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Abstract. Estrogen receptor‑associated receptor α (ERRα) is 
an orphan nuclear receptor that lacks corresponding ligands. 
ERRα recruits co‑regulators to regulate gene transcription 
and plays an important role in human physiological functions. 
Peroxisome proliferator‑activated receptor γ (PPARγ) is also a 
nuclear receptor that regulates the expression of target genes 
via a ligand‑dependent mechanism, thereby participating in a 
series of physiological processes. Both ERRα and PPARγ are 
involved in the process of energy metabolism and tumorigen‑
esis. In the present review, a concise overview of the important 
roles governed by ERRα and PPARγ in metabolism and their 
association with various disease are provided.
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1. Introduction

Estrogen receptor‑associated receptor (ERR) is an orphan 
nuclear receptor that exerts its biological function without 
binding to a ligand. In 1988, Giguère  et  al  (1) identified 
a nuclear receptor that was highly homologous with ERα 
in nucleotide and amino acid sequences using cDNA for 
the DNA‑binding domain of estrogen receptor  α  (ERα) 
as the probe. Both ERR and ER are type III nuclear recep‑

tors. To date, the following three subtypes have been found, 
ERRα  (NR3B1), ERRβ  (NR3B2) and ERRγ (NR3B3), in 
which ERRα is widely distributed in various adult tissues and 
participates in a variety of physiological processes, including 
mitochondrial biogenesis (2), gluconeogenesis, oxidative phos‑
phorylation (3), fatty acid metabolism (4) and brown adipose 
tissue thermogenesis (5). It was also identified as an important 
regulator of the mammalian circadian clock, and its output 
pathways at both transcriptional and physiological levels 
regulated the expression of transcription factors involved 
in metabolic homeostasis (6). The ERRα‑encoding gene is 
located at site 11q13 of the human chromosome and primarily 
consists of the following three functional domains: N terminal 
domain  (NTD), DNA‑binding domain  (DBD) and ligand 
binding domain (LBD). Activation function 1 (AF1) is located 
at the NTD, while AF2 is located at the LBD (7). The DBD 
of ERRα contains two zinc fingers, which are used for iden‑
tification and binding of special sequences at the regulatory 
region in the DNA of the target gene (8). AF2 regulates the 
transcriptional activity of nuclear receptors, primarily through 
functional interactions with coactivators, such as peroxisome 
proliferator‑activated receptor γ coactivator‑1  (PGC‑1), or 
corepressors, such as nuclear factor RIP140 (8).

Peroxisome proliferator‑activated receptor  (PPAR) is a 
novel steroid hormone receptor discovered by Issemann and 
Green (9) in 1990, which can be activated by fatty acid‑like 
peroxisome proliferator. PPARs are nuclear transcription 
factors activated by ligands and members of the type Ⅱ nuclear 
hormone receptor superfamily. There are three subtypes of 
PPARs: PPARα, β/δ and γ (10). Typically, PPARs and reti‑
noid X receptors  (RXR) form a heterodimer and recruit a 
co‑inhibitory protein complex to inhibit the transcription of 
target genes (10). When PPARs are combined with ligands and 
activated, this heterodimer may release co‑inhibitor proteins 
and bind to coactivator proteins, and subsequently combine 
with the promoter of the target gene, upstream peroxisome 
proliferator response element (PPRE), to regulate its transcrip‑
tion and activate its biological function (10). The PPARγ gene 
is located in the p25 region of chromosome 3 and contains 
six regions known as regions A‑F, which are divided into four 
functional domains: Amino terminal domain, DNA binding 
domain, transcriptional activity regulatory domain and ligand 
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binding domain  (11). PPARγ regulates gene transcription 
through binding of the DNA binding domain to PPRE, and 
a number of nuclear factors, such as protein kinase C, protein 
kinase A and 5'AMP‑activated protein kinase can affect the 
activity of PPARγ after binding to this domain (12,13).

2. Distribution and function of ERRα and PPARγ

ERRα is expressed in a variety of tissues from embryonic 
development to adulthood. The expression of ERRα can 
be detected in the heart, brain, kidney, brown adipose 
tissue  (BAT), intestines, bones and uterus  (Table  I)  (14). 
The expression of ERRα is higher in metabolically active 
tissues, including the heart, white adipose tissue, BAT and 
macrophages, while it is relatively lower in the liver, lung and 
vagina (15,16). Studies have demonstrated that ERRs play an 
important role in the regulation of eukaryotic gene expression, 
embryonic development, cell proliferation, bone cell produc‑
tion and angiogenesis  (17‑19). ERRα is an orphan nuclear 
receptor that does not have corresponding ligands, but may 
interact with and have a bypass effect on the classical oestrogen 
signalling pathway through competitive binding to the same 
target genes, transcription factors and coactivator proteins 
with ERα (7,20,21). Earlier studies reported the important role 
of ERRα in energy metabolism of the body via the regulation 
of its target genes. The metabolic processes that ERRα plays 
a role in include glucose metabolism (22,23), lipid metabo‑
lism (24) and mitochondrial oxidation metabolism (25‑27). 
ERRα regulates the process of glucose metabolism mainly by 
affecting the gluconeogenic pathway and the derivatization of 
mitochondria (28,29). ERRα influences the lipid metabolism 
process through targeting and regulating genes of the fatty 
acid β oxidation pathway, such as acetyl‑coenzyme A dehydro‑
genase and malonyl coenzyme A decarboxylase (30). ERRα 
regulates mitochondrial oxidation metabolism by upregulating 
gene expression related to oxidative phosphorylation through 
combined action with PGC‑1α as the coactivator (31). When the 
body is affected by changes in the external environment, such 
as hunger and cold temperatures, the upregulation of ERRα 
expression may promote energy generation and the utilization 
of body energy, achieving an optimal adaptive state (32).

The mRNA of PPARγ is made up of ~4,000 nucleotides. A 
total of four subtypes of mRNA can be produced by different 
promoters and alternative splicing: PPARγl, PPARγ2, PPARγ3 
and PPARγ4 (33). The isomers of these four mRNA subtypes 
have different promoters, expression modes, ligand affinity 
and tissue distribution. PPARγ1 is the main subtype of PPARγ 
and is relatively widely distributed (34). It is primarily distrib‑
uted in adipose tissue, liver, heart, pancreas, intestines, kidney 
and skeletal muscle. The expression levels of PPARγ2 are the 
highest in adipose tissue, and lowest in skeletal muscle (35). 
PPARγ3 is expressed only in macrophages and the large 
intestine (36). However, little is known concerning PPARγ4 
expression. PPARγ is differently expressed in a variety of 
tissues  (Table  I)  (14). PPARγ regulates the expression of 
target genes through ligand‑dependent mechanisms, thereby 
participating in a series of physiological processes. There are 
two types of PPARγ ligands: Endogenous and exogenous (37). 
The exogenous ligands contain insulin sensitizers used in 
the treatment of clinical diabetes, tyrosine‑containing drugs, 

such as GW1929, and phenylacetic acid derivatives, such as 
ibuprofen (38). The endogenous ligands are mainly prosta‑
glandin‑derived metabolites (39). PPARγ forms a heterodimer 
with RXRα, and then binds to a specific DNA sequence of the 
PPRE to activate target genes (40). Based on previous studies, 
PPARγ exerts various biological effects and plays important 
roles in lipid metabolism (41), glucose metabolism (42), athero‑
sclerosis formation (43) and inflammatory response (44). In 
addition, as a nuclear hormone receptor, PPARγ can affect the 
function of fatty acids and its derivatives at the transcriptional 
level to regulate cell survival and control the occurrence and 
development of cancer in different tissues (45).

Both ERRα and PPARγ are members of the nuclear 
receptor superfamily, and as ligand‑dependent transcription 
factors, they need to bind to co‑factors to form heterodimers 
and participate in the regulation of their target genes. A 
genome‑wide analysis of ERRα and ERRγ has confirmed their 
direct and overlapping binding at the promoter regions of a large 
number of mitochondrial genes, a number of which are PGC‑1α 
targets (46). These genes cover various aspects of mitochon‑
drial oxidative metabolism, ranging from glucose utilization, 
fatty acid oxidation, the tricarboxylic acid (TCA) cycle and 
oxidative phosphorylation (OXPHOS) (46). Using laser capture 
techniques, Teng et al (47) demonstrated that the expression of 
the selected ERRα target gene isocitrate dehydrogenase (IDH) 
was involved in the TCA cycle. PPARγ is a master regulator 
of macrophage polarization. Angajala et al (48) showed that 
macrophages control the first break of the TCA cycle that 
occurs in the enzymatic step involving IDH. Wei et al (49) 
demonstrated that rosiglitazone‑activated PPARγ can induce 
ERRα expression. PGC‑1α can target ERRα and transacti‑
vate nuclear factor erythroid 2‑related factor (NRF)1/NRF2 
target genes, which are the nuclear respiratory factors (50). 
In addition, research has revealed that the induction of NRF1 
transcription factors is a prerequisite for the transcriptional 
activation of cytochrome c  (cyt c), which is an important 
electron transporter in OXPHOS (51). ERRα was previously 
implicated in regulating the gene encoding medium‑chain 
acyl‑CoA dehydrogenase (MCAD), which catalyses the initial 
step in mitochondrial fatty acid oxidation (52). Additionally, 
MCAD was previously reported to be a target gene of 
PPARγ (53). Gandhi et al (54) demonstrated that increased 
PPARγ levels can regulate insulin‑mediated glucose uptake 
through the translocation and activation of glucose transporter 
type 4 in the PI3K/phosphorylated‑Akt signalling cascade. 
Therefore, both ERRα and PPARγ can regulate the amount 
of acetyl‑CoA that will enter the TCA cycle by affecting fatty 
acid metabolism. The aforementioned findings indicated that 
PPARγ can also affect the production of pyruvates associated 
with the TCA cycle by affecting the glycolysis pathway. It 
was also suggested that ERRα expression can influence cyt c 
expression, which is closely associated with the OXPHOS 
process. Glycolysis, fatty acid metabolism, OXPHOS and the 
TCA cycle are all ubiquitous metabolic pathways in the body 
that provide the most direct energy source, ATP (Fig. 1).

3. Association of ERRα and PPARγ with disease

ERRα recruits co‑regulators, is activated in a constitutive 
manner, regulates gene transcription, and serves an important 
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role in cell physiological functions, as well as participates in 
the pathological processes of some diseases, such as diabetes, 
fatty liver and hepatocellular carcinoma (55). Research has 
demonstrated that the expression levels of OXPHOS‑associated 
genes are downregulated early in the development of insulin 
resistance in human diabetes (56). ERRα is a target gene of 
PGC‑1, and hence can regulate the expression of OXPHOS 
and fatty acid oxidation genes. Studies have reported that the 
expression levels of ERRα‑regulated genes are decreased in 
patients with insulin resistance (57), and there is an associa‑
tion between insulin sensitivity and the expression of ERRα 
mRNA in human adipose tissue  (58). Overaccumulation 
of triglycerides in liver cells leads to non‑alcoholic fatty 
liver disease  (NAFLD). Decreased expression of ERRα 
affects the intake of dietary fat, thus inhibiting NAFLD 
development  (59). In addition, a previous study indicated 
that the absence of ERRα activity promoted the develop‑
ment of rapamycin‑induced NAFLD (60). Furthermore, in a 
mouse model of pressure overload‑induced left ventricular 
hypertrophy, ERRα expression was found to be significantly 
downregulated, which resulted in faster development of heart 
failure (61). In addition, several studies found that in rodent 
models of heart failure, including models of decompensated 
right ventricular hypertrophy and myocardial infarction, and 
genetic models that show accelerated heart failure, the expres‑
sion of ERRα and its coactivator are reduced (62‑64).

A number of studies have demonstrated the close asso‑
ciation between ERRα and the occurrence, development and 
clinical prognosis of various tumours. In hormone‑dependent 

tumours, such as endometrial (65), ovarian (20), breast (66) 
and prostate cancer (67), ERRα may regulate tumour devel‑
opment through its effect on the ERα signalling pathway. In 
non‑hormone‑dependent tumours, including colorectal cancer, 
non‑small cell lung cancer, nasopharyngeal carcinoma and 
glioma, ERRα may play a role by indirectly affecting gene 
transcription or proliferation of tumour cells. In endometrial 
cancer, a previous study revealed that upregulated expres‑
sion of ERRα was significantly associated with tumour cell 
proliferation (68). Based on the findings of previous studies, 
it has been proposed that ERRs and ERs are co‑expressed in 
ovarian cancer, and the interaction between these two fami‑
lies may be the molecular basis for the complex endocrine 
biological behaviour of ovarian cancer. Sun et al (20) showed 
that the ERRα was associated with the occurrence of ovarian 
cancer and the survival rate of patients, and could be used as a 
factor for poor prognosis of ovarian cancer. In addition, breast 
cancer is also a hormone‑dependent tumour. Kraus et al (69) 
pointed out that ERRα could compete with ERα to bind to 
the oestrogen response element to regulate the transcription of 
target genes. Recent in vitro studies demonstrated that ERRα 
promoted triple‑negative breast cancer (TNBC) cell migra‑
tion and invasion, which was regulated by STAT3, providing 
a potential therapeutic option against TNBC metastasis (70). 
Previous studies on prostate cancer revealed that ERR protein 
was highly expressed in prostatic epithelial cells, whereas in 
prostate cancer cells expression was lower, and the increase 
of ERRα expression levels was significantly associated with 
prostate cancer development, disease prognosis and the 
survival rate of patients (67,71). ERRα‑associated diseases and 
related tissues are shown in Table II (8).

The biological functions of PPARγ are complex and diverse, 
and studies have provided a number of novel approaches for 
the clinical prevention and treatment of diabetes (72), athero‑
sclerosis, hypertension, NFLAD (73) and kidney disease (74). 
For the treatment of diabetes, thiazolidinedione (TZD) drugs 
can promote glucose utilization in skeletal muscle and inhibit 
glucose synthesis in the liver (75). When activated by TZD, 
PPARγ can promote the expression of the PI3K subunit 
p85, promote c‑Cbl associated protein (CAP) transcription, 
promote insulin signalling and improve insulin resistance (76). 
In islet α cells, activated PPARγ improved insulin resistance 
by suppressing the activity of the transcription factor Pax6 
and suppressing the expression of glucagon at the transcrip‑
tion level  (77). Studies have reported that PPARγ ligands 
can induce CD36 expression, promote the phagocytosis of 
oxidized low‑density lipoprotein by macrophages and cause 

Table I. Expression levels of ERRα and PPARγ in various tissues.

Gene	 Top ten tissues of gene expression in C57/Bl6J mouse, displayed from high to low (14)

ERRα	 Jejunum	 Ileum	 Olfactory	 Kidney	 Heart	 Gall	 Muscle	 Preputial	 BAT	 Duodenum
			   bulb			   bladder		  gland
PPARγ	 WAT	 BAT	 Colon	 Stomach	 Preputial gland	 Thyroid	 Aorta	 Skin	 Ovary	 Eye

ERRα, estrogen receptor-associated receptor α; PPARγ, peroxisome proliferator-activated receptor γ; WAT, white adipose tissue; BAT, brown 
adipose tissue.

Table II. ERRα-associated diseases and related tissues.

Tissue	 Diseases (8)

Heart	 Ventricular hypertrophy, myocardial 
	 infarction and heart failure
WAT	 Obesity
Liver and	 Diabetes and non-alcoholic fatty 
muscle	 liver disease
Bone	 Osteoporosis
Human reproductive	 Cancer
organs

ERRα, estrogen receptor-associated receptor α; WAT, white adipose 
tissue.
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intracellular lipid accumulation (78,79). In addition to enabling 
lipids to be taken up by macrophages, PPARγ can also transfer 
excess intracellular cholesterol to the extracellular space via 
ATP‑binding cassette transporter A1 protein  (80). Intimal 
macrophages engulf cholesterol and form foam cells during 
the progression of atherosclerosis. PPARγ is expressed in the 
vascular endothelium, and PPARγ agonists can lower blood 
pressure (81). In vitro endothelial cell culture experiments 
found that TZD‑like ligands can significantly promote the 
secretion of vasomotor factor C‑type natriuretic peptide in 
bovine carotid artery endothelial cells and inhibit the secretion 
of the vasoconstrictor factor endothelin (82).

PPARγ is a nuclear hormone receptor and its transcriptional 
level may affect the oxidation of fatty acids and the mitochon‑
drial biogenesis of BAT (83). Therefore, PPARγ is most likely 
involved in the development of cancer in different tissues by 
regulating cell proliferation and differentiation. The expres‑
sion of PPARγ has been reported in various types of tumour 
cells, including breast  (84), prostate  (85) and lung cancer 
cells (86), and it has been found that the binding of PPARγ 
to its ligand could inhibit the growth of tumour cells (87). 
However, other studies found that the expression levels 
of PPARγ was significantly increased in endometrial  (88) 
and epithelial ovarian cancer (89, 90). Dong (84) found that 
efatutazone, a PPARγ agonist, could promote the differentia‑
tion of tumour cells in breast cancer in a specific stage, and 
thus interfere with tumour occurrence and development. In 
a study on ovarian cancer, Luo et al (91) found that PPARγ 
could upregulate the expression levels of microRNA‑125, 
and thereby inhibit the proliferation of ovarian cancer cells. 
In colon cancer, studies demonstrated that patients with high 
PPARγ expression were more likely to survive than those with 
low PPARγ expression (92). In lung cancer, PPAR activation 
may inhibit the metastasis of tumour cells by inhibiting the 
epithelium‑mesenchymal transition (93). In pancreatic cancer, 
it was revealed that PPARγ was highly expressed in pancre‑
atic cancer cells, and activation of PPARγ may inhibit the 
growth of PANC‑1 cells (94). In gastric cancer, He et al (95) 
reported that rosiglitazone, a PPARγ agonist, could induce cell 
apoptosis, and thus inhibit the growth and invasion of tumour 
cells, and this effect could be reversed by GW9662, a PPARγ 

Table III. PPARγ-associated diseases and related tissues.

Tissue	 Diseases (96)

WAT	 Diabetes and atherosclerosis
CNS	 Parkinson's disease, Alzheimer's disease, 
	 brain injury and ALS
Heart	 Cardiomyopathies
Kidney	 Kidney disease
Breast	 Breast cancer

PPARγ, peroxisome proliferator-activated receptor γ; WAT, white 
adipose tissue; CNS, central nervous system; ALS, amyotrophic 
lateral sclerosis. 

Figure 1. ERRα and PPARγ in energy metabolism. PPARγ affects glycolysis via the PI3K/p‑Akt signaling pathway. Pyruvate produced by glycolysis enters the 
mitochondria to produce ATP via the TCA cycle. ERRα affects fatty acid oxidation via regulating MCAD and also affects OXPHOS via targeting NRF1/NRF2 
genes. Acetyl CoA is produced through the β‑oxidation of acyl‑CoA and participates in the TCA cycle to produce ATP. The mitochondrial respiratory chain 
couples with ATP synthase to complete the process of OXPHOS and produce ATP. LCAD, long‑chain acyl‑CoA dehydrogenase; MCAD, medium‑chain 
acyl‑CoA; SCAD, short‑chain acyl‑CoA dehydrogenase; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation; ATP, adenosine triphosphate; 
ERRα, estrogen receptor‑associated receptor α; PPARγ, peroxisome proliferator‑activated receptor γ; GLUT4, glucose transporter type 4; G‑6‑P, glu‑
cose 6‑phosphate; F‑6‑P, fructose 6‑phosphate; PEP, phosphoenolpyruvate; RXRα, retinoid X receptor α; PGC‑1α, peroxisome proliferator‑activated receptor γ 
coactivator‑1α; NRF, nuclear factor erythroid 2‑related factor; cyt c, cytochrome c; IDH, isocitrate dehydrogenase.
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antagonist. PPARγ‑associated diseases and related tissues are 
shown in Table III (96).

As aforementioned, both ERRα and PPARγ are involved 
in tumour development. Specifically, they were reported in 
studies on hormone‑dependent tumours (endometrial, ovarian, 
breast and prostate cancer) and hormone‑independent tumours 
(lung and colon cancer)  (Fig.  2). Using R  programming 
language (version 3.6.3; https://www.r‑project.org/), based on 
The Cancer Genome Atlas database (https://portal.gdc.cancer.
gov/), Pearson's correlation analysis was performed. It was 

found that ERRα expression was weakly positively correlated 
with PPARγ expression (correlation, r=0.16, P<0.01; Fig. 3). 
Using bioinformatics analysis, based on the Search Tool for the 
Retrieval of Interacting Genes database (97), the co‑expression 
analysis revealed that ERRα and PPARγ have a co‑expression 
relationship (Fig. 4), suggesting that the two genes may have 
several similar functions. The protein‑protein interaction 
network (http://string‑db.org/cgi/input.pl) between ERRα and 
PPARγ showed that ERRα and PPARγ proteins interacted with 
nuclear receptor coactivator 1, histone acetyltransferase p300, 
CREB‑binding protein, leptin, adiponectin receptor protein 1, 
CCAAT/enhancer‑binding protein b and fatty acid‑binding 
protein adipocyte. Searching UniProt database (https://www.
uniprot.org/) and GeneCards database (https://www.genecards.
org/), it was found that these interacting proteins are involved 
in the activation of gene transcription, the modification of 
transcription factors and cellular energy metabolism (Fig. 5).

4. Conclusions and perspectives

To date, there are very few studies involving both ERRα and 
PPARγ. A previous study demonstrated that ERRα knockout 
with small interfering RNA resulted in decreased PPARγ 
expression levels in 3T3‑L1 pre‑adipocytes (98). Studies have 
also reported that PPREs are present at the ERRα promoter, and 
PPRE was the PPAR response element (49). A previous study 
revealed that rosiglitazone, as a PPARγ agonist, could induce 
the expression of ERRα after activating the expression of 
PPARγ, thus enhancing mitochondrial biogenesis and osteoclast 
function (49). Therefore, it can be hypothesized that there is an 
association between ERRα and PPARγ expression. However, 
further studies are required to verify and clarify this association.

In previous years, studies on ERRα, PPARγ and tumorigen‑
esis were gradually applied to clinical diagnosis and treatment. 

Figure 2. Types of cancer related to both ERRα and PPARγ. ERRα, estrogen receptor‑associated receptor α; PPARγ, peroxisome proliferator‑activated 
receptor γ.

Figure 3. Pearson's correlation analysis. Pearson's correlation coefficient was 
performed to show the correlation between ERRα expression (ESRRA) and 
PPARγ expression (PPARG). ERRα, estrogen receptor‑associated receptor α; 
PPARγ/PPARG, peroxisome proliferator‑activated receptor γ; ESRRA, ste‑
roid hormone receptor ERR1.
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In diseases that have been extensively studied, such as ovarian 
and breast cancer, ERRα is generally considered to be a factor 
closely related to the poor prognosis of tumours, and hence 
is also considered to be a potential target for tumour therapy. 
Meanwhile, PPARγ expression in tumours varies, and the 
relationship between PPARγ and tumour prognosis is yet to be 
determined. In metabolic diseases that have been comprehen‑
sively studied, such as diabetes, PPARγ has become an important 

therapeutic target (99). ERRα is also closely related to numerous 
metabolic diseases. Currently, thiazolidinediones, as PPARγ 
agonists, have been used in the clinical treatment of metabolic 
syndromes, and they are expected to play an important role in 
the treatment of inflammation and tumours (100‑102).

However, there are few reports concerning the association 
between ERRα and PPARγ, the underlying mechanism of 
their interaction and their combined role in diseases. ERRα 
and PPARγ are related to a number of diseases, and both act as 
transcription factors that regulate cellular metabolic functions. 
Studying the relationship between ERRα and PPARγ could 
help to further understand the progress of certain diseases and 
will be useful for drug research. In addition, researches on new 
drugs for the ERRs have been reported (103), and thus it may 
be possible to develop ERRα and PPARγ dual‑targeted drugs 
to provide further insight into the treatment of diseases.
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