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Abstract. Shikonin is the major active component in 
Lithospermum erythrorhizon and has pharmacological effects 
including reducing inflammation, aiding resistance to bacteria 
and promoting wound healing. However, the effect of shikonin 
on lipoteichoic acid (LTA)‑induced acute lung injury (ALI) 
remains to be elucidated. ALI is a serious illness resulting from 
significant pulmonary inflammation caused by various diseases, 
such as sepsis, acid aspiration and trauma. The present study 
found that shikonin significantly attenuated LTA‑induced ALI. 
Following shikonin treatment, the accumulation of pulmonary 
neutrophils and expression of TNFα, IL‑1β and IL‑6 were 
decreased in mice with LTA‑induced ALI. Furthermore, 
Shikonin promoted neutrophil apoptosis by increasing the 
activation of caspase‑3 and reducing the expression of the 
antiapoptotic myeloid cell leukemia‑1 (Mcl‑1) protein. However, 
shikonin treatment did not influence the expression of B‑cell 
lymphoma‑2. The findings of the present study demonstrated 
that shikonin protected against LTA‑induced ALI by promoting 
caspase‑3 and Mcl‑1‑related neutrophil apoptosis, suggesting 
that shikonin is a potential agent that can be used in the treat‑
ment of sepsis‑mediated lung injury.

Introduction

Acute lung injury (ALI) is a serious illness resulting from 
pulmonary inflammation caused by various conditions, 

including sepsis, acid aspiration and trauma (1‑3). Infection by 
gram‑positive bacteria is one of the main causes of pulmonary 
inflammation (4). Although extensive research on the mecha‑
nism and treatment of gram‑positive‑bacteria‑induced ALI 
has been carried out, the specific mechanism remains to be 
elucidated and effective drugs and treatments remain unavail‑
able, resulting in high ALI‑associated morbidity and mortality 
worldwide (5‑8). Lipoteichoic acid (LTA) is expressed on 
the surface of gram‑positive bacteria (9). Mice treated with 
LTA develop gram‑positive‑bacteria‑induced pneumonia, a 
common and serious type of pneumonia that affects humans 
of all ages (7,10).

Shikonin is a major active ingredient isolated from the 
roots of Lithospermum erythrorhizon (11). The antitumor and 
anti‑bacterial properties of shikonin have been studied in vitro 
and in vivo (12,13). Previous studies have indicated that the 
anti‑inflammatory effect of shikonin results from the reduc‑
tion of oxidative stress (14), the inhibition of Th2 cytokine 
production and the release of histamine from mast cells (15). 
Recently, the protective role of shikonin against lipopolysac‑
charide (LPS)‑induced ALI was demonstrated in a mouse 
model (16). However, the effect of shikonin on LTA‑induced 
ALI and the underlying mechanisms have not been studied.

Neutrophils are the first line of immune‑defense cells 
against pathogen infection (17). However, the defensive 
response by overactivated neutrophils can also have a damaging 
effect on the lung tissue (18) due to the release of excessive 
amounts of inflammatory factors such as TNF‑α, IL‑1β and 
IL‑6 causing serious lung injury (17‑19). Previous studies have 
shown that apoptosis is caused by bacterial infection (20‑22). 
The continuous release of inflammatory factors in ALI is in 
part ascribed to the inhibition or delay of neutrophil apop‑
tosis in the lung tissue (23,24). This suggests that promoting 
neutrophil apoptosis could reduce lung inflammation and 
damage. Apoptosis is an orderly cell death process controlled 
by multiple genes (25). Caspase‑3 is a key regulatory protein 
involved in apoptosis. Poly (ADP‑ribose) polymerase (PARP) 
DNA‑repairing enzyme can be cleaved into different frag‑
ments by caspase‑3, resulting in abnormal DNA repair and 
apoptosis (26). Caspase 3‑mediated apoptosis can be inhibited 
by myeloid cell leukemia‑1 (Mcl‑1) and Bcl‑2 (27). Therefore, 
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identification and action on targets related to neutrophil apop‑
tosis is an alternative strategy for preventing and treating ALI.

In the present study, the protective effect of shikonin in 
LTA‑induced ALI was identified. Pretreatment with shikonin 
in LTA‑induced ALI mouse model markedly reduced lung 
inflammation and decreased pro‑inflammatory cytokine 
expression. The findings of the present study confirmed that 
shikonin promoted neutrophil apoptosis mediated by increased 
caspase‑3 and decreasing Mcl‑1 expression, consequently 
reducing inflammation in gram‑positive‑bacteria‑induced ALI.

Materials and methods

Animals. Male C57BL/6 mice (6‑8 weeks old, 22±3 g, specific 
pathogen‑free, n=20) were purchased from SLAC Laboratory 
Animal Corporation and acclimated to laboratory condi‑
tions (25˚C, 50‑60% humidity) for two weeks under a 12‑h 
light/dark cycle and with free access to food and water before 
the experiments. The present study adhered to the Principles of 
Laboratory Animal Care (NIH publication No. 85‑23, revised 
1996) (28). All experimental protocols described in the present 
study were approved by the Animal Care and Use Committee 
of Bengbu Medical College (approval no. LABMT‑019).

Compound and reagents. Shikonin was prepared at 20 mM 
in DMSO (Sigma‑Aldrich; Merck KGaA) and stored at ‑20˚C. 
The primers used in the present study were synthesized 
by Shanghai HuaGen Biotech Co., Ltd. Cleaved caspase‑3 
(Asp175; cat. no. 9664), cleaved PARP (cat. no. 5625), Mcl‑1 
(cat. no. 94296), Bcl‑2 (cat. no. 15071), p53 (cat. no. 2527) and 
β‑actin (cat. no. 4970) primary antibodies were purchased 
from Cell Signaling Technology, Inc. The peroxidase 
AffiniPure goat anti‑rabbit IgG (H+L) (cat. 111‑035‑003) 
and peroxidase AffiniPure goat anti‑mouse IgG (H+L) 
(cat. 115‑035‑003) secondary antibodies were purchased from 
Jackson ImmunoResearch Laboratories, Inc. and diluted in 
EZ‑Buffers (cat. no. C520011‑0100; Sangon Biotech Co., Ltd. 
Other chemical reagents were obtained from Sigma‑Aldrich 
(Merck KGaA).

LTA‑induced ALI mouse model. Shikonin was dissolved in a 
vehicle (castor oil:ethanol:PBS=1:1:8). Mice were randomly 
divided into four groups and anesthetized by intraperitoneal 
injection of 50 mg/kg pentobarbital sodium before intratra‑
cheal injection. Each group contained 5 mice. The LTA group 
mice were intratracheally challenged with 5 mg/kg LTA 
(Sigma‑Aldrich; Merck KGaA). The LTA + shikonin group 
mice were intraperitoneally injected with shikonin at 10 mg/kg 
for 30 min, then administered an intratracheal injection of 
5 mg/kg LTA. The vehicle group mice were intraperitoneally 
injected with the same volume of castor oil:ethanol:PBS (1:1:8) 
as the LTA + shikonin group mice and, 30 min later, intratra‑
cheally challenged with the same volume of PBS as used for 
the LTA + shikonin group mice. The vehicle + shikonin group 
mice were intraperitoneally injected with 10 mg/kg shikonin 
for 30 min, then administrated an intratracheal injection of 
the same volume of PBS as the LTA + shikonin group mice. 
Animal health and behavior were monitored all the time during 
the experiment. The four group mice appeared healthy without 
obvious abnormal behavior during the experiment. After 6 h, 

all the mice were sacrificed with CO2 inhalation (30% cage 
volume/min, 5‑6 min) until the mice ceased breathing and had 
faded eyes. The samples were then collected. The experiments 
were conducted in March 2019.

Acquisition and analysis of bronchoalveolar lavage fluid 
(BALF). The BALF of mice were collected according to a 
previous study (29). Briefly, the lungs were lavaged three times 
with 50 µM EDTA. The BALF was centrifuged at 300 x g at 
4˚C for 5 min. The cell‑free supernatants were harvested and 
analyzed for the total protein content using a BCA protein 
assay kit (Beyotime Institute of Biotechnology). Neutrophils 
were incubated with Gr‑1(Ly6G)‑FITC antibody (1:200; 
cat. no. 11‑5931‑82; eBioscience; Thermo Fisher Scientific, 
Inc.) and analyzed by flow cytometry (LSRFortessa X‑20; 
BD Biosciences) to determine the percentage of neutrophils 
in BALF.

Histopathology. Lung tissues (left lobe) were fixed with 4% 
paraformaldehyde overnight in 4˚C. Following dehydration 
in 80% alcohol for 1 h, 90% alcohol for 2 h and 100% alcohol 
for 2 h at room temperature, then washing in 100% xylene 
for 1 h in room temperature, the lung tissues were embedded 
in paraffin and cut into 5‑µm sections with a microtome 
(cat. no. RM2235; Leica Microsystems GmbH). Prior to 
staining, the sections were heated in a drying oven to 90˚C 
for 30 min and then washed with 100% xylene for 15 min 
following immersion in a descending series (100, 95, 95, 
80 and 70%) of alcohol for 3 min at room temperature, at 
each concentration. Then, the sections were stained with 
100% hematoxylin for 5 min and 100% eosin for 1 min, both 
at room temperature (Beyotime Institute of Biotechnology) 
and images were captured by a light microscope (RX51; 
Olympus Corporation).

RNA isolation and reverse transcription‑quantitative (RT‑q) 
PCR. Frozen lungs (one of the right upper lobe) were homog‑
enized and the total RNA was isolated using TRIzol® Reagent 
(Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. cDNA was prepared using ReverTra Ace qPCR RT kit 
(Toyobo Life Science) according to the manufacturer's protocol 
and amplified by qPCR with a TOROGreen® Qpcr Master Mix 
(TOROIVD TECHNOLOGY COMPANY LIMITED) and 
primer sets for TNF‑α (forward, 5'‑TTC TCA TTC CTG CTT 
GTG G‑3' and reverse, 5'‑ACT TGG TGG TTT GCT ACG‑3'); 
IL‑1β (forward, 5'‑CCA GCT TCA AAT CTC ACA GCA G‑3' and 
reverse, 5'‑CTT CTT TGG GTA TTG CTT GGG ATC‑3'); IL‑6 
(forward, 5'‑CTT CTT GGG ACT GAT G‑3' and reverse, 5'‑CTG 
GCT TTG TCT TTC T‑3'); and GAPDH (forward, 5'‑TGC GAC 
TTC AAC AGC AAC TC‑3' and reverse, 5'‑CTT GCT CAG TGT 
CCT TGC TG‑3)'. Thermocycling of RT‑qPCR was: 95˚C for 
2 min, 95˚C for 10 sec, 58˚C for 30 sec and 72˚C for 20 sec, 
repeated for 40 cycles. The 2‑ΔΔCq method (30) was used to 
analyze the expression of mRNAs normalized to the GAPDH 
internal reference gene. The experiments were independently 
repeated in triplicate.

Myeloperoxidase (MPO) activity assay. The MPO activity 
was determined according to a previous study (31). Briefly, 
lung tissues were collected and subjected to three freeze‑thaw 
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cycles. Supernatants were collected at 4˚C. Protein concen‑
tration in supernatants was determined using a BCA protein 
assay kit (Beyotime Institute of Biotechnology). After adding 
the substrate and catalyst to the supernatants, changes in 
absorbance at 655 nm were measured using a microplate 
reader (FlexStation 3; Molecular Devices, LLC). MPO 
activity was defined as the absorbance change per min per 
gram of protein.

Isolation of neutrophils and cell culture. Mouse bone‑marrow 
neutrophils were obtained by flushing the bone marrow 
from mouse tibias and femurs. Neutrophils were purified 
(>95% purity) using a one‑step Nycoprep/Percoll gradient 
(TBD, Tianjin Haoyang Biological Products Technology Co., 
Ltd.). According to the manufacturer's protocol, cells were 
suspended and cultured in RPMI‑1640 (HyClone; Cytiva) 
with 10% fetal bovine serum (FBS; Biological Industries) 
and treated with the indicated concentrations of shikonin 
according to the experimental requirements. DMSO (1%) was 
added to the culture medium as the solvent control.

Annexin‑V/PI‑binding apoptosis assay. The neutrophil is the 
terminal differential cell with short survival time (32). The 
primary cultured neutrophils in vitro can be preserved for 
only 1‑2 days due to activation from culture environment (32). 
Given the short survival time of primary‑cultured neutrophil, 
0.3, 1 and 3 µM shikonin was used to treat neutrophils for 24 h 
according to previous studies (33‑37). The neutrophils were 
collected, centrifuged at 300 x g for 5 min at 4˚C and washed 
with cold PBS. Then, neutrophils were resuspended with 
400 µl PBS and incubated with 2 µl Annexin V‑FITC and 4 µl 
propidium iodide for 30 min at room temperature according to 
the manufacturer's instructions of the Annexin V‑FITC apop‑
tosis assay kit (Beyotime Institute of Biotechnology). Samples 
were analyzed by flow cytometry (LSRFortessa X‑20; BD 
Biosciences). Data were analyzed using FlowJo 7.6 software 
(FlowJo LLC).

Western blot analysis. Following treatment with shikonin for 
24 h, neutrophils were collected and lysed in RIPA buffer (Xi'an 
Weiao Biotechnology Co., Ltd.) with 1 mM PMSF and quanti‑
fied using a BCA assay (Beyotime Institute of Biotechnology). 
Following heating at 99˚C for 10 min, each sample (15 µg) was 
loaded on 10% SDS/PAGE gels and then transferred to nitro‑
cellulose filter membranes. Blots were blocked with 5% skim 
milk at room temperature for 1 h and then incubated with 
primary antibodies (1:1,000) overnight at 4˚C. Subsequently, 
blots were probed with the corresponding secondary anti‑
bodies (1:10,000) at room temperature for 1 h in dark. The 
protein signals were detected using an ECL kit (Shanghai 
Share‑Bio Biotechnology Co., Ltd.). Semi‑quantification of 
western blots was performed using ImageJ software (1.4.3.67; 
National Institute of Mental Health).

Statistical analysis. Data are presented as mean ± standard 
error of the mean obtained from ≥3 independent experiments. 
One‑way analysis of variance (ANOVA) and Bonferroni's 
Multiple Comparison Test was performed using GraphPad 
Prism 6 (GraphPad Software, Inc.). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Shikonin attenuates LTA‑induced ALI and inflammatory 
response. An LTA‑induced ALI mouse model was estab‑
lished to determine the effect of shikonin on gram‑positive 
bacterial‑infection‑induced ALI. As shown in Fig. 1A, the 
administration of LTA for 6 h induced inflammatory cell 
infiltration, inter‑alveolar septal thickening and alveolar 
collapse. However, the infiltration of inflammatory cells was 
significantly reduced following pretreatment with shikonin 
(Fig. 1A). The total protein concentration in the BALF of 
the LTA‑challenged group was ~10‑fold higher compared 
with the vehicle group (Fig. 1B). Pretreatment with shikonin 
significantly reduced the total protein concentration in 
BAL cells (Fig. 1B). The expression of pro‑inflammatory 
cytokines in lung tissues was measured following LTA treat‑
ment for 6 h; compared with that in the mice that received 
vehicle treatment, the expression of TNF‑α, IL‑1β and 
IL‑6 was significantly elevated (Fig. 1C‑E). However, the 
expression of TNF‑α (Fig. 1C), IL‑1β (Fig. 1D) and IL‑6 
(Fig. 1E) was markedly decreased following pretreatment 
with shikonin. These results indicate that shikonin protects 
against LTA‑induced ALI and the corresponding inflamma‑
tory response.

Shikonin inhibits LTA‑induced infiltration of pulmonary 
neutrophils. Infiltration of pulmonary neutrophils is one of the 
most important symptoms of pneumonia that directly leads 
to lung‑tissue damage (38). As shown in Fig. 2, neutrophil 
infiltration increased ~20 times compared with the vehicle 
group following a 6‑h LTA challenge. However, the neutro‑
phil percentage (Fig. 2A and B) and amounts (Fig. 2C) were 
significantly reduced following pre‑injection of shikonin 
compared with those in mice receiving LTA and vehicle. 
The activity of MPO‑specific marker representing neutrophil 
infiltration is associated with the severity of ALI (39). MPO 
activity in lung tissue was tested. LTA‑challenged mice had 
higher MPO activities compared with the mice that received 
the vehicle (Fig. 2D). However, the activity was significantly 
reduced by pretreatment with shikonin for 6 h (Fig. 2D). These 
results indicated that shikonin inhibits the accumulation of 
pulmonary neutrophils.

Shikonin accentuates neutrophil apoptosis. Neutrophils 
serve an important function in infection‑induced inflamma‑
tion (20). Moderately activated neutrophils protect against 
pathogen infection (40,41) but inflammatory factors released 
by overactivated neutrophils induce tissue injury (24). To 
determine the effect of shikonin, neutrophils were isolated 
from bone marrow and treated with 0.3, 1 or 3 µM shikonin. 
After 24 h of incubation, neutrophils were stained with 
Annexin V/PI and analyzed by flow cytometry. As shown in 
Fig. 3, the proportion of apoptotic cells increased significantly 
with increased shikonin concentration (Fig. 3A and B). The 
effect of shikonin on neutrophil apoptosis was examined 
further by determining the fractional DNA content (sub‑G1) 
in the late stage of apoptosis (Fig. 4A). The results showed 
that shikonin dose‑dependently enhanced DNA fragmentation 
(Fig. 4B). The proportion of sub‑G1 neutrophils was markedly 
increased by 10 µM Shikonin from 25.33±2.72% (untreated) to 
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86.87±1.64% (Fig. 4B). These results suggested that shikonin 
directly induces neutrophil apoptosis.

Shikonin induces an apoptotic signaling pathway. To further 
investigate the mechanism by which shikonin promotes neutro‑
phil apoptosis, the activation of caspase‑3 (cleaved caspase‑3) 
and PARP (cleaved PARP), which serve important roles in 
apoptosis, were measured. As shown in Fig. 5, the expression of 
cleaved caspase‑3 and cleaved PARP increased in a dose‑depen‑
dent manner following treatment with different concentrations 
of shikonin for 24 h. PARP is a DNA‑repair‑related enzyme 
and the major substrate of caspase‑3. It can be cleaved into 
different fragments by cleaved caspase‑3 resulting in abnormal 
DNA repair and apoptosis (26). The content of cleaved PARP 
was determined and, as expected, the expression of cleaved 
PARP was elevated in a dose‑dependent manner following 
shikonin treatment (Fig. 5C). As the full‑long caspase‑3 and 

PARP were decreased following cleavage, the expression of 
cleaved caspase‑3 and cleaved PARP was normalized by using 
β‑actin (42,43). These data suggested that shikonin induced 
apoptosis by activating the caspase‑3 signaling pathway.

Shikonin inhibits the expression of Mcl‑1 and increases the 
expression of p53. Studies have shown that the apoptosis 
caused by caspase‑3 can be inhibited by the Bcl‑2 family 
proteins (27), with Mcl‑1 and Bcl‑2 being important proteins 
of the BCL‑2 group (44). To confirm the pro‑apoptosis mecha‑
nism of shikonin, the effect of shikonin on the expression of 
the antiapoptotic proteins Mcl‑1 and Bcl‑2 was examined. 
Following treatment with different concentrations of shikonin 
for 24 h, the expression of Mcl‑1 was significantly reduced 
in a dose‑dependent manner (Fig. 6A and B); the expression 
of Mcl‑1 was four times lower compared with untreated 
neutrophils following treatment with 3 µM shikonin for 24 h 

Figure 1. Shikonin attenuates lipoteichoic acid‑induced acute lung injury and inflammatory cytokines production. (A) The lung lobes were fixed and hema‑
toxylin and eosin staining was performed to determine the lung injury (original magnification of whole field, x200; enlarged box magnification, x2,000. 
(B) The lungs were lavaged and the total protein concentration in bronchoalveolar lavage fluid was determined. Total RNAs were isolated from lung homog‑
enates and mRNA expression levels for (C) TNF‑α, (D) IL‑1β and (E) IL‑6 were quantified using reverse transcription‑quantitative PCR. Data are presented 
as mean ± standard error of the mean, n=5, **P<0.01, ***P<0.001. ns, not significant; LTA, lipoteichoic acid.
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(Fig. 6B). However, shikonin did not affect the expression of 
Bcl‑2 (Fig. 6A and C). The expression of p53 in neutrophils 
treated with 0.3, 1 or 3 µM shikonin was also analyzed. 
The expression of p53 was increased significantly following 

treatment with 3 µM shikonin for 24 h compared with the 
DMSO control group (Fig. 6A and D). These results indicated 
that shikonin inhibited the expression of Mcl‑1 and increased 
the expression of p53 in neutrophils.

Figure 2. Shikonin inhibits lipoteichoic acid‑induced pulmonary neutrophil infiltration. (A) The infiltrated cells in BALF were stained with FITC‑conjugated 
anti‑Gr‑1(Ly6G) antibody and analyzed by flow cytometry. (B) The percentage of neutrophils (Gr‑1+) was quantified. (C) The total number of infiltrated 
neutrophils in BALF was determined. (D) The lung tissue was homogenized and MPO activity was measured. Values are presented as mean ± standard error 
of the mean, n=5, *P<0.05, ***P<0.001. BALF, bronchoalveolar lavage fluid; ns, not significant; LTA, lipoteichoic acid; MPO, myeloperoxidase.

Figure 3. Shikonin induces neutrophil apoptosis. (A) Apoptotic neutrophils were stained with Annexin V/PI and detected by flow cytometry. (B) The propor‑
tion of apoptotic cells (Annexin V positive) was quantified. The experiments were independently repeated 3 times. Values are presented as mean ± standard 
error of the mean, ***P<0.001. ns, not significant.
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Discussion

Sepsis‑induced ALI and Acute respiratory distress syndrome 
are associated with serious inflammation. TNF‑α, IL‑6 and 
IL‑1β serve important roles in the initiation and development 
of pneumonia (45,46). TNF‑α is the earliest pro‑inflammatory 
cytokine produced mainly by monocytes and can induce 
the inflammatory cascade in endothelial and epithelial cells 
thereby accelerating the production of other cytokines, 
including IL‑6 and IL‑1β (45,47). The present study identi‑
fied that the production of TNF‑α, IL‑6 and IL‑1β markedly 
decreased with shikonin treatment in mice with LTA‑induced 
ALI. A recent study suggested that shikonin serves an 
anti‑inflammatory role in LPS‑induced mice by inhibiting 
the NK‑κB signaling pathway in vitro and in vivo (48). As 
with LPS stimulation, LTA activates the MAPK and NK‑κB 
signaling pathways by binding to the Toll‑like receptor 
(TLR)4 and TLR2, respectively (49‑53). Therefore, the present 
study hypothesized that shikonin could inhibit LTA‑induced 
cytokine generation in vitro. Shikonin is used in traditional 
Chinese herbal medicine for its various medical properties, 
including bactericidal activity, promotion of wound healing 
and anti‑cancer effects (54‑56). Previous findings have shown 
that shikonin alleviates LPS‑induced ALI (49). LPS is isolated 
from gram‑negative bacteria while LTA is from gram‑positive 
bacteria (57,58). Together with previous research, the findings 

Figure 5. Shikonin induces the activation of caspase‑3 and PARP in neutro‑
phils. (A) The cleaved caspase‑3, cleaved PARP and β‑actin were detected 
by western blotting. Quantifications of the immunoreactivity of the blots, 
(B) the cleaved caspase‑3 and (C) cleaved PARP were normalized against 
β‑actin. The experiments were independently repeated 3 times. Values are 
presented as mean ± standard error of the mean, *P<0.05, **P<0.01, ***P<0.001. 
PARP, poly (ADP‑ribose) polymerase; ns, not significant.

Figure 4. Shikonin increases neutrophil‑DNA fragmentation in late apoptosis. (A) The sub‑G1 analysis was performed by flow cytometry. (B) The proportion 
of sub‑G1 cells was quantified. The experiments were independently repeated 3 times. Values are presented as mean ± standard error of the mean, *P<0.05, 
***P<0.001. ns, not significant.
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of the present study demonstrated that shikonin is a protective 
agent against bacteria‑induced pneumonia and ALI.

Pathological features of ALI include injured capil‑
lary endothelial and pulmonary epithelial cells, increased 
pulmonary capillary permeability and impaired alveolar 
gas‑exchange (59). Although the pathogenesis of gram‑posi‑
tive‑bacteria‑induced ALI is not entirely clear, excessive 
inflammatory responses are considered to be the critical 
factor in inducing lung injury (60). In addition to cytokine 
storm, the infiltration of inflammatory cells into lung tissue 
is widely accepted as a typical characteristic of ALI that 
leads directly to lung‑tissue damage (61). Neutrophils are the 
dominant leucocytes and provide vital protection against body 
infection (20). Activated neutrophils release various injurious 
molecules, including proteolytic enzymes, pro‑inflammatory 
cytokines, oxidants and NO, that can cause damage to the 
surrounding tissues (17). Primary cultured neutrophils in vitro 
are easily activated by the cultured environment including the 
Matrigel plate (32). Sustained accumulation of neutrophils 
contributes to the development of ALI (32). Previous research 
has confirmed that promoting neutrophil apoptosis is a prom‑
ising way to treat ALI (62). For example, Rahman et al (63) 
reported that inhibiting erBb (a family of receptor tyrosine 
kinases) reduces pulmonary inflammation by increasing 
neutrophil apoptosis in a murine ALI model. Harris et al (64) 
identified that IL‑4 accelerates human neutrophil apoptosis 
through modulated interleukin 4 receptor α‑dependent type 2 
cytokine signaling that contributes to the ALI resolution. In 
addition, several compounds, including emodin (65) androgra‑
pholide (66) and matrine (67) alleviate ALI by promoting 

neutrophil apoptosis. The present study indicated that 
shikonin inhibited LTA‑induced ALI by promoting neutrophil 
apoptosis. Therefore, shikonin is a promising compound for 
the treatment of neutrophil‑related inflammation.

The protective role of shikonin has been researched in 
previous studies. Lu et al (68) identified that shikonin inhibits 
LPS‑induced expression of TNF‑α in rat primary cultured 
macrophages. Prasad et al (34) identified that pro‑inflam‑
matory mediators including NO, PGE2, TNF‑α, inducible 
nitric oxide synthase and cyclooxygenase‑2 were significantly 
downregulated by shikonin pretreatment in bv‑2 microglia. 
A previous study demonstrates a growth‑enhancing effect of 
shikonin on human dermal fibroblasts (69). Together, those 
studies suggest that shikonin acts on multiple cell targets. The 
present study identified that shikonin inhibited inflammation 
in an LTA‑induced ALI mice model by inducing neutrophil 
apoptosis. Endotoxin‑induced apoptosis is partly dependent 
on the intrinsic mitochondrial pathway (70). The activation 
of caspase‑3 and PARP is the key point of the mitochondrial 
pathway (26). The effect of shikonin on the mitochondrial 
pathway was further analyzed. As expected, the levels of 
cleaved caspase‑3 and cleaved‑PARP significantly increased 
with the treatment of shikonin. Previous findings showed that 
shikonin induces apoptosis of colon cancer (71) and chronic 
myeloid leukemia cells (72) by reducing the Bcl‑2 level. In the 
present study, however, the expression of Bcl‑2 was unchanged 
but the content of Mcl‑1 was significantly increased following 
treatment with shikonin. This is because the level of Bcl‑2 
was lower in neutrophils than in cancer cells (27). Thus, its 
effect is not as important as that of Mcl‑1 (73). The decrease 

Figure 6. Shikonin reduces the expression of Mcl‑1 but has no effect on Bcl‑2 expression. The expression of (A) Mcl‑1, Bcl‑2 and (B) p53 were detected by 
western blotting. The quantitation of (C) Mcl‑1, (D) Bcl‑2 and (E) p53 were normalized against β‑actin, separately. The experiments were independently 
repeated for 3 times. Values are presented as mean ± standard error of the mean, *P<0.05, **P<0.01, ***P<0.001. Mcl‑1, myeloid cell leukemia‑1.
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in Mcl‑1 contributed to the body's anti‑inf lammatory 
response; this result is consistent with that of a previous 
study (74). Furthermore, a recent study suggested that inhibi‑
tion of neutrophil apoptosis is closely related to upregulated 
Mcl‑1 and results in increased pulmonary disease (75). 
Consistent with previous studies, the data from the present 
study indicated that shikonin enhanced neutrophil apoptosis 
by increasing cleaved caspase 3 and decreasing Mcl‑1 expres‑
sion. Therefore, Mcl‑1 is a more effective target than Bcl‑2 in 
neutrophil apoptosis.

Neutrophils are typically the first leukocytes to be 
recruited to an inflammatory site and are capable of elimi‑
nating pathogens as well as accelerating inflammation (32). 
Although the present study identified that shikonin inhibited 
the recruitment of neutrophils to the lung tissues, the mecha‑
nisms remain to be elucidated. Furthermore, the results of the 
present study demonstrated that Mcl‑1 was a potential target 
of shikonin for inducing neutrophil apoptosis. However, it is 
still unknown how shikonin induces neutrophil apoptosis. The 
special signal pathways and banding sites of shikonin should 
to be determined in future studies.

Collectively, the present study demonstrated that pretreat‑
ment with shikonin in an LTA‑induced murine ALI model 
alleviated pathological changes in lung tissue, reduced infil‑
tration of inflammatory cells and decreased expression of 
pro‑inflammatory cytokines. Shikonin promoted neutrophil 
apoptosis by triggering mitochondrial‑mediated apoptosis 
signaling pathways, specifically increasing the level of cleaved 
caspase‑3 and decreasing the expression of Mcl‑1. The present 
study suggested that shikonin is a therapeutic candidate for 
treating ALI.
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