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Abstract. Colorectal cancer (CRC) is the third most common
malignant tumor in humans. Chemotherapy is used for the
treatment of CRC. However, the effect of chemotherapy
remains unsatisfactory due to drug resistance. Growing
evidence has shown that the presence of highly metastatic
tumor stem cells, regulation of non-coding RNAs and the
tumor microenvironment contributes to drug resistance
mechanisms in CRC. Wnt/B-catenin signaling mediates
the chemoresistance of CRC in these three aspects. Therefore,
the present study analyzed the abundant evidence of the
contribution of Wnt/B-catenin signaling to the development
of drug resistance in CRC and discussed its possible role in
improving the chemosensitivity of CRC, which may provide
guidelines for its clinical treatment.
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1. Introduction

Globally, colorectal cancer (CRC) is the third most commonly
diagnosed malignant tumor and is the second leading cause of
cancer-associated mortality (1). Overall, the incidence rate and
mortality rate of CRC are rising rapidly in several low-income
and middle-income countries (2). Although the mortality rate
of CRC tends to be stable or declining in developed countries,
it is still higher than that in low-income and middle-income
countries (2). By 2030, the global CRC burden is expected
to increase by 60%, reaching >2.2 million new cases and
1.1 million mortalities (3). The majority of newly-diagnosed
CRC cases are classified as a sporadic form (4), and the
occurrence and development of CRC is a long-term process.
Conventional CRC begins with changes in the cell morphology
of the colonic epithelium, which proliferates uncontrollably
to form benign polyps. Gradually, it develops into a highly
atypical hyperplastic advanced adenoma, which causes a
loss of epithelial structure and function to form an invasive
tumor (5,6).

A number of factors contribute to the formation of
CRC. Genetic susceptibility is a major driver of early CRC
occurrence. A study has demonstrated that CRC contains
<80 mutations, of which <15 mutations are the driving force
for tumorigenesis (7). The probability of developing CRC is
also associated with personal features and habits, such as age,
gender, race/ethnicity, chronic disease history, dietary factors,
obesity, low physical activity, smoking and intestinal micro-
flora (4,8,9). Chemotherapy based on 5-fluorouracil (5-FU)
has been the main treatment method for patients with CRC
since the 1950s (10-12). More chemotherapeutic drugs, such as
oxaliplatin (L-OHP), irinotecan and capecitabine, have been
developed in recent years and the emergence of monoclonal
antibodies, such as bevacizumab and cetuximab, have greatly
advanced chemotherapy for CRC (13). However, even if the
current response rate to various systemic chemotherapy regi-
mens reaches 50%, most patients develop resistance within
3-12 months (14,15). Drug resistance refers to the gradual
decline in the response to drugs during the treatment of
various diseases (16). Resistance to chemotherapy drugs is a
major limitation in the use of chemotherapy (17). The failure of
chemotherapy due to cancer progression and resistance under-
lies the majority of cancer-associated deaths (18). Therefore,
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it is necessary to explore drug resistance mechanisms and
reversal strategies of CRC chemotherapy.

Previous studies have demonstrated that tumor stem
cells (CSCs), non-coding RNAs (ncRNAs) and disordered
tumor microenvironment (TME) contribute to the resistance
of CRC (19-22). Notably, Wnt/B-catenin signaling has been
reported to regulate the formation of CRC via these three
aspects (23,24). It is hypothesized that the dysregulation of
the Wnt/p-catenin signaling is related to chemotherapy resis-
tance in CRC. At present, numerous studies have sustained
this view (25-27), but there is no systematic summary to the
best of our knowledge. Therefore, the present authors have
systematically reviewed the reported studies on Wnt/B-catenin
signaling-mediated chemotherapy resistance of CRC, which
may provide clinical reference for the future.

2. Method

Studies were retrieved from the Pubmed (https:/pubmed.ncbi.
nlm.nih.gov/) and Web of Science databases (https:/www.
webofknowledge.com) using ‘“Wnt’, ‘B-catenin’, ‘CRC’, ‘drug
resistance’ and ‘multidrug resistance’ (MDR) as key words.
The retrieved literature ranged from 1980 to the present and
the last search was performed on August 28, 2020. The present
review focuses on the role of Wnt/f3-catenin signaling in CRC
resistance and the inhibition of Wnt/f-catenin signaling to
study the regulation of CRC resistance.

3. Wnt/p-catenin signaling pathway

The Wnt gene was first identified in mouse mammary tumors in
1982 and was originally named the intl gene (28). Subsequent
investigation showed that the int gene serves an important role
in embryo growth and development in mice, and its function is
similar to the Drosophila wingless gene (29). The intl gene and
wingless gene are collectively referred to as the Wnt gene (29).
The Wnt signaling pathway is one of the key signaling pathways
in the regulation of cell proliferation and it serves a significant
role in the pathological process of malignant tumors (30-34).
The Wnt gene is composed of various glycoproteins, is a
member of the coiled family of transmembrane receptors
and is the coreceptor for lipoprotein receptor-related protein
(LRP) family and other downstream components (35). There
are currently 19 Wnt ligands in mammals that function via
autocrine and paracrine pathways (36,37). These various
Whnt ligands serve different roles in the development of
organisms and the aberrant expression of Wnt ligand genes
can lead to the occurrence and development of different
types of tumors (Table I) (78). Wnt ligands are divided into
two classes according to the different binding methods with
downstream receptors. One group binds to the Frizzled (Fzd)
and low-density lipoprotein-related receptor 5/6 (LRP/6)
to activate canonical f-catenin-dependent pathways.
The other group binds Fzd protein to activate the cyclic
guanosine monophosphate protein and the noncanonical
Wnt pathway (79). -catenin is the central molecule in the
canonical Wnt pathway that controls the switch of the Wnt
signaling pathway. Therefore, it is also called Wnt/B-catenin
signaling (80). Wnt ligands do not bind to the receptor in
normal mature cells, and Wnt/B-catenin signaling is in an

‘off” state (81). Adenomatous polyposis coli (APC) protein,
framework protein Axin, glycogen synthase kinase 3f3
(GSK3p) and casein kinase 1 (CK1) form a complex
that causes degradation of B-catenin (82). This complex
degrades [-catenin, which is phosphorylated, modified by
ubiquitin and ultimately degraded by the proteasome (83).
Eventually, the concentration of f-catenin is decreased,
nuclear translocation is suppressed, and downstream target
genes, including c-Myec, cyclin DI, survivin and porous
metalloproteinase, cannot be activated (83). When Wnt
ligands bind to transmembrane Fzd receptors and LRP5/6,
CK1 and GSK3p are attracted to LRP5/6 and function as
phosphorylases of LRP5/6, which prevents formation of the
protein complexes that degrade B-catenin (84). Continuously
increasing concentrations of free -catenin enter the nucleus
via the nuclear pore membrane and bind to transcription
factor/lymphocyte-enhancing factor (TCF/LEF) (85).
Binding promotes the transcription of downstream target
genes that affect cell proliferation, apoptosis, stromal lysis
and angiogenesis (85). Wnt ligands bind to the receptor, and
Wnt/pB-catenin signaling is in an ‘on’ state (81). The details
are shown in Fig. 1.

4. Wnt/f-catenin signaling in CRC drug resistance

The resistance of human tumors to anticancer drugs is
primarily due to the inherent chemical resistance of tumor
cells, generally attributed to gene mutation, gene ampli-
fication or epigenetic changes, which affect absorption,
metabolism or the export of drugs by a single cell (19). CRC
cells exhibit varied resistance to different chemotherapy
drugs, including 5-FU, L-OHP and irinotecan, depending
on enhanced intracellular metabolism, upregulation or
changes in intracellular targets, increased dihydropy-
rimidine dehydrogenase and thymidine synthase activities,
upregulated levels of the diminished form glutathione or
increased nucleotide excision repair (86,87). Resistance
to capecitabine is accomplished via methylation of the
gene encoding thymidine phosphorylase and inactiva-
tion of capecitabine (88). For the checkpoint inhibitors,
including ipilimumab, pembrolizumab and nivolumab,
tumors primarily achieve resistance via tumor mutation and
adaptation, decreased production or expression of neoanti-
gens, overexpression of indoleamine 2,3-dioxygenase and
decreased expression of phosphatase and tensin homolog
(PTEN) (89). Ghadimi et al (90) reported that the Wnt tran-
scription factor TCF7L2 is overexpressed in 5-FU-resistant
primary rectal cancer. The stimulation of Wnt3a leads to
the strong activation of Wnt/p-catenin signaling in SW480,
SW837 and LS1034 CRC cells (91). At the same time, the
activity of TCF/LEF reporter gene is rapidly increased,
which results in resistance to 5-FU (91). The inhibition of
B-catenin can avoid the therapeutic resistance caused by
enhanced TCF/LEF gene activity (91). Another study also
demonstrated that the sensitivity of CRC cells to 5-FU can
be adjusted through Wnt/B-catenin signaling pathway (92).
In addition, pharmacological or genetic inhibition of
B-catenin can change the chemical sensitivity of SW480
and SW620 CRC cells to 5-FU and L-OHP by regulating
the Wnt/f-catenin-Jagged 2-p21 axis (93). Silencing of the
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Author, year Gene  Function Type of cancer (Refs.)

He et al, 2004 Wntl GOF Non-small-cell lung, prostate, CRC, (38-42)

Chen et al, 2004; Babaei et al, 2019 gastric and ovarian cancer

Jia et al, 2017; Bodnar et al, 2014

Huang et al, 2015; Katoh et al, 2001 Wnt2 GOF Lung, prostate, gastric cancer and CRC (43.44)

Nakashima er al, 2012; Wang et al, 2016 Wnt3 GOF Lung, CRC and gastric cancer (45-47)

Nie et al, 2019

Thiago et al, 2010 Wnt3a LOF B cell precursor acute lymphoblastic (48-50)

Zimmerman et al, 2013 leukemia, multiple melanoma and

Annavarapu et al,2013 alveolar rhabdomyosarcoma

Fox et al, 2013; Wang et al, 2014 Wnt3a GOF Malignant mesothelioma, (51-53)

Akaboshi et al, 2009 breast and pancreatic cancer

Zhao et al, 2019 Wnt4 GOF Cervical cancer 54)

McDonald et al, 2009; Li et al, 2010 Wnt5a LOF Prostate and breast cancer, (55-59)

Ying et al, 2008 neuroblastoma, leukemia, squamous

Kremenevskaja et al, 2005 cell carcinoma of the esophagus,

Thiele et al, 2016; Kurayoshi er al, 2006 CRC and thyroid cancer

Kurayoshi et al, 2006 Wnt5a GOF Prostate, gastric, pancreatic, ovarian and (59-62)

Kurayoshi et al, 2006; Huang et al, 2005 non-small-cell lung cancer

Boetal, 2013

Navarrete-Meneses et al, 2017 Wnt5b GOF Acute lymphoblastic leukemia (63)

Stewart et al, 2014

Kirikoshi et al, 2002 Wnt7a LOF Non-small cell lung cancer, CRC, (64.,65)
pancreatic and gastric cancer

Huang et al, 2015; Kirikoshi et al, 2002 Wnt7b GOF Breast cancer, adenocarcinoma and (43,65,66)

Vesel et al, 2017 embryonal tumor

Lieral,2019; Li et al,2017; Hsu et al,2012  Wntl10a GOF CRC, ovarian cancer, renal cell carcinoma, (67-71)
esophageal and gastric cancer and papillary

Kirikoshi et al, 2001; Dong et al, 2017 thyroid carcinoma

Wend et al,2013; Chen et al, 2013 Wnt10b GOF Triple-negative breast and endometrial (72-74)

Saitoh et al, 2001 cancer and gastric carcinogenesis

Bartis et al, 2013; Tian et al, 2018 Wntll GOF Lung cancer and CRC (75,76)

Toyama er al, 2010 Wntll LOF Hepatocellular carcinoma (77)

LOF, loss-of-function; GOF, gain-of-function; CRC, colorectal cancer.

T cell factor 4 (Tcf4) gene, which is a downstream effector
of Wnt/f-catenin signaling, sensitizes SW1874, SW1396,
SW480 and SW-Sc CRC to L-OHP. This sensitization effect
may be due to different mechanisms, including the Tcf4 motif
in the ATP-binding cassette subfamily B member 1 (ABCB1)
promoter, defects in the nucleotide excision repair or double
strand break repair system after Tcf4-silencing (87). Wnt
inhibitors also improve chemosensitivity (94,95). Among
these inhibitors, 4-acetylantroquinol B, which is isolated
from the mycelia of Ganoderma camphora, negatively
regulates the stem cell maintenance signaling transduc-
tion pathway LGR5/Wnt/f-catenin and is most effective
in reducing stem-related chemical resistance (96). The
present study mainly reviewed the molecular mechanisms of

Wnt/B-catenin signaling through CSCs, ncRNAs and TME
that mediate the chemotherapy resistance of CRC.

Wnt/f3-catenin signaling and CSCs. CSCs are cells that
promote the development of tumors, and have the ability to
self-renew and have multiple differentiation potentials (97,98).
CSCs have four known characteristics, including self-renewal,
differentiation, tumorigenic and specific surface markers.
These cells are responsible for tumor occurrence, develop-
ment, metastasis, recurrence and drug resistance (20,99). CSCs
are naturally chemoresistant. CSCs are functionally protected
in the tissue stem cell niche during chemotherapy (100). The
CSCs niche is mainly composed of fibroblasts and endothelial,
mesenchymal and immune cells (101,102). These adjacent cells
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Figure 1. Schematic representation of the Wnt/p-catenin signaling pathway. (A) Wnt-off state. Cytoplasmic [-catenin is phosphorylated by a destructive
complex composed of Axin, APC, GSK3p and CK1, then it is ubiquitinated and targeted for proteasome degradation. (B) Wnt-on state. Binding of Wnt ligands
and its receptor Dvl determines the destruction of the 3-catenin destruction complex, which induces the stability of $-catenin. f-catenin is transferred to the
nucleus as a cofactor of TCF/LEF to activate Wnt target gene. Dvl, Dishevelled; APC, adenomatous polyposis coli; GSK3f, glycogen synthase kinase 3f;
CK1, casein kinase 1; Dvl, Fzd/LRP5/6/Dishevelled; TCF/LEF, transcription factor/lymphocyte-enhancing factor binding factor; Fzd, Frizzled; LRP5/6,

low-density lipoprotein-related receptor 5/6.

promote the molecular signaling pathways required for the
maintenance and survival of CSCs and trigger the endogenous
drug resistance of CSCs (103). In addition, the extracellular
matrix of niches can protect CSCs from the invasion of thera-
peutic drugs (100).

Wnt/B-catenin signaling is a necessary pathway for
the initial activation, self-renewal and cloning ability of
CSCs (104). Fevr et al (105) reported that tissue-specific
and inducible -catenin gene ablation blocks Wnt/f-catenin
signaling and reduces the proliferation ability of CSCs.
Wnt/pB-catenin signaling regulates the expression of surface
markers of CSCs (106,107). Leucine-rich repeat-containing
G-protein-coupled receptor 5 (LGRY) is a target gene of
the Wnt pathway and a marker of CSCs (107). Activation of
Wnt/B-catenin signaling increases the level of the CSC cell
surface marker LGRS in the CRC cell lines HCT116, SW480
and DLDI and enriches gene signatures associated with stem-
ness and cancer relapse in CSCs (108). LGRS5-positive CSCs
are chemotherapy-resistant (109). The rapid proliferation of
CSCs may transform LGRS5-negative cells into LGR5-positive
cells, which makes the cells enter a static state to escape the
toxicity of drugs (110). However, CSCs of the CRC cell lines
LoVo, HT29 and HCT116 also obtain drug resistance via
the upregulation of drug-resistant drug pumps mediated by
LGRS (107). As CSCs and normal stem cells have very similar

characteristics, most of these cells are in the G, phase of the
cell cycle and express specific ATP-binding cassette proteins
(ABC transporter) (111). The ABC transporter is a drug pump
that mediates the outflow or uptake of a specific substrate. This
mechanism takes place at cell membranes (including plasma
membrane, endoplasmic reticulum, Golgi body, peroxisome
and mitochondria) (112). ABC transporters expel numerous
types of drugs from cancer cells and induce chemical
resistance in numerous solid tumors (113,114). ABCBI was
the first cloned human ABC transporter (115). A study has
shown that ABC inhibitors can inhibit ABC transporters with
high potency and specificity and do not adversely affect the
pharmacokinetics of therapeutic drugs that can kill cancer
cells (116). NSC239225, as one of the ABC transporter
inhibitors, can inhibit ABCBI to increase the sensitivity
of SW480TR CRC cells to some drugs, such as paclitaxel
(PTX), doxorubicin and mitoxantrone. Its inhibitory effect
is mainly achieved through stimulating ATP hydrolysis and
directly binding to the iodoarylazidoprazosin (IA AP)-specific
substrate binding site (117). Parguerenes I and II, which also
act as ABC transporter inhibitors, can repress ABCBI by
modifying the extracellular substrate binding site of ABCBI,
thereby reducing the resistance of SW620 and SW620
Ad300 CRC cells to PTX, Doxorubicin and vincristine (118).
Studies have shown that Wnt/B-catenin signaling is closely
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related to the ABC transporter of CSCs (25,119). Inhibition
of Wnt/p-catenin signaling downregulates the expression of
mRNA related to the ABC transporter, which makes SW480
CRC cells more sensitive to PTX and irinotecan (25). The
ABCBI level of SW620/AD CRC cells is also positively corre-
lated with Wnt/p-catenin signaling transduction activity (120).
Notably, Kugimiya et al (121) demonstrated that the down-
stream target gene of the Wnt/pB-catenin signaling, c-Myc,
makes COLO-320 CRC cells resistant to the chemical 5-FU by
regulating the expression of ABCBS. This effect is primarily
achieved by c-Myc-mediated regulation of the ABC transporter
gene expression via binding to the upstream promoter (121).
Wang et al (122) demonstrated that the transient receptor
potential channel short transient receptor potential channel 5
(TRPC5)-induces an increase in [Ca*"], promoting the trans-
port of 3-catenin to the nucleus, which serves an important role
in ABCBI-induced resistance to 5-FU in CRC cells. Inhibition
of TRPCS5 using TRPCS5-specific siRNA further inhibits the
Wnt/B-catenin signaling pathway, reduces the induction of
ABCBI and reverses the resistance of HCT-8 and LoVo CRC
cells to 5-FU (122).

Increased glycolysis is also an important cause of CSC
drug resistance. The stem cell niche is an anoxic functional
chamber that induces CSCs to reprogram for glycolysis (123).
This effect promotes the expression of genes involved in apop-
tosis resistance, which enables the cells to survive in a hostile
environment and avoid the influence of chemotherapy (123).
Abnormal activation of Wnt/f3-catenin signaling transduction
is observed in a number of types of human cancer, which
promotes glycolysis via the upregulation of solute carrier
family 2, facilitated glucose transporter member 1 expression
through its target gene c-Myc (124). The role of Wnt/f3-catenin
signaling transduction in promoting glycolysis is related to
drug resistance (125)

Wnt/3-catenin signaling and ncRNAs. Unlike mRNA, ncRNAs
lack the potential to encode proteins or peptides (126). ncRNAs
are divided into microRNAs (miRNAs/miR) (20-24 nt) (127),
long non-coding RNAs (IncRNA) (>200 nt) (128), extra-
cellular RNAs (129), circular RNAs (crcRNA) (130)
(100-10,000 nt) and intronic RNAs (131). Previous studies
have demonstrated that IncRNAs and miRNA affect the
chemotherapy sensitivity of CRC cells via regulation of the
Whnt/f-catenin signaling pathway (Table IT) (26,131,132).
miRNAs regulate Wnt/B-catenin signaling by targeting Wnt
ligands (133). WntlOb is the downstream target of miR-148a,
and miR-148a-overexpression inhibits Wnt10b expression and
Wnt/B-catenin signaling activity,enhancing cisplatin resistance
in SW480 CRC cells (26). Another study demonstrated that
miR-103/107 prevents the ormation of the B-catenin complex
by repressing Axis inhibition protein 2, which prolongs the
duration of Wnt/f3-catenin signaling and leads to the continuous
induction of Wnt-responsive genes (131). Persistent effects of
Wnt/B-catenin signaling stimulates multiple stem-like features
in HCT116 and HT29 CRC cells, including chemical resis-
tance (131). GSK3p is also an important component of the
[-catenin complex. Inhibition of miR-224 upregulates GSK3[
expression in Wnt/B-catenin signaling (134). Therefore,
Wnt/B-catenin signaling activity and survivin (an apoptosis
inhibitory gene) expression are inhibited, which reduces the

adriamycin resistance of CRC SW480 cells (134,135). miR-506
also reverses the downstream target genes of MDR protein 1
(MDR1)/permeability-glycoprotein (P-gp)-mediated L-OHP
resistance via inhibition of Wnt/B-catenin signaling (132).
Wnt/B-catenin signaling also acts on some miRNAs to regulate
the resistance to CRC (136-138). The P53 gene is a well-known
tumor suppressor gene (136). Extensive research has reported
that mutant p53 not only serves a key role in the transforma-
tion process of CRC, but also contributes to the invasiveness of
CRC (137,138). Since the discovery of the P53 gene, the regu-
lation of the p53 pathway has aroused interest (139). There is
a negative regulatory relationship between wild-type P53 and
MDRI, which enhances tumor cell sensitivity to 5-FU (140).
Patients with mutant p53 genes are generally resistant to CRC
therapies and have a poor prognosis (141). Kwak et al (142)
reported that the ectopic expression of miR-552 enhances the
resistance to drug-induced apoptosis and that miR-522 directly
targets p53. Further genetic and pharmacological experiments
showed that the Wnt/B-catenin signaling pathway and its main
downstream target, c-Myc, increase the level of miR-552 (142).
Therefore, Wnt regulates tumor suppressor genes via miRNAs,
which leads to drug resistance. Wnt/B-catenin signaling
also transactivates miR-372/373 (143). Overexpression of
miR-372/373 enhances the stemness of CRC cells by enriching
CD26/CD24, which promotes self-renewal, chemotherapy
resistance and the invasion of CRC cells (144).

IncRNAs also affect the chemosensitivity of CRC by regu-
lating the Wnt/p-catenin signaling (145-157). Han et al (145)
used reverse transcription-quantitative PCR and functional
testing of CRC tissues and cell lines and identified that
IncRNA CRNDE activates the downstream targets -catenin
and TCF4 via binding to miR-181a-5p, which causes resis-
tance to 5-FU and L-OHP. Xiao et al (146) demonstrated that
IncRNA HOTAIR knockout and mir-203a-3p overexpression
inhibited the Wnt/B-catenin signaling pathway, thereby inhib-
iting cell proliferation and reducing chemoresistance. Another
study confirmed that IncRNA H19 increases proliferation via
activation of the Wnt/p-catenin signaling, which promotes the
resistance of HT-29 CRC to methotrexate (147). CRC-related
IncRNA CCAL is another key regulator of CRC progression.
Clinical data has demonstrated that patients with CRC with
high CCAL expression have shorter overall survival rates, and
promotes the resistance of CRC cells to L-OHP (148). A subse-
quent study showed that the CCAL promoter region possesses
reduced methylation and increased acetylation in patients
with CRC, which promotes its expression. Upregulated CCAL
activates Wnt/p-catenin signaling via inhibition of activating
enhancer-binding protein 2a, which upregulates MDRI1P-gp
and induces MDR (149).

Wnt/pB-catenin signaling and TME. Previous studies of
chemical resistance primarily focused on the tumor cells them-
selves, but TME has also received attention (150,151). Various
cytokines secreted in the tumor microenvironment, including
those from cancer-associated fibroblasts (CAFs), immune
cells, inflammatory factors and chemokines, may interact with
Wnt/B-catenin signaling to cause a heterogeneous distribution
of B-catenin in cells (152-154). Clear colocalization between
CAFs and tumor cells expressing nuclear 3-catenin is observed
in primary CRC samples (27). These findings indicate a close



6 ZHU et al: Wnt/B-catenin SIGNALING IS THE TARGET OF DRUG RESISTANCE IN COLORECTAL CANCER

Table II. ncRNAs regulate Wnt/B-catenin signaling in colorectal cancer drug resistance.

Function on

Author, year ncRNAs  Dysregulation Target Mechanism drug resistance (Refs.)

Shi et al,2019 miR-148a Upregulated Wntl0b Inhibiting the Increasing (26)
Wnt/B-catenin signaling  cisplatin-sensitivity

Chen et al,2019 miR-103/107 Upregulated Axin2 Prolonging the duration Increasing (131)
of Wnt/B-catenin signaling drug resistance

Liang et al,2017 miR-224 Upregulated GSK-3f3 Inhibiting Wnt/ Decreasing MDR (134)
[-catenin signaling
activity and survivin
expression

Zhou et al,2017 miR-506 Upregulated B-catenin Inhibiting the Enhancing (132)
expression of MDR1/ L-OHP sensitivity
P-gp of Wnt/p3-catenin
signaling

Kwak et al, 2018 miR-552 Upregulated P53 gene Activated by Wnt/c-Myc  Increasing drug (142)
axis to inhibit p53 resistance

Wang et al,2018 miR-372/373 Upregulated / Activated by Wnt/ Increasing drug (144)
[-catenin signaling to resistance
enrich CD26/CD24

Han eral,2017 CRNDE Upregulated miR-181a-5p Activating Causing resistance to (145)
[-catenin and TCF4 5-FU and L-OHP

Xiao et al,2018 HOTAIR Upregulated miR-203a-3p Activating Wnt/ Promoting cell resistance  (146)
[-catenin signaling

Wu et al, 2017 HI19 Upregulated / Activating Wnt/ Promoting resistance (147)
[-catenin signaling to to the MTX
activate proliferation

Ma et al, 2016 CCAL Upregulated AP-2a Activating Wnt/ Inducing MDR (149)

[-catenin signaling to
upregulate MDR 1P-gp
expression

/ indicates that detailed information was not provided in the reference. miR, microRNA; ncRNAs, non-coding RNAs; Axin2, Axis inhibition
protein2; GSK30, glycogen synthetase 3; MDR, multidrug resistance; 5-FU, 5-fluorouracil; MTX, methotrexate; CRNDE, long non-coding
RNA CRNDE; TCF4, T cell factor4; H19, long non-coding RNA H19; HOTAIR, long non-coding RNA HOTAIR; CCAL, long non-coding
RNA CCAL; AP-2a, activating enhancer-binding protein 2 a; MDR1P-gp, MDR1P-glycoprotein.

relationship between drug resistance and the tumor environ-
ment, especially CAFs (27). A study has demonstrated that
exosomes are ideal carriers for the delivery of insoluble
hydrophobic Wnt proteins (155). CAF-derived exosomes
contribute to the secretion of Wnt ligands, promote the pheno-
typic recovery of differentiated CRC cells and the function of
CSCs characteristics by carrying Wnt ligands. These ligands
activate Wnt/B-catenin signaling to regulate Wnt activity (27).
All of these actions contribute to drug resistance (Fig. 2).
Hu et al (156) treated human SW480, SW620 and LoVo CRC
cells with CAF-conditioned medium (CAFs-CM). The results
showed that CAF secretes exosomes into CRC cells, which
leads to a significant increase in miR-92a-3p levels in CRC
cells. The increased expression of miR-92a-3p activates the
Wnt/p-catenin pathway and inhibits mitochondrial apoptosis

via direct inhibition of the tumor suppressor gene F-box/WD
repeat-containing protein 7 and apoptosis regulator 1, which
promotes the resistance of CRC cells to 5-FU/L-OHP (157).
Similarly, periodin secreted by fibroblasts also activates
Wnt/B-catenin signaling, which promotes differentiated CRC
cells to restore CSCs characteristics and functions (158). DNA
damage caused by chemotherapy promotes CAFs to produce
numerous soluble factors, including Wnt16B and stable free
radical polymerization 2 (SFRP2) (159). Wnt16B promotes
tumor growth via activation of the canonical pathway in cancer
cells, which reduces treatment sensitivity (159). SFRP2 acts as
a synergistic effector that further enhances the drug resistance
of Wntl6B/B-catenin (160). SFRP2 also participates in the
non-canonical pathway, including angiogenesis, via activation
of calcineurin/nuclear factor of activated T cells, cytoplasmic 3
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Figure 2. CAFs stimulate CRC cells to restore CSCs characteristics. CAFs are similar to CRC cells. CAFs secrete exosomes that carry Wnts, which stimulate
differentiated CRC cells to restore their CSCs properties, including the expression of CSCs markers and increased Wnt activity. This process contributes to the
development of drug resistance. CAFs, cancer-associated fibroblasts; CSCs, tumor stem cells; CRC, colorectal cancer; Fzd, Frizzled; TCF/LEF, transcription
factor/lymphocyte-enhancing factor-binding factor; SFRP2, stable free radical polymerization 2.

signaling in endothelial cells, which indirectly promotes tumor
development (Fig. 3) (160). Cancer-associated CAFs in CRC
cells upregulate Wnt signaling-related genes, T-lymphoma
infiltration and metastasis-inducing protein 1, and ultimately
enhance the resistance of CRC by increasing the expression of
tumor stem cells (161). BCL-9 serves a key role in promoting
chemoresistance via the Wnt signaling pathway (162).
Hypoxia in the TME leads to the upregulation of the key Wnt
coactivator BCL-9 in a hypoxia-inducible factor-1a/2a-related
manner (163). There is crosstalk between Wnt signaling and
the hypoxia signaling pathway. This crosstalk synergistically
acts on the development of CRC resistance (163).
Immunotherapy targeting TME is an important treatment
for CRC (151). Programmed death-1 (PD-1) is a coinhibitory
molecule on T cells. The interaction of PD-1 and its ligand
PD-L1 affects the use of metabolic substrates and results
in T cell failure and immune escape of tumor cells (164).
Therefore, monoclonal antibodies that inhibit immune check-
point receptors, including PD-1, are approved for the treatment
of CRC (165). However, a significant proportion of patients
remain clinically unresponsive to this treatment (166-168).
The occurrence of this low sensitivity may be related to the
reduction of pre-existing CD8* T cells that are negatively
regulated by PD-1/PD-L1-mediated adaptive immune resis-
tance (169,170). Notably, Wnt/B-catenin signaling results from
the exclusion of CD8* T cells, which results in resistance to
PD-1 inhibitors (171). Abnormal Wnt/p-catenin signaling
activation in CRC significantly increases the infiltration of
regulatory T cells (Tregs), effective inhibitors of CD8* T cells.

Tregs promote resistance by negating the function of cytotoxic
CDS8* T cells (172). In addition to Tregs, dendritic cells (DCs)
represent another important component of the immune cells
that regulate tumor cell resistance (94). Tumor-resident CD103*
DCs are necessary for the recruitment of CD8" T cells (171).
Blockade of Wnt/B-catenin signaling in CRC cells increases
DC infiltration, which leads to a significant increase in active
CD8* T cells in CRC models and the consequent sensitizing
of cancer cells to PD-1 inhibitors (172). Overall, these studies
suggest that Wnt/B-catenin signaling mediates CRC resistance
to immunotherapy via the regulation of immune cells in TME
and provides a promising strategy for cancer therapy via the
inhibition of Wnt/p3-catenin signaling.

5. Wnt inhibitors reduce the resistance of CRC

A number of Wnt inhibitors avoid resistance to drug recogni-
tion and work in conjunction with current clinical front-line
drugs for CRC. Several studies are focused on Wnt inhibitors
in 5-FU resistance (56,94,173). Coumarin Esculetin (EST)
reduces the release of E-cadherin, vimentin, -catenin, c-Myc,
cyclin DI, Wnt3a and VEGF, which inhibit Wnt/f-catenin
signaling (174). In vitro and in vivo experiments have shown
that EST combined with 5-FU enhances the sensitivity of
HT-29, SW480, HCT-116 and Caco-2 CRC cells to 5-FU (174).
Similarly, the use of the multikinase inhibitor regorafenib
increases miR-34a levels and reverses 5-FU resistance and the
cancer-initiating cell phenotype by degrading Wnt/B-catenin in
HCT-116R and DLD-1R CRC cells (175). In vitro experimental
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results showed that the inhibition of the Wnt/p-catenin
signaling cascade using the tankyrase inhibitor XAV939
overcomes the resistance of CRC cells carrying short APCs to
5-FU (176). The upregulation of guanylate-binding protein-1
enhances the killing effect of PTX in PTX-sensitive CRC cells
and PTX-resistant CRC cells via inhibition of Wnt/B-catenin
signaling in the CRC cell lines DLD-1, HT29, DiFi, T84 and
HCT116 (177). Wu et al (178) reported that the synergistic use
of cinnamaldehyde and L-OHP inhibits hypoxia-activated
Whnt/p-catenin signaling, reverses EMT, actives CSC and
diminishes the occurrence of L-OHP resistance. Patients with
CRC with KRAS mutations are not sensitive to cetuximab and
panitumumab (179). The potent and selective Wnt/-catenin
inhibitor KYA1797K activates GSK3f and degrades small
(-catenin and Ras molecules to increase the sensitivity of
tumors bearing KRAS mutations to cetuximab and panitu-
mumab (180). These results indicate that Wnt signaling leads
to chemoresistance in CRC. These studies highlight that the
use of Wnt inhibitors affects the chemical sensitivity of cells
to other drugs, which provides new approaches for the clinical
treatment of CRC.

6. The role of Wnt/p-catenin signaling crosstalk in
resistance

Activation of the checkpoint kinase 1 (CHK1) pathway
enhances the drug sensitivity of CRC. He er al (181) performed
microarray analysis on CRC-resistant cells and reported that

Wat signaling activation leads to 5-FU resistance via inhibition
of the CHK1 pathway in TP53 wild-type cells, such as HCT-8.
In addition, period circadian protein homolog 3 and dishev-
elled-3 are common members of the Wnt/B-catenin pathway
and the Notch signaling pathway, which are involved in chemo-
resistance (182). Experimental inhibition or enhancement of the
expression of these genes act on the Wnt/f-catenin signaling
and Notch signaling pathways simultaneously to improve drug
sensitivity (182,183). These findings highlight the fact that the
Wnt/B-catenin signaling pathway and other signaling pathways
exhibit crosstalk, synergistic and antagonistic effects in the
occurrence of CRC resistance. Common members between
these different signaling pathways should be identified as
targets to overcome the occurrence of CRC resistance.

7. Conclusions

CRC is one of the most common malignant tumors in humans,
and the survival rate remains low (1). Treatment resistance
in CRC remains an unsolved problem (17). Generally, the
chemical resistance mechanism of CRC is closely associated
with CSCs, ncRNAs and the TME (19-22). Wnt/3-catenin
signaling maintains the natural chemical resistance of
CSCs and improves drug resistance via the promotion of
ABC transporter and glycolysis in CSCs cells (25,119). The
interaction between Wnt/f3-catenin signaling and ncRNAs
regulates the cell cycle and the expression of cancer-related
genes (26,131,132). The TME enhances Wnt/f3-catenin



MOLECULAR MEDICINE REPORTS 23: 105, 2021 9

signaling activity (150). Wnt/B-catenin signaling also mediates
tumor immune escape in the TME (151). Therefore, examining
the role of Wnt/B-catenin signaling in depth has great potential
for therapeutic intervention. More studies should focus on the
mechanism of CRC resistance, and robust preclinical drug
testing of Wnt inhibitors as a single drug or in combination
with CRC is required.
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