streptomycin 
(100 µg/ml; both from Biochrom, Ltd.), while HIKs were 
cultured in a mixture of DMEM and F12 (BioConcept AG) 
medium (3:1 vol:vol) containing 10% FBS that was further 
enriched with insulin (0.12 U/ml; Novo Nordisk A/S), cholera 
toxin (1 nM; Sigma‑Aldrich; Merck KGaA), hydrocortisone 
(0.4  µg/ml; Sigma‑Aldrich; Merck  KGaA) and epidermal 
growth factor (10  ng/ml; Sigma‑Aldrich; Merck  KGaA) 
at 37˚C with 5% CO2, as described previously (35).

Isolation of RNA and reverse transcription (RT). Following 
48‑h treatment with Gal‑1 (300 ng/ml) and Gal‑3 (600 ng/ml), 
total cellular RNA was isolated from HDFs using an RNeasy® 
Mini kit (Qiagen  GmbH) according to the manufac‑
turer's instructions. RNA quantification was performed 
with a NanoDrop™ 1000 Spectrophotometer (NanoDrop 
Technologies; Thermo Fisher Scientific, Inc.), after which 
250 ng total RNA was subjected to 1% agarose gel electropho‑
resis to confirm its integrity. The RNA samples were stored 
at ‑80˚C. For analytical profiling, RNA was reverse transcribed 
using the RT2 First Strand kit (Qiagen GmbH) following the 
manufacturer's instructions.

RT‑quantitative (RT‑q)PCR. RT2 Profiler PCR Array for 
Human Wound Healing (Qiagen GmbH) was carried out 
using SYBR‑Green as the reporter dye, according to the 
manufacturer's instructions. The RT array included reference 
genes, a control for excluding the presence of genomic 
DNA, three reverse‑transcription controls and set of 84 
wound‑repair‑related genes. Three positive RNA controls were 
also present. The sequences of forward and reverse primers 
were designed and supplied by Qiagen GmbH. Two biological 
replicates were used for each sample group in two independent 
experimental batches and mRNA profiling was performed at 
two time points (24 and 48 h of culture). PCR was performed 
on an Applied Biosystems 7500 Fast Real‑Time PCR System 
(Thermo Fisher Scientific, Inc.). The thermocycling conditions 
were set as follows: Initial denaturation step (10 min, 95˚C) 
was followed by 40 cycles each consisting of a denaturation 
step for 15 sec at 95˚C and annealing for 1 min at 60˚C. The 
obtained data were analyzed using the 2‑ΔΔCq method (36), 
with the average expression of four housekeeping genes 
used as a reference (β‑actin, β2‑microglobulin, GAPDH and 
hypoxanthine phosphoribosyltransferase 1) to obtain relative 
expression values for each gene. The analysis was carried 
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out using limma (version 3.42.2) (37). To detect differentially 
transcribed genes following treatment with Gal‑1, ‑3 and 
TGF‑β1 (30 ng/ml; PeproTech EC Ltd.), groups were indi‑
vidually compared with the untreated control using a linear 
model and a moderated t‑test. Genes with >2‑fold up‑ or down‑
regulation relative to the untreated control were considered 
statistically significant. Data and overlaps of differentially 
transcribed genes were visualized using gplots (version 3.0.3; 
ht tps://github.com/talgal i l i /gplots) and Vennerable 
(version  3.1.0.9000; https://github.com/js229/Vennerable) 
packages in R version 3.6.3 (https://www.r‑project.org).

Culture of HIKs on ECM produced by galectin‑treated 
HDFs. HDFs were seeded at a density of 2,000 cells/cm2 and 
cultured for 10 days in the absence or presence of Gal‑1 (WT 
or E71Q mutant) or Gal‑3. Sterile solutions containing either 
no additive or Gal‑1 (WT or E71Q mutant) at 300 ng/ml and 
Gal‑3 at 600 ng/ml, which were determined to be the most 
effective concentrations based on a previous experiment (30), 
were prepared in DMEM containing 10% FBS and antibiotics. 
ECM scaffolds produced by the cell preparations cultured in 
parallel on the surface of glass microscope slide cover slips 
were tested as substrate for the HIKs. Cells were removed 
from cover slips by osmotic shock (exposure to sterile distilled 
water for 60 min), then surfaces were covered with keratino‑
cyte medium (mixture of DMEM and F12; 3:1) and cover slips 
were incubated for 24 h. HIKs were seeded at a density of 
10,000 cells/cm2 and kept for 7 days at 5% CO2 and 37˚C prior 
to immunocytochemistry.

Immunocytochemistry of cultured cells. The tested specimens 
were fixed with 2% buffered paraformaldehyde (pH  7.2) 
for 5 min at room temperature and washed with phosphate‑
buffered saline (PBS; pH 7.2). Cells were permeabilized by 
exposure to Triton X‑100 (Sigma‑Aldrich; Merck KGaA), 
and sites for antigen‑independent binding of antibodies were 
blocked by incubation with porcine serum albumin (diluted 
in PBS, 1:30; Dako; Agilent Technologies, Inc.) for 30 min 
at room temperature. Commercial antibodies were used at 
concentrations recommended by the suppliers  (Table I ). 
Incubations with primary and secondary antibodies were 
performed for 90 and 45 min at room temperature, respec‑
tively. Nuclear DNA was stained using DAPI for 1 min at room 
temperature. All specimens were mounted to Vectashield 
(Vector Laboratories, Inc.) and examined using an Eclipse 90i 
microscope equipped with filter blocks for the three types 
of dyes (Nikon Corporation), as well as a Cool‑1300Q CCD 
camera (Vosskühler) and a computer‑assisted image analysis 
system LUCIA 5.1 (Laboratory Imaging).

Cell counting. In vitro experiments were repeated twice to 
assess the expression of keratin‑19 (K‑19; marker of low‑degree 
keratinocyte differentiation) and Ki67 (marker of prolifera‑
tion). Staining (1 min at room temperature) of nuclear DNA 
with DAPI (Sigma‑Aldrich; Merck KGaA) was performed so 
that the total numbers of HIKs per three visualization fields 
(magnification, x200) of each biological replicate could be 
counted, then positive expression of Ki67 and K‑19 in cell 
populations was quantitated. The data are given as a percentage 
of the total number of counted cells. The aforementioned 

imaging system described for immunocytochemistry was also 
utilized for this assay.

Animal model. This study was approved by the Ethical 
Committee of the Faculty of Medicine of the Pavol Jozef 
Šafárik University (Košice, Slovak Republic) and by the State 
Veterinary Administration of the Slovak Republic. It was 
performed as described previously (30). A total of 96 male 
Sprague‑Dawley rats (age, 1 years old; weight, 507±48 g) were 
included in the study. Animals were housed in plexiglass cages 
(22‑24˚C, 50‑70% relative humidity, 12/12 h light/dark cycles) 
with free access to food and water. Surgery was performed 
under general anesthesia induced by intramuscular adminis‑
tration of 40 mg/kg ketamine, 15 mg/kg xylazine and 5 mg/kg 
tramadol (38,39). Under strict aseptic conditions, two 1‑cm, 
round, full‑thickness, excisional skin wounds and one 4‑cm, 
full‑thickness skin incision were inflicted to the back of each 
rat at the position depicted in Fig. 1. The incision was subse‑
quently sutured using intradermal running suture. In each 
group, 6 rats were sacrificed on day 7 and 21 post‑surgery, 
respectively. Allocation of rats to treatment groups is shown 
in Table II.

Wound treatment. In vivo experiments were performed in 
parallel under identical conditions, first on an exploratory 
level (n=48; data not shown) with galectin concentrations of 
10 µg/ml (lyophilized protein containing K/Na‑phosphate 
salts as buffer substances dissolved in physiological saline 
solution), then systematically (n=48) with galectin concen‑
trations of 20 µg/ml applied topically on the wound surface 
(using an eye dropper) during the first 3 post‑operative days 
(three times a day).

Histology. Specimens of wounds were removed from rats 
sacrificed by cervical dislocation following ether anesthesia 
(using a vaporizer) at the two given time points and routinely 
processed for classical histological staining performed at 
room temperature (fixation in 4% buffered formaldehyde for 
10 min, dehydration using a series of solutions with increasing 
concentration of ethanol, paraffin embedding, sectioning). 
Deparaffinized sections (5 µm thick) were stained with Van 
Gieson's solution (non‑specific collagen staining) and also 
with hematoxylin for 10 min and eosin at 4 min, according 
to a previous study (30). Sections were examined under an 
Olympus BX51 microscope equipped with an Olympus DP73 
CCD camera (Olympus Corporation).

Immunohistochemistry. A second set of specimens of 
wounds was cryoprotected using Tissue‑Tek (Sakura Finetek 
Europe B.V.) and frozen in liquid nitrogen. Tissue sections 
(~10  µm thickness) were first mounted on the surface of 
poly‑l‑lysine‑treated glass slides (Sigma‑Aldrich; Merck 
KGaA), then fixed at room temperature using 2%  (w/v) 
paraformaldehyde in PBS for 10 min. Non‑specific binding of 
the secondary antibody was blocked at room temperature with 
normal swine serum (DakoCytomation; Agilent Technologies, 
Inc.) diluted with PBS (1:30) for 30 min.

Solutions of commercially available primary and secondary 
antibodies are shown in Table I. Incubation with primary and 
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secondary antibodies was performed for 90 and 45 min (at 
room temperature), respectively. Nuclear DNA was stained 
using DAPI for 1  min at room temperature. Controls for 
specificity of the immunohistochemical detection were as 
follows: i) Replacement of the target‑specific antibody by 
an irrelevant antibody (in the case of monoclonal antibodies 
of the same isotype); and ii) omission of the incubation step 
with the primary antibody to exclude antigen‑independent 
signal generation. Specimens were mounted using Vectashield 
(Vector Laboratories, Inc.) and examined under an Eclipse 90i 
microscope (Nikon Corporation), as aforementioned.

Semi‑quantitative scoring of histological sections. The 
status of re‑epithelialization and extent of the presence of 
polymorphonuclear leukocytes (PMNL), fibroblasts, newly 
formed vessels and collagen were assessed according to a 
semi‑quantitative scale system, as defined in Table III (40).

Wound tensile strength (TS). Measurement of force to rupture an 
incisional wound was facilitated by equipment assembled in our 
laboratory using commercial devices (41). Briefly, an adequately 
shaped horizontal arm was used to pull at one side of a specimen, 
while the opposite side was fixed to a sensor tip of a force meter 

Figure 1. Schematic illustration and photograph showing the position and shape of wounds inflicted on the back of each rat. Two open wounds 1 cm in diameter 
each and one sutured incision 4 cm in length. 

Table I. Antibodies used for immunocytochemistry and lectin histochemistry.

A, Primary antibodies

Name	 Host	 Supplier	C at. no.	D ilution

α‑smooth muscle actin	 Mouse monoclonal	 Dako (Agilent Technologies, Inc.)	 M0851	 1:50
Vimentin	 Mouse monoclonal	 Dako (Agilent Technologies, Inc.)	 M0725	 1:200
Tenascin	 Mouse monoclonal	 Sigma‑Aldrich (Merck KGaA)	 T3413	 1:200
Fibronectin	 Rabbit polyclonal	 Dako (Agilent Technologies, Inc.)	 A0245	 1:1,000
Ki67	R abbit polyclonal	E MD Millipore	A B9260	 1:200

B, Secondary antibodies

Name	 Host	 Supplier	C at. no.	D ilution

Anti‑mouse; TRITC	 Goat	 Sigma‑Aldrich (Merck KGaA)	 T5393	 1:30
Anti‑rabbit; FITC	 Swine	 Dako (Agilent Technologies, Inc.)	 F0205	 1:100

TRITC, tetramethyl rhodamine isothiocyanate; FITC, fluorescein isothiocyanate.
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unit (Omega Engineering, Inc.). The moving arm was driven by a 
high‑precision stepper motor MDI‑17 (Intelligent Motion Systems 
Inc.) through a linear slider. The technique for determining the 
TS had been described in detail previously (42). Briefly, following 
euthanasia, two 1‑cm‑wide skin strips were removed from each 
incisional wound and placed lengthwise between the clamps of 
the TS testing device. Pulling was performed perpendicularly 
to the original direction of the incision. The maximal strength 
of rupture was measured for each specimen. TS (g/mm2) was 
calculated as TS=MRS/A, where MRS is the maximal rupture 
strength (g) and A is the wound area (mm2).

Statistical analysis. Continuous data are presented as the 
mean ± SD. Categorical data are presented as the median. 
Data obtained from cell counting were compared using 
one‑way ANOVA followed by the Tukey‑Kramer post 
hoc test. Two‑way ANOVA followed by Tukey's post hoc 
test was used to compare the effects of treatment modali‑
ties and time on wound TS. The Kruskal‑Wallis test with 
multiple comparison (Dunn's test) was applied to compare 
non‑parametric semi‑quantitative data. The aforementioned 
statistical analyses were performed in SPSS v22 software 
(IBM Corp.). RT‑qPCR data were analyzed using a moder‑
ated t‑test in limma (version  3.42.2)  (37) R  version  3.6.3 
(https://www.r‑project.org) and Bioconductor version 3.1.0 
software packages (http://www.bioconductor.org). P<0.05 was 
considered to indicate a statistically significant difference.

Results

In vitro study. The influence of administration of the two 
galectins on biochemical and cellular features was tested 
in vitro in two experimental settings.

HDF gene expression profiling. In order to determine whether 
Gal‑1 and ‑3 could affect HDF gene expression in vitro, the 
effective concentration required to induce conversion to myofi‑
broblasts or ECM redesign (30), the Qiagen RT2 Profiler PCR 
Array for Human Wound Healing system was used to monitor 
expression levels of 84 selected genes relevant for wound 
healing. Technically, the sets of experiments recommended 
for stringent quality control completely satisfied the standards 
of this commercial system (data not shown). Indeed, Gal‑1 led 
to significant changes of signal intensity relative to the control 
(log2 fold change, 1.62‑6.00; Fig. 2A). Genes with increased 
expression are presented in Table SI. Gal‑3 treatment also 
caused deviations from the respective control from 1.14 to 6.28 
log2 fold change upregulation relative to the control (Fig. 2A). 
There was considerable overlap between the lists of upregu‑
lated genes for Gal‑1 and ‑3, including ANGPT1, IGF1, FGF10, 
F13A1 and ACTC1 (Fig. 2B). In order to ascertain common 
responsiveness of cell populations to a known effector of fibro‑
blast activation, TGF‑β1 was tested in parallel as a positive 
control (Table SI). Of note, a full overlap of profiles between 
TGF‑β1 and a Gal‑1 was observed, whereas Gal‑3 treatment 
resulted in uniquely regulated genes overlapping neither Gal‑1 
nor TGF‑β1 profiles, such as IL6, CDH1 and F3 (Fig. 2B).

HIK immunocytochemistry. The low‑level fibronectin staining 
at day 10 following HIK seeding demonstrated that the orig‑
inal three‑dimensional structure of the ECM was completely 
replaced by a confluent layer of epithelial cells (Fig. 3A). The 
presence of fibronectin was restricted to small intracellular 
granules. K‑19 was present in typically small cells, and a relative 
increase in the red signal was seen in the Gal‑1‑treated group, 
compared with the control, Gal‑1(E71Q) mutant and Gal‑3 
conditions (Fig. 3A and B). Of note, the loss‑of‑glycan‑binding 

Table II. Allocation of rats in treatment groups.

	 Gal‑1	 Gal‑1(E71Q) 	 Gal‑3
	 treatment group, n	 treatment group, n	 treatment group
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Time/group	U ntreated control, n	 10 µg/ml	 20 µg/ml	 10 µg/ml	 20 µg/ml	 10 µg/ml	 20 µg/ml

7 days	 12	 6	 6	 6	 6	 6	 6
21 days	 12	 6	 6	 6	 6	 6	 6

Gal, galectin.

Table III. Scale used for the semi‑quantitative evaluation of histological sections.

Scale	E pithelialization	 PMNL	 Fibroblasts	L uminized vessels	C ollagen

0	 Thickness of cut edges	A bsent	A bsent	A bsent	A bsent
1	 Migration of cells (<50%)	 Mild‑ST	 Mild‑ST	 Mild‑SCT	 Mild‑GT
2	 Migration of cells (≥50%)	 Mild‑DL/GT	 Mild‑GT	 Mild‑GT	 Moderate‑GT
3	 Bridging the excision	 Moderate‑DL/GT	 Moderate‑GT	 Moderate‑GT	 Marked‑GT
4	C omplete keratinization	 Marked‑DL/GT	 Marked‑GT	 Marked‑GT	O rganized‑GT

DL, demarcation line; GT, granulation tissue; PMNL, polymorphonuclear leucocyte; SCT, subcutaneous tissue; ST, surrounding tissue.
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Gal‑1 (Gal‑1E71Q) single‑site mutant did not trigger the 
pronounced effect of WT Gal‑1 (Fig. 3A and B). As a measure 
of the growth fraction of cell populations, the Ki67 antigen 
status was assessed. Ki67‑Positive HIKs were generally seen, 
most frequently for Gal‑3 (Fig. 3B). Double staining suggested 
that K‑19‑positive cells did not present the Ki67 antigen 

(see insert in Fig. 3B), an observation made independent of the 
experimental condition.

Quantification of the observed parameters is presented in 
Fig. 3C‑E. The increase in the positive expression of K‑19 in 
Gal‑1‑treated cells was significant when compared with the 
control group, the Gal‑1(E71Q) mutant‑ and Gal‑3‑treated 
cell populations (Fig. 3C). Positive expression of Ki67 was 
increased significantly in the Gal‑1‑ and Gal‑3‑treated groups 
compared with the control and Gal‑1(E71Q) mutant‑treated 
cells, but not relative to each other (Fig. 3D). The total number 
of cells counted for each condition reached the most statisti‑
cally significant level (among test groups) for Gal‑3‑exposed 
cells (Fig. 3E).

In vivo study. The effect of the two galectins on wound healing 
was tested on rats using two basic models of skin repair (open 
excision and sutured incision). During the post‑surgical period, 
all animals remained healthy and did not show symptoms of 
infection. Initial experiments using concentrations of 10 µg/ml 
galectins showed no activity (data not shown). Thus, subsequent 
experiments were performed with 20 µg/ml concentrations 

(equal molar concentration due to similar molecular weights 
of Gal‑1 homodimer and monomeric chimera‑type Gal‑3).

Histology of open excision wounds. The results of the 
extended histological analysis using immunohistochemistry 
and Van Gieson staining (top and middle panel) and of the 
semi‑quantitative evaluation of distinct parameters of the 
wounds at the two time points (bottom panel) are shown in 
Fig. 4. At day 7, the newly formed granulation tissue (GT) 
was rich in fibronectin (Fig. 4A), populated by fibroblasts, and 
also notably vascularized. The inset in the photomicrograph 
of a section of a specimen of the Gal‑1‑treated group illus‑
trates the already known capacity of this protein to generate 
SMA‑positive myofibroblasts (Fig. 4A). When quantitated, the 
numbers of fibroblasts and luminized vessels were increased 
in both lectin‑treated groups (Fig. 4C). An increase in collagen 
score was seen at this time point for Gal‑3 (Fig. 4C).

At day 21, the level of fibronectin in the granulation tissue 
had leveled off, and no myofibroblasts were present in the gran‑
ulation tissue of any group (data not shown). In contrast, the 
contents of collagen had further increased, as the Van Gieson 
staining in granulation tissue revealed  (Fig.  4B  and D ). 
Inspection of such stained specimens under polarized light 
showed a marked effect of Gal‑3 on collagen type‑1 forma‑
tion  (Fig.  4B). Median values for scores of the measured 
characteristics reflect these microscopical observations, as 
they also indicate a tendency for an increase by presence of 

Figure 2. Expression profile of human dermal fibroblasts following treatment with Gal or TGF‑β1. (A) Heat map and (B) Venn diagram of genes separately/commonly 
regulated in human dermal fibroblasts following treatment with Gal‑1, Gal‑3 or TGF‑β1 compared to untreated control. Gal, galectin; C, control.
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Gal‑1 and ‑3 of the scores on re‑epithelialization and number 
of fibroblasts (Fig. 4D).

TS of sutured incision wounds. Following the systematic 
determination of TS values of incisional wounds (Fig. 5), the 
results of the statistical analysis of these experimental series 
using the two‑way ANOVA are summarized in Table IV. Data 
analysis using one‑way ANOVA is presented in Fig. 5A and B.

As expected, a significant increase of wound TS was 
observed between day 7 and 21. The data from the Gal‑3‑treated 
group significantly differed from those of all other groups. 
At day 7, TS in the Gal‑3 group reached 29.6±8.2 g/mm2, 
compared with 14.3±9.6 g/mm2 for the control, 20.2±7.6 g/mm2 
for Gal‑1 and 17.4±2.8 g/mm2 for Gal‑1(E71Q) (Fig. 5A).

At day 21 after surgery, the Gal‑3 group continued to 
exhibit a significantly increased TS when compared with 
the untreated control (Gal‑3, 103.1±21.4 g/mm2 vs. control, 
79.5±17.5 g/mm2), the Gal‑1 group (86.7±19.4 g/mm2) and the 
Gal‑1(E71Q) mutant (86.5±18.8 g/mm2) (Fig. 5B). Thus, TS 
is a parameter separating galectin activity in incisional skin 
wound healing.

Discussion

The data of the present study provided further evidence of 
the favorable effect of Gal‑1 and ‑3 on excisional/open and 
incisional/sutured skin wound healing. Similar to TGF‑β1, 
the positive control, both galectins acted as molecular 

switches for the expression of genes related to the repair of 
skin wounds. Genes for IGF1, FGF10 and ANGPT1 were 
among the most upregulated genes, all of which have previ‑
ously been implicated in healing processes (43‑45). Multiplex 
cytokine assays of human skin fibroblasts after Gal‑3 expo‑
sure have demonstrated the increased concentrations of 
interleukin‑6, granulocyte‑macrophage colony‑stimulating 
factor, C‑X‑C motif chemokine ligand 8 and matrix metallo‑
proteinase (MMP)‑3, an overall pro‑inflammatory/degradative 
signature (24), in osteoarthritic chondrocytes (25,46). On the 
other hand, the increase in the expression of MMP‑9, cleaving 
the Ala62‑Tyr63 bond in Gal‑3's N‑terminal stalk (47), can 
indicate a regulatory loop to put restrictions to prolonged 
Gal‑3 activity for Gal‑3‑induced neutrophil activation by 
neutralizing contacts between lectin domains (48).

The ECM of the HDFs is then subject to a remodeling 
by Gal‑3 that in turn induces proliferation of keratinocytes, 
extending our previous data on responses to Gal‑1 pres‑
ence (30). In detail, we observed significantly upregulated 
CDH1  (49) and MMP9  (50) transcripts in Gal‑3 treated 
fibroblasts, which supports the role of lectins in the 
re‑epithelialization of wounds. Reduced Gal‑3 expression 
has been implicated in defective skin wound repair in 
patients with diabetes by two mechanisms: i) Inverse corre‑
lation between Gal‑3 and advanced glycation end products; 
and ii) decreased Gal‑3 in chronic human wounds leading to 
delayed re‑epithelialization as seen also in Gal‑3 knockout 
mice (20,21). Of note, Gal‑1 has been shown to accelerate 

Figure 3. Characteristics of human interfollicular keratinocytes grown on an ECM produced by untreated or galectin‑treated human dermal fibroblast cultures. 
Nuclei are counterstained with DAPI. (A) Cells were immunostained for the presence of Fibr (green signal) and K‑19 (red signal). Magnification, x600. (B) Cells 
positive for Ki67 (green signal) and K‑19 (red signal). Magnification, x200. Insert magnification, x400. (see insert, magnification 400x). Quantification of the 
studied parameters. (C) Frequency of K‑19+ keratinocytes. (D) Frequency of Ki67+ cells. (E) Total number of cells in cultures using ECM from each group. 
*P<0.05, **P<0.01, ***P<0.001. Gal, galectin; C, control; Fibr, fibronectin; ECM, extracellular matrix.
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Figure 4. Characteristics of open wounds following treatment with tested galectins. Untreated group was used as C. Nuclei are counterstained with DAPI. 
(A) Sections of excisional wounds immunostained for Fibr (green signal) and SMA (red signal) seven days after surgery, presenting well‑formed fibronectin‑rich 
GT with SMA+ vessels and re‑epithelialization beneath scab can be seen in all groups, only Gal‑1‑treated wounds are characterized by increased number of 
SMA‑positive myofibroblast‑like cells. Magnification, x100. Insert magnification, x200. (B) VG‑stained wounds monitored under polarized light 21 days 
after surgery, wounds treated with Gal‑3 exhibited collagen organized into polarized light‑reflecting fibers. Magnification, x100. Insert magnification, x200. 
Semi‑quantitative analysis of histological parameters/changes. Data are presented as the median in two separate graphs for (C) day 7 and (D) day 21. PMNL 
was not evaluated at day 21. *P<0.05, **P<0.01. Gal, galectin; C, control; SMA, α‑smooth muscle actin; Fibr, fibronectin; VG‑Pol, Van Gieson‑polarized light; 
D, dermis; E, epidermis; GT, granulation tissue; S, scab.

Figure 5. TS measurement of sutured wounds following treatment with Gal. TS of incisional wounds following treatment with Gal at (A) day 7 and (B) day 21. Untreated 
group was used as C. One‑way ANOVA followed by the Tukey‑Kramer post hoc test. *P<0.05, **P<0.01, ***P<0.001. TS, tensile strength; Gal, galectin; C, control.
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cellular migration and proliferation (51), and augment skin 
wound repair in normal and diabetic mice (deficient for this 
galectin) (52). In parallel, these processes may also contribute 
to the stability of wound closure, which prompted us to proceed 
with the animal study. In the present study, the pro‑fibrotic effect 
of Gal‑3 was demonstrated, resulting in wound tensile strength 
increase and improved collagen organization (characteristic 
reflective appearance of collagen fibers under the polarized 
light) of healing skin incisions and excisions, respectively. 
Molecular analysis further revealed significantly increased 
transcripts of IL6 and F3 genes in Gal‑3‑treated cells, more so 
than Gal‑1-treated cells. In particular, IL‑6 and TGF‑β1 play 
important roles in liver fibrosis and/or structural changes in 
human tendon, a wound healing‑like processes characterized 
by the accumulation and turnover of ECM (53‑55). On the 
other hand, the F3 gene product (tissue factor), exerts potent 
pro‑angiogenic activity  (56), which may also contribute to 
wound healing improvement in Gal‑3‑treated rats.

When envisioning to further pursue this route of experi‑
mental testing, two aspects should be noted. Firstly, galectins 
are expressed as a network beyond Gal‑1 and ‑3 with possi‑
bility for context‑dependent functional antagonism and 
cooperation  (26,57‑60). For example, our previous study 
reported an additive effect of TGF‑β1 (10 µg/ml) with Gal‑1 
(200 or 300 ng/ml) on inducing expression of SMA in HDF 
cultures (30). Further studies should investigate Gal‑mixtures 

(also including other types of proteins such as TGF‑β1), as they 
likely occur in situ, to attain the optimal efficacy, and the present 
study provides a solid foundation for this. Secondly, galectin 
function arises from their modular structure. Therefore, their 
protein architecture has become the subject of redesign using 
engineering, for example by creating homo‑oligomers from 
natural dimers (61‑64), in order to optimize a favorable activity. 
Of note, whether and how a Gal‑1‑like (homodimeric) Gal‑3 
or a Gal‑3‑like (monomeric, in solution) Gal‑1 will influence 
in vitro and in vivo aspects of wound healing remains to be 
determined.

In summary, the present findings provided further evidence 
that galectins should be listed within the group of efficient 
wound healing modulators at several key steps of skin repair, 
including ECM formation/reorganization and re‑epithelializa‑
tion (65,66). This conclusion is incentive for further work. From 
a clinical perspective, the present data makes a strong case 
for directing further efforts to treat incisional and excisional 
wounds differently. In fact, Gal‑1 seems to play a role in wound 
contraction, whereas Gal‑3 seems to be a skin scar inductor. 
However, understanding the activity profile of each galectin 
in vitro and in acute and chronic wound repair, along with the 
potential of administration of mixtures, including custom‑made 
variants in experimental in vitro and in vivo testing (67,68), will 
be important when investigating the potential applications of 
these endogenous effectors in the treatment of skin lesions.
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A, Overall results	

Group	 P‑value	 95% CI

Time (7 days vs. 21 days)	 <0.001	N /A
Group (C vs. Gal‑1 vs. 	 <0.001	N /A
Gal‑1(E71Q) vs. Gal‑3)
Time vs. Group	 0.797	N /A

B, Time comparison

Group	 P‑value	 95% CI

7 days vs. 21 days	 0.0001	 62.3995 to 74.7000

C, Treatment comparison

Group	 P‑value	 95% CI

C vs. Gal‑1	 0.8815	 ‑18.5813 to 5.5063
C vs. Gal‑1(E71Q)	 10.000	 ‑17.1219 to 6.9657
C vs. Gal‑3	 0.0003	 ‑31.8079 to ‑7.1180
Gal‑1 vs. Gal‑1(E71Q)	 10.000	 ‑9.8777 to 12.7964
Gal‑1 vs. Gal‑3	 0.0214	 ‑24.5819 to ‑1.2690
Gal‑3 vs. Gal‑1(E71Q)	 0.0075	 2.7284 to 26.0412

C, control; Gal, galectin.
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