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Abstract. Autosomal dominant polycystic kidney disease 
(ADPKD), a common disease with a high incidence ratio of 
between 1/400 and 1/1,000 individuals, often results in kidney 
failure and even mortality. However, there are relatively few 
effective treatments available, and treatment is limited to life‑
long hemodialysis or kidney transplant. Our previous studies 
have reported that curcumin (Cur) and ginkgolide B (GB) 
inhibited cystogenesis by regulating the Ras/ERK MAPK 
signaling pathway. In the present study, it was hypothesized 
that Cur and GB may have a synergistic effect on the inhibition 
of cystogenesis, and their synergistic effect may be the result 
of regulation of multiple signaling pathways. To assess this 
hypothesis, an in vitro Madin‑Darby canine kidney (MDCK) 
cyst model and an in vivo kidney‑specific polycystin 1 tran‑
sient receptor potential channel interacting (Pkd1) knockout 
mouse model were established to observe the effects of the 
combination of Cur and GB. The cysts exposed to Cur, GB 
and Cur combined with GB became small thick‑walled cysts, 
small thin‑walled cysts and round shaped cell colonies, respec‑
tively. The combination of Cur and GB was more effective 
compared with either treatment alone in inhibiting cystogenesis. 

Additionally, to the best of our knowledge, the present study was 
the first to demonstrate the synergistic effect of Cur and GB on 
the inhibition of cystogenesis in Pkd1 knockout mice. Cur may 
have mediated its anti‑cyst effects by blocking EGFR/ERK1/2, 
JNK and PI3K/mTOR signaling pathways, while GB may 
have inhibited cystogenesis via the downregulation of the 
EGFR/ERK1/2, JNK and p38 signaling pathways. These results 
provide a proof‑of‑concept for application of the combination of 
Cur and GB in inhibiting cystogenesis in ADPKD.

Introduction

Autosomal dominant polycystic kidney disease (ADPKD), one 
of the most common diseases of the kidney, has a high incidence 
rate of 1/400 to 1/1,000 individuals (1), and is characterized by 
several unregulated cysts of different sizes in the kidney, and 
often progresses to kidney failure (2). The disease is primarily 
caused by mutations in polycystin 1 transient receptor poten‑
tial channel interacting (Pkd1; 85%) and Pkd2 (15%), which 
encode the proteins polycystin‑1 (PC1) and polycystin‑2 (PC2), 
respectively (3,4). Previous studies have reported that mutant 
PC1 and PC2 decrease intracellular Ca2+ levels and increase 
intracellular cAMP levels (5‑7). Increased intracellular cAMP 
stimulates protein kinase A, which in turn promotes abnormal 
proliferation of cyst epithelial cells and excessive secretion 
of cyst fluid  (6,8). There are multiple signaling pathways 
associated with abnormal proliferation of cyst epithelial cells, 
such as the Ras/MAPK pathway, mTOR pathway and Wnt 
pathway (9‑11). Signaling pathways associated with excessive 
secretion of cyst fluid include those that increase the activi‑
ties of cystic fibrosis transmembrane conductance regulator 
(CFTR), Na+‑K+‑ATPase and aquaporin 2 (12). Other signaling 
factors include TGF‑β/Smad2/3  (13) and integrin‑linked 
kinase (14), and are associated with the pathological progres‑
sion of fibrosis throughout the course of ADPKD.

Except for lifelong hemodialysis or kidney transplanta‑
tion, treatments for ADPKD include decreasing intracellular 
cAMP levels, prevention of abnormal cells proliferation and 
inhibition of cyst fluid excessive secretion (15). Somatostatin, 
and its analogue octreotide, inhibit cyst development by 
decreasing intracellular cAMP levels in the kidney and liver 
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in patients with ADPKD (16). Our previous studies revealed 
that curcumin (Cur) (15) and ginkgolide B (GB) (17) reduced 
renal cyst cell proliferation by downregulating the activity of 
the Ras/ERK1/2 signaling pathway. Small‑molecule CFTR 
inhibitors decrease cyst fluid secretion in PKD by inhibiting 
the function of CFTR, which in turn stimulates chloride secre‑
tion, and thus cystic fluid secretion (12). Other treatments that 
decrease cyst growth in ADPKD include tolvaptan (18,19), 
src inhibitors (20), Wnt inhibitors (21), mTOR inhibitors (22), 
pioglitazone  (23,24), triptolide  (25), Ganoderma triter‑
penes (26) and Quercetin (27). Tolvaptan has been approved 
for the treatment of ADPKD in Europe and other countries 
throughout the world (28). However, the majority of experi‑
mental treatments for ADPKD require further study before 
they can be approved clinically.

Cur is a natural compound isolated from the Traditional 
Chinese Medicine Curcuma  longa L  (29). Several studies 
have shown that Cur exhibits notable anticancer, anti‑inflam‑
matory  (30) and anti‑oxidant effects, as well as other 
beneficial properties  (31,32). Our previous study revealed 
that Cur inhibited cyst development in vitro  (15). GB is a 
natural product isolated from the Chinese herbal medicine 
Ginkgo biloba L (33), and has several beneficial biological 
effects, including antiplatelet, anti‑inflammatory, antioxidant 
and neuroprotective activities (34,35). The inhibitory effect 
of GB on cyst formation was also reported in our previous 
study, both in in vitro and in vivo models (17). Considering 
these inhibitory effects of Cur and GB on cyst formation, it 
was hypothesized that Cur and GB may exhibit a synergistic 
effect on the inhibition of cystogenesis, and this synergistic 
effect may result from the regulation of multiple signaling 
pathways. To assess this hypothesis, in the present study, an 
in vitro Madin‑Darby canine kidney (MDCK) cyst model and 
an in vivo kidney‑specific Pkd1 knockout mouse model were 
used to observe the effects of Cur combined with GB.

Materials and methods

Materials. Cur (Sigma‑Aldrich; Merck KGaA; cat. no. C1386), 
GB (Sigma‑Aldrich; Merck KGaA; cat.  no.  G6910) and 
Forskolin (FSK; Sigma‑Aldrich; Merck KGaA; cat. no. F6886) 
were each dissolved in 100% DMSO to prepare a 100 mM 
stock solution and were stored at‑20˚C.

Anti‑phospho‑(p‑)EGFR (cat. no. sc‑57542), anti‑EGFR 
(cat. no. sc‑373746), anti‑p‑human epidermal growth factor 
receptor 2 (anti‑p‑Cerb‑B2; cat. no. sc‑81507), anti‑Cerb‑B2 
(cat. no.  sc‑33684), anti‑H‑Ras (cat. no.  sc‑35), anti‑B‑Raf 
(cat. no. sc‑5284), anti‑Raf‑1 (cat. no. sc‑7267), anti‑p‑MEK‑1/2 
(cat. no. sc‑81503), anti‑MEK‑1/2 (cat. no. sc‑81504), anti‑p‑ERK 
(cat. no. sc‑7383), anti‑ERK‑1/2 (cat. no. sc‑514302), anti‑p‑JNK 
(cat. no. sc‑6254), anti‑JNK (cat. no. sc‑7345), anti‑p‑activator 
of S phase kinase (ASK; cat.  no.  sc‑166967), anti‑ASK1 
(cat. no. sc‑5294), anti‑p‑p38α (cat. no. sc‑7973), anti‑p38α/β 
(cat.  no.  sc‑7972) and anti‑Actin (cat.  no.  sc‑8432) were 
purchased from Santa Cruz Biotechnology, Inc. Anti‑p‑PI3K 
(cat.  no.  4228), anti‑PI3K (cat.  no.  4292), anti‑p‑AKT 
(cat.  no.  4060), anti‑AKT (cat.  no.  4691), anti‑p‑mTOR 
(cat.  no.  2971), anti‑mTOR (cat.  no.  2972), anti‑p‑eukary‑
otic translation initiation factor 4E binding protein  1 
(anti‑p‑4E‑BP1; cat. no. 2855), anti‑4E‑BP1 (cat. no. 9452), 

anti‑p‑p70S6 kinase (anti‑p‑p70S6k; cat. no. 9208), anti‑p70S6k 
(cat. no. 9202), anti‑p‑mitogen‑activated protein kinase kinase 
kinase 7 (anti‑p‑MAP3K7; cat.  no.  9339), anti‑MAP3K7 
(cat. no. 4505), anti‑p‑mitogen‑activated protein kinase kinase 
3/6 (anti‑p‑MKK3/6; cat. no. 9231), anti‑MKK3 (cat. no. 5674), 
anti‑p‑MKK4 (cat. no. 9155) and anti‑MKK4 (cat. no. 9152) 
were purchased from Cell Signaling Technology, Inc. 
Horseradish peroxidase (HRP) conjugated‑goat anti‑mouse 
IgG (H+L) (cat. no. AP308P) and unconjugated goat anti‑rabbit 
IgG (cat. no. AP132) were purchased from Sigma‑Aldrich 
(Merck KGaA).

MDCK cyst model. Type  I MDCK cells (American Type 
Culture Collection; cat. no. CCL‑34) were cultured at 37˚C in a 
humidified incubator with 5% CO2 and 95% air in a 1:1 mixture 
of DMEM (Mediatech, Inc.; cat. no. 07119003) and Ham's F‑12 
nutrient medium (Mediatech, Inc.; cat. no. 30218008) supple‑
mented with 10% FBS (Hyclone; Cytiva), 100 U/ml penicillin 
and 100  µg/ml streptomycin. MDCK cells (~400) were 
suspended in 0.4 ml ice‑cold Minimum Essential Medium 
(Mediatech, Inc.; cat. no. 12619015) containing 2.9 mg/ml 
collagen (PureCol; Inamed Biomaterials), 10 mM HEPES, 
27 mM NaHCO3, 100 U/ml penicillin and 100 mg/ml strep‑
tomycin (pH 7.4). The MDCK cell suspension was cultured in 
24‑well plates for 90 min, after which, the cells were treated 
at 37˚C with the different compound combinations as follows: 
10 µM FSK; 0, 0.4, 2 or 10 µM Cur; and 0, 0.125, 0.5 or 2 µM 
GB for 4 days. Medium containing FSK and Cur or GB was 
changed every 12 h. After cells were cultured for 4 days, 
MDCK cysts formed in the continuous presence of 10 µM 
FSK at 37˚C for 4 days.

To evaluate the inhibitory effect of Cur and GB on cyst 
formation in the MDCK cyst model, different combinations 
of Cur (0, 0.4, 2 or 10 µM) and GB (0, 0.125, 0.5 or 2 µM) 
were added to the culture medium containing 10 µM FSK 
at 37˚C from day 0 to day 5. Medium containing FSK and 
the combination of Cur and GB was changed every 12 h for 
6 days. Cysts with a diameter >50 µm and non‑cyst cell colo‑
nies were counted under an Olympus confocal microscopy 
(Olympus Corporation) on the 6th day (magnification, x200). 
The MDCK cyst formation inhibitory rate was calculated 
as follows: [(number of cysts in MDCK cyst model without 
treatment‑number of cysts in MDCK cyst model with 
treatment)/number of cysts in MDCK cyst model without 
treatment] x100%.

To determine inhibition of cyst growth mediated by Cur 
and GB, different dose combinations of Cur (0, 0.4, 2 or 10 µM) 
and GB (0, 0.125, 0.5 or 2 µM) were added to the culture 
medium containing 10 µM FSK at 37˚C from day 4 to day 9. 
Medium containing FSK and the combination of Cur and GB 
was changed every 12 h for 6 days. Cysts were observed on 
days 4, 6, 8 and 10 using an in situ tracking method (identified 
by markings on plates) (17). To evaluate growth, cysts with 
diameters >50 µm were measured on days 4, 6, 8 and 10 using 
Image‑Pro Plus version 6.0 (Media Cybernetics, Inc.). In total, 
≥10 cysts/well and 3 wells/group were measured for each 
condition.

Pkd1flox/‑; Ksp‑Cre mouse of ADPKD. Pkd1flox mice and 
kidney‑specific Cre (Ksp‑Cre) transgenic mice were established 
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as described previously, and were housed at 22±3˚C under 
50±5% relative humidity with a 12 h light/dark cycle with 
food and water available on demand in the laboratory (17). 
There was ‑15 Pa atmosphere pressure difference between 
inside and outside laboratory. The animal use protocol has 
been reviewed and approved by the Institutional Animal Care 
and Use Committee of Shanxi Bethune Hospital. Pkd1Flox/‑; 
Ksp‑Cre mice were used to evaluate the effects of Cur and GB 
on cyst inhibition. The Pkd1Flox/‑; Ksp‑Cre homozygous mice 
generally die within 15 days of birth (27). Thus, treatments 
were performed only up until postnatal day 10. Neonatal 
mice (postnatal day 0) were genotyped using genomic PCR. 
A total of 96 homozygous mice (half male and half female; 
age, 1 day; weight, 3.07±0.66 g) were randomly divided into 
three treatment groups (Cur group, GB group, Cur and GB 
combination group) and PKD mice group (2 µl x body weight 
DMSO + saline, 0.05 ml/injection). A total of six heterozy‑
gous mice (half male and half female; age, 1 day; weight, 
2.75±0.93 g) were used as the wild‑type (WT) mice group. 
Each group had six mice to ensure the reliability of statistical 
analysis. The homozygous mice are characterized by rapidly 
progressive disease, providing only a very small window for 
treatment of the neonates (13). GB (0, 20, 40 or 80 mg/kg) and 
Cur (0, 80, 160 and 320 mg/kg) were injected subcutaneously 
in the back of neonatal mice once a day from days 1‑10 using 
a 1‑ml insulin syringe. The mice were weighed on day 11, and 
were anesthetized by intraperitoneal injection of pentobarbital 
sodium (50 mg/kg). Then, mice were sacrificed by cervical 
dislocation and decapitated. The kidney, liver and spleen tissues 
were removed and weighed, and stored at 4˚C in 10% formalin 
solutions. The ratio of kidney weight to body weight was 
calculated and analyzed. The kidney cysts were evaluated by 
the percentage of cyst area to kidney area. The effects of Cur 
and GB on liver and spleen were observed by measuring liver 
weight/body weight and spleen weight/body weight. Blood 
samples (0.3 ml) were centrifuged in heparinized Microtainer 
tubes at 3,000 x g for 10 min at 4˚C. Urea concentration was 
tested using urea assay kit (Bioassay Systems). The blood urea 
nitrogen (BUN) (mg/dl) was calculated as 2.14 divided by urea 
(mg/dl).

Immunohistochemistry. Kidney tissue samples were fixed 
in 4% formaldehyde at pH 7.4 and 4˚C for 48 h, dehydrated, 
embedded in paraffin, and stained with hematoxylin for 5 min 
and eosin for 3 min at room temperature. To detect tissue 
localization and expression of EGFR and Cerb‑B2, tissues 
were sectioned at 5‑µm in thickness and stained as follows. 
The section was blocked by 1% hydrogen peroxide in methanol 
for 10 min at 37˚C. Antigens were retrieved by microwaving in 
10 mM citrate buffer (pH 6.0) at 95˚C for 10 min. Slides were 
blocked with 5% normal goat serum (Abcam; cat. no. ab7481) 
at room temperature for 20 min. Then, the sections were 
incubated in a humidified chamber at 4˚C overnight with one 
of the primary antibodies, including anti‑EGFR (1:100) and 
anti‑Cerb‑B2 (1:100). The slides were washed three times with 
PBS, incubated at 37˚C for 20 min with biotinylated second 
antibody (1:200), and labeled for 20 min with HRP. Peroxidase 
activity was visualized using a DAB concentrated kit 
(Bioswamp Life Science Lab; cat. no. PAB180021). Samples 
were observed under an Olympus confocal microscopy 

(Olympus Corporation) at x400 magnification by two experi‑
enced pathologists blinded to the conditions. Positive staining 
was quantitatively analyzed using Image‑Pro‑Plus (version 6.0; 
Media Cybernetics, Inc.; https://www.mediacy.com/), and the 
average optical density was the result of cumulative optical 
density divided by total area. These results were statistically 
analyzed.

Western blotting. The kidney tissues were homogenized using 
a homogenizer (FLUKO; FA25) at 8,000 x g for 2 min at 4˚C, 
incubated on ice for 20 min and lysed using an ultrasonic cell 
crusher (Shanghai Hannuo Instrument Co., Ltd.; http://www.
hanuo.com.cn/; HN‑250M) for 3  min at  4˚C in a protein 
lysis buffer (10 mM triethanolamine at pH 7.6 and 250 mM 
sucrose) and protease inhibitor cocktail (1 mM PMSF, 20 mM 
NaF and 1 mM Na3VO4). The kidney cell lysates were centri‑
fuged at 10,000 x g for 5 min at 4˚C. The supernatant was 
used immediately or stored at ‑80˚C. Protein concentrations 
were determined using a Bradford assay and 4 mg/ml BSA 
(Applygen Technologies, Inc.; cat. no. P1512) was used as 
the protein standard. Proteins (28 µg/lane) were loaded on a 
SDS‑gel, resolved using 10% SDS‑PAGE and transferred to a 
PVDF membrane. Membranes were blocked in 3% BSA/PBS 
at room temperature for 90  min. PVDF membranes were 
subsequently incubated overnight at 4˚C with different primary 
antibodies at dilutions (anti‑p‑EGFR 1:1,000, anti‑EGFR 
1:1,000, anti‑p‑Cerb‑B2 1:1,000, anti‑Cerb‑B2 1:1,000, 
anti‑H‑Ras 1:1,500, anti‑B‑Raf 1:1,000, anti‑Raf‑1 1:1,000, 
anti‑p‑MEK‑1/2 1:2,000, anti‑MEK‑1/2 1:2,000, anti‑p‑ERK 
1:2,000, anti‑ERK‑1/2 1:2,000, anti‑p‑JNK 1:1,500, anti‑JNK 
1:1,500, anti‑p‑ASK 1:1,000, anti‑ASK1 1:1,000, anti‑p‑p38α 
1:1,500, anti‑p38α/β 1:1,500 and anti‑actin 1:2,000, 
anti‑p‑PI3K 1:1,000, anti‑PI3K 1:1,000, anti‑p‑AKT 1:1,000, 
anti‑AKT 1:1,000, anti‑p‑mTOR 1:1,000, anti‑mTOR 1:1,000, 
anti‑p‑4E‑BP1 1:1,000, anti‑4E‑BP1 1:1,500, anti‑p‑p70S6k 
1:1,000, anti‑p70S6k 1:1,000, anti‑p‑MAP3K7 1:1,000, 
anti‑MAP3K7 1:1,500, anti‑p‑MKK3/6 1:1,500, anti‑MKK3 
1:1,500, anti‑p‑MKK4 1:2,000 and anti‑MKK4 1:2,000) in 
accordance with manufacturer's instructions (Santa Cruz 
Biotechnology, Inc. or Cell Signaling Technology, Inc.). Then, 
PVDF membranes were washed with TBS‑Tween (0.1%) and 
incubated with secondary antibodies at room temperature for 
40 min. The specific protein bands were visualized using an 
ECL chemiluminescence detection kit. Intensity of the protein 
bands was measured by densitometry and semi‑quantified using 
Quantity One software (version 4.6.2; Bio‑Rad Laboratorires, 
Inc.; https://www.bio‑rad.com/).

Statistical analysis. The experiment was repeated three times, 
and experimental data were analyzed using SPSS version 16.0 
(SPSS, Inc.). Data are presented as the mean  ±  SEM. 
Comparison of homogeneity of variance amongst multiple 
groups was performed using a one‑way ANOVA. Multiple 
comparisons were performed using a Tukey's post hoc test. 
P<0.05 was considered to indicate a statistically significant 
difference. The inhibitory effect of Cur combined with GB 
was evaluated using Jin's modified Bürgi's formula (36). The 
formula was q=EAB/(EA + EB‑EA x EB), where EAB is the 
inhibitory effect of drug A combined with drug B, and EA and 
EB are the effects of drug A and B, respectively. A q‑value 
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between 0.85‑1.15 indicates that the effects of drug A and B 
are additive. A q‑value >1.15 indicates that the effects of 
drug A and B are synergistic, while a q‑value <0.85 indicates 
that the effects of drug A and B are antagonistic (37).

Results

Cur combined with GB synergistically inhibits cyst forma‑
tion and growth in the MDCK cyst model. As presented in 
Fig. 1A and B, the MDCK cells exposed to Cur primarily 
became small thick‑walled cysts; however, the MDCK 
cells exposed to GB became small thin‑walled cysts. These 

morphological differences suggested that Cur and GB may 
mediate their effects via different mechanisms. The MDCK 
cyst model was used to assess the inhibitory effect of Cur 
combined with GB cyst formation in vitro. The combination 
of Cur and GB significantly reduced the formation of MDCK 
cysts. The maximum inhibitory rate of MDCK cysts treated 
with a combination of 2 µM Cur and 0.5 µM GB was as high 
as 90.46%, and the synergistic effect (q>1.15) was significantly 
greater compared with either Cur or GB alone (Fig.  1C; 
P<0.01); the maximum MDCK cyst inhibitory rate of Cur and 
GB was 63.82 and 66.73%, respectively (Fig. 1C). The cysts 
formed on day 4 and were observed every 2 days from days 4 

Figure 1. Combination of Cur and GB synergistically inhibits cyst formation in MDCK cyst model. (A) Representative light micrographs of MDCK cyst forma‑
tion in collagen gels. Light micrographs were taken on day 6 after MDCK cell seeding in presence of FSK in collagen gels. Scale bar, 50 µm. Control group was 
treated with DMSO. Cur group was treated with 2 µM Cur; GB group was treated with 0.5 µM GB; Cur + GB group was treated with 2 µM Cur combined with 
0.5 µM GB. (B) Rate of MDCK cyst formation on day 6 after MDCK cells were cultured with 10 µM FSK in the presence of the different combinations of Cur 
and GB. White bars show the total numbers of colonies (including cysts and non‑cyst colonies). Black bars show the numbers of cysts with diameter >50 µm. 
Data are presented as the mean ± SEM; n=3. *P<0.05, **P<0.01 and ***P<0.001 vs. control (0 µM Cur + 0 µM GB). (C) Inhibitory effects of Cur combined with 
GB on MDCK cysts. It was found that 0.4 µM Cur + 0.5 µM GB, 0.4 µM Cur + 2 µM GB and 2 µM Cur + 0.5 µM GB exert a synergy effect. *P<0.05 and 
**P<0.01 vs. treatment of Cur alone at same concentration. Data are presented as the mean ± SEM, n=3. FSK, forskolin; Cur, curcumin; GB, ginkgolide B.
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to 10 (Fig. 2A; top panel). The progressive growth of cysts was 
inhibited by treatment with Cur and GB alone, as well as in 
combination (Fig. 2B).

Cur combined with GB synergistically inhibits cyst 
enlargement in the PKD mouse model. The combination of 
Cur and GB significantly decreased renal enlargement in 
mice (Fig. 3A). After 10 days of treatment, the ratio of kidney 
weight to body weight of the PKD mice treated with Cur or 
GB was significantly declined compared with the PKD mice 
treated with DMSO + saline (Fig. 3B). The combination of Cur 
and GB was more effective compared with Cur in decreasing 
the ratio of kidney weight to body weight of the PKD mice. 
There was a downward tendency in the ratio of kidney weight 
to body weight of the PKD mice treated with Cur combined 
with GB, compared with GB. Hematoxylin and eosin‑stained 
kidney sections demonstrated that the percentage of cyst 
area to kidney area was also decreased in PKD mice treated 
with Cur and/or GB (Fig. 3A and C). The combination of 
Cur and GB was more effective compared with Cur or GB 
alone in decreasing the percentage of cyst area to kidney 
area of the PKD mice. Although the kidney cyst expanded 
progressively, the BUN levels suggested that renal function 
in PKD mice treated with Cur and/or GB did not decrease 
as rapidly compared with that of the PKD mice treated with 
DMSO + saline (Fig. 3E). There were no differences in the 
ratio of kidney weight to body weight between the male and 
female mice in the same group (Fig. 3D). Moreover, there was 
no significant difference in spleen index or liver index between 
the PKD mice, irrespective of treatments (Fig. 3F and G).

Cur and GB decrease the activity of the EGFR/ERK1/2 
signaling pathway. To further examine the mechanisms via 
which Cur and GB inhibited cyst formation, the activity of the 
EGFR/ERK1/2 signaling pathway was assessed using western 
blotting and immunohistochemistry on the kidneys obtained 

from the PKD mice (Fig. 4A and B). The expression levels 
of p‑EGFR, p‑Cerb‑B2, H‑Ras, B‑Raf, p‑MEK and p‑ERK 
were increased in the kidneys of the PKD mice. However, 
the expression of Raf‑1 was decreased in the kidneys of the 
PKD mice. The inhibitory effect of Cur combined with GB 
on EGFR/ERK1/2 signaling pathway was also examined 
(Fig.  4C). The expression levels of p‑EGFR, p‑Cerb‑B2, 
H‑Ras, B‑Raf, p‑MEK and p‑ERK were downregulated by 
Cur, GB and Cur combined with GB, while the expression 
of Raf‑1 was upregulated by GB and Cur combined with GB 
(Fig. 4C). These results suggested that Cur combined with 
GB inhibited the development of renal cysts by regulating the 
EGFR/ERK1/2 signaling pathway.

Cur and GB downregulate the ASK1/JNK signaling pathway. 
To determine whether the JNK signaling pathway was involved 
in cyst inhibition in vivo, the expression of the ASK1/JNK 
signaling pathway was measured via western blotting in 
kidneys of PKD mice treated with Cur, GB or Cur combined 
with GB (Fig. 5A). The expression levels of p‑ASK1, p‑MKK4 
and p‑JNK were increased in the kidneys of PKD mice, and 
were downregulated by Cur, GB and Cur combined with 
GB (Fig. 5B). Cur was more effective compared with GB in 
inhibiting the JNK signaling pathway. These results indicated 
that Cur combined with GB inhibited the development of renal 
cysts by regulating the ASK1/JNK signaling pathway.

GB downregulates the MAP3K7/p38 signaling pathway. 
The expression of the MAP3K7/p38 signaling pathway was 
assessed via western blotting in kidneys of PKD mice treated 
with Cur, GB or Cur combined with GB (Fig.  6A). The 
expression levels of p‑MAP3K7, p‑MKK3 and p‑p38 were 
increased in the kidneys of PKD mice, and were significantly 
downregulated by GB treatment, as well as by Cur combined 
with GB treatment. (Fig. 6B). There was no difference between 
the mice treated with GB and Cur combined with GB. Cur 

Figure 2. Combination of Cur and GB synergistically slows cyst enlargement in MDCK cyst model. (A) Representative light micrographs of MDCK cell cyst 
enlargement in collagen gels. Light micrographs taken at indicated days after cell seeding. MDCK cells in control group were exposed continuously to 10 µM 
forskolin (top panel). A total of 2 µM Cur (second panel), 0.5 µM GB (third panel) and 2 µM Cur combined with 0.5 µM GB (bottom panel) were added from 
day 4 to day 10 after cell seeding in gels. Scale bar, 50 µm. (B) MDCK cell cyst enlargement shown as cyst diameters in different groups. Data are presented 
as the mean ± SEM, >30 cysts analyzed per time point. *P<0.05, **P<0.01 and ***P<0.001 vs. control. Cur, curcumin; GB, ginkgolide B.
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failed to inhibit the MAP3K7/p38 signaling pathway (Fig. 6B). 
There was also no difference between the mice treated with 
and without Cur. These results suggested that GB inhibited 
the development of renal cysts by regulating the MAP3K7/p38 
signaling pathway.

Cur downregulates the PI3K/mTOR signaling pathway. The 
PI3K/mTOR pathway has been reported to be associated 
with abnormal proliferation of cyst epithelial cells (38). In 
the present study, the expression levels of p‑PI3K, p‑AKT, 
p‑mTOR, p‑4E‑BP1 (S65) and p‑p70S6k were assessed using 

Figure 3. Combination of Cur and GB synergistically inhibits cyst enlargement in Pkd1Flox/‑; Ksp‑Cre mice. (A) Representative images (top panel) and hema‑
toxylin and eosin staining images (bottom panel) of the kidney (on postnatal day 11) of WT mice, Pkd1Flox/‑; Ksp‑Cre mice treated with DMSO + saline, 
160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. (B) Kidney weight indexes of WT mice and Pkd1Flox/‑;Ksp‑Cre mice treated 
with DMSO + saline, 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. Data are presented as the mean ± SEM, n=6. **P<0.01 
and ***P<0.001. (C) Kidney cysts were evaluated as the percentage of cyst area to kidney area in different combinations of Cur and GB. Data are presented as 
the mean ± SEM, n=6. *P<0.05, **P<0.01 vs. 0 mg/kg Cur + 0 mg/kg GB. (D) Kidney weight indexes of male or female WT mice and Pkd1Flox/‑;Ksp‑Cre mice 
treated with DMSO + saline, 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. Data are presented as the mean ± SEM, n=6. 
(E) BUN levels in WT mice, Pkd1Flox/‑; Ksp‑Cre mice treated with DMSO + saline, 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg 
GB. Data are presented as the mean ± SEM, n=6. ***P<0.001 vs. WT mice; #P<0.05 and ##P<0.01 vs. PKD mice. (F) Liver weight indexes of PKD mice treated 
with or without 160 mg/kg Cur and or 80 mg/kg GB. Data are presented as the mean ± SEM, n=6. (G) Spleen weight indexes of PKD mice treated with or 
without 160 mg/kg Cur and or 80 mg/kg GB. Data are presented as the mean ± SEM, n=6. WT, wild‑type; N.S., no statistical significance; PKD, polycystic 
kidney disease; Cur, curcumin; GB, ginkgolide B; M, male; F, female; BUN, blood urea nitrogen.
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western blotting on the kidney samples of PKD mice treated 
with Cur, GB or Cur combined with GB (Fig. 7A). The expres‑
sion levels of p‑PI3K, p‑AKT, p‑mTOR, p‑4E‑BP1 (S65) and 
p‑p70S6k were increased in the kidneys of the PKD mice. 
However, the expression levels of p‑PI3K, p‑AKT, p‑mTOR, 
p‑4E‑BP1 (S65) and p‑p70S6k were significantly decreased 
by Cur. GB failed to downregulate these signaling factors 
(Fig. 7B). There was no synergistic effect when GB and Cur 
were used in combination, suggesting that Cur affected the 
expression levels of p‑PI3K, p‑AKT, p‑mTOR, p‑4E‑BP1 
(S65) and p‑p70S6k alone. These results indicated that Cur 
inhibited the development of renal cysts by downregulating 
the PI3K/mTOR signaling pathway.

Discussion

Curcuma longa is an essential ingredient in numerous 
Southeast Asian countries, where it is frequently used in 
curries (39). Cur is a type of rhizome extracted from Curcuma 
longa (40). The estimated consumption of Curcuma longa in 
South Asia is 1‑2 g/day or higher (41), which corresponds 
to 31.49‑62.98  mg Cur. However, the amount of Cur in 
the daily diet in South Korea is only 2.7‑14.8  mg  (42). 
Thus, the Cur consumption in some countries may not be 
sufficient to achieve the biological effects of Cur. Cur has 
several beneficial pharmacological activities (43), including 
anti‑oxidant, anti‑fibrotic and anti‑angiogenic properties. 

Figure 4. Cur combined with GB regulates the EGFR/ERK1/2 signaling pathway in Pkd1Flox/‑; Ksp‑Cre mice. (A) Representative immunohistochemistry of 
p‑EGFR and p‑Cerb‑B2 in Pkd1Flox/‑; Ksp‑Cre mice treated with 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. Magnification, 
x400. (B) Representative western blotting of EGFR/ERK1/2 signaling proteins in Pkd1Flox/‑; Ksp‑Cre mice treated with 160 mg/kg Cur, 80 mg/kg GB and 
160 mg/kg Cur combined with 80 mg/kg GB. (C) Semi‑quantitative analysis of EGFR/ERK1/2 signaling protein expression levels in Pkd1Flox/‑; Ksp‑Cre mice. 
Relative level refers to the ratio of western blotting band density in different treatment groups compared with that in WT group. Data are presented as the 
mean ± SEM, n=6. *P<0.05 and ***P<0.001 vs. WT mice; #P<0.05, ##P<0.01 and ###P<0.001 vs. PKD mice. WT, wild‑type; PKD, polycystic kidney disease; Cur, 
curcumin; GB, ginkgolide B; p‑, phosphorylated; Cerb‑B2, human epidermal growth factor receptor 2.
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Figure 5. Cur combined with GB regulates the ASK1/JNK signaling pathway in Pkd1Flox/‑; Ksp‑Cre mice. (A) Representative western blotting of ASK1/JNK 
signaling proteins in Pkd1Flox/‑;Ksp‑Cre mice treated with 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. (B) Semi‑quantitative 
analysis of ASK1/JNK signaling protein expression in Pkd1Flox/‑; Ksp‑Cre mice. Relative level refers to the ratio of western blotting band density in different 
treatment groups compared with that in WT group. Data are presented as the mean ± SEM, n=6. ***P<0.001 vs. WT mice; ###P<0.001 vs. PKD mice. WT, 
wild‑type; PKD, polycystic kidney disease; Cur, curcumin; GB, ginkgolide B; p‑, phosphorylated; ASK1, activator of S phase kinase; MKK, mitogen‑activated 
protein kinase kinase.

Figure 6. Cur combined with GB regulates the MAP3K7/p38 signaling pathway in Pkd1Flox/‑; Ksp‑Cre mice. (A) Representative western blotting of 
MAP3K7/p38 signaling proteins in Pkd1Flox/‑;Ksp‑Cre mice treated with 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. 
(B) Semi‑quantitative analysis of MAP3K7/p38 signaling protein expression levels in Pkd1Flox/‑; Ksp‑Cre mice. Relative level refers to the ratio of western blot‑
ting band density in different treatment groups compared with that in WT group. Data are presented as the mean ± SEM, n=6. *P<0.05 and ***P<0.001 vs. WT 
mice; #P<0.05, ##P<0.001 and ###P<0.001 vs. PKD mice. WT, wild‑type; PKD, polycystic kidney disease; Cur, curcumin; GB, ginkgolide B; p‑, phosphorylated; 
MAP3K7, mitogen‑activated protein kinase kinase kinase 7; MKK, mitogen‑activated protein kinase kinase.
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Our previous study reported that Cur inhibited cyst develop‑
ment in an MDCK cyst model and embryonic kidney cyst 
model by downregulating the activity of the ERK signaling 
pathway (15).

Ginkgo is one of the oldest plants on earth, and it is collo‑
quially referred to as a living fossil plant (44). GB is a type 
of terpene lactone compound extracted from GB (45). GB 
has several potential beneficial properties, including anti‑
platelet, anti‑inflammatory and neuroprotective effects (46). 
Our previous study revealed GB also inhibited cyst growth 
in  vivo and in  vitro  (17). The mechanism via which GB 
inhibits cyst formation is associated with the ERK signaling 
pathway (17).

To improve cyst inhibition, the combined effect of Cur 
and GB was assessed in the present study using a MDCK cyst 
model and Pkd1Flox/‑; Ksp‑Cre mice. The combined effect of 
Cur and GB on cyst inhibition was greater compared with 
that of either compound alone, both in vitro and in vivo. 
The MDCK cells exposed to Cur primarily became small 
thick‑walled cysts, whereas the MDCK cells treated with 
GB primarily became small thin‑walled cysts. Therefore, it 
was hypothesized that Cur combined with GB may be more 

effective compared with Cur or GB alone in inhibiting cyst 
formation. MDCK cells treated with Cur combined with GB 
often formed cell colonies, and the inhibition of MDCK cyst 
formation rate of Cur combined with GB was 90.46%. The 
combination of Cur and GB significantly decreased renal 
enlargement, but had no effect on the weight of the liver and 
spleen in the Pkd1Flox/‑; Ksp‑Cre mice. The maximum dose of 
Cur in the treatment of PKD mice in the present study was 
320 mg/kg, which is relatively large. The United States Food 
and Drug Administration has approved Cur as ‘Generally 
Recognized As Safe’  (47). One study  (41) revealed that 
rats treated with 3,500 mg/kg Cur per day for 90 days did 
not show any adverse effect. The human dose equivalent is 
26.02 mg/kg, which is determined by dividing the mouse 
dose (320 mg/kg) by the conversion factor for the species 
(that of mice is 12.3) according to previous study  (48). 
Though the doses used in vivo cannot be reached in humans 
via the daily diet, 500 mg doses of Cur twice daily have been 
used to treat rheumatoid arthritis with fewer adverse effects 
in clinical trial (49).

It was hypothesized that Cur and GB may regulate their 
effects on cyst formation by blocking multiple signaling 

Figure 7. Cur combined with GB regulates the PI3K/mTOR signaling pathway in Pkd1Flox/‑; Ksp‑Cre mice. (A) Representative western blotting of the 
PI3K/mTOR signaling proteins in Pkd1Flox/‑;Ksp‑Cre mice treated with 160 mg/kg Cur, 80 mg/kg GB and 160 mg/kg Cur combined with 80 mg/kg GB. 
(B) Semi‑quantitative analysis of PI3K/mTOR signaling protein expression levels in Pkd1Flox/‑;Ksp‑Cre mice. Relative level refers to the ratio of western blot‑
ting band density in different treatment groups compared with that in WT group. Data are presented as the mean ± SEM, n=6. **P<0.01 and ***P<0.001 vs. WT 
mice; ##P<0.01 and ###P<0.001 vs. PKD mice. WT, wild‑type; PKD, polycystic kidney disease; Cur, curcumin; GB, ginkgolide B; p‑, phosphorylated; 4E‑BP1, 
eukaryotic translation initiation factor 4E binding protein 1; p70S6K, p70S6 kinase.



LI et al:  COMBINATION OF CURCUMIN AND GINKGOLIDE B REDUCES CYST GROWTH10

pathways. The EGFR family includes EGFR, Cerb‑B2, human 
epidermal growth factor receptor 3 (HER3) and HER4 (50). 
EGFR also serves a key role in the development of PKD (51). 
Some studies  (52‑54) revealed that the overexpression of 
EGFR promoted the progression of PKD by increasing the 
proliferation of cyst epithelial cells. The inhibitors of EGFR 
and its downstream signaling pathway can block the exces‑
sive proliferation of cyst epithelial cells, including EGFR 
inhibitor (55), Raf inhibitor (56), MEK inhibitor (57), ERK 
inhibitor  (57) and mTOR inhibitor  (58). The present study 
found that the EGFR/ERK1/2 signaling pathway was activated 
in the kidneys of PKD mouse. Moreover, the current study 
examined the effect of Cur, GB and Cur combined with GB 
on the EGFR/ERK1/2 pathway by detecting the expression 
and/or phosphorylation levels of signaling proteins, including 
EGFR, Ras, Raf, MEK and ERK. The results demonstrated 
that the expression of B‑Raf was increased, while the levels 
of Raf‑1 were decreased in Pkd1Flox/‑; Ksp‑Cre mice. Thus, 
B‑Raf and Raf‑1 may be the turn‑on and turn‑off switches of 
EGFR/ERK1/2 pathway. Both Cur and GB downregulated the 
expression levels of EGFR and the downstream B‑Raf/ERK1/2 
signaling pathway, while GB upregulated the expression of 
Raf‑1.

The MAPK signaling pathways include not only ERK1/2, 
but also JNK and p38‑MAPK  (59). The JNK signaling 
pathway regulates cell proliferation and apoptosis (60). It 
has been reported that Pkd1 regulates the apoptosis of renal 
epithelial cells via JNK activation (61). In Pkd1Flox/‑; Ksp‑Cre 
mice, renal epithelial cells continuously proliferated due to 
loss of apoptosis regulated by Pkd1, and this proliferation 
induces ‘compensatory’ apoptosis mediated by JNK in an 
attempt to re‑establish normal renal structure (61). It was 
proposed that a cyst structure may be formed as a result of 
central area cell apoptosis mediated by JNK and surrounding 
area cell proliferation mediated by ERK, p38 and other 
signaling factors (Fig. 8). Cur and GB inhibit the overac‑
tive JNK cascade in Pkd1Flox/‑; Ksp‑Cre mice. Cur is more 
effective compared with GB in inhibiting the JNK signaling 
pathway, which leads to thick‑walled cysts after treatment 
with Cur and thin‑walled cysts after GB treatment. It has 
been reported that the activation of p38 MAPK is associ‑
ated with cyst cell proliferation (62). In the present study, 
the expression of p‑p38 was increased in the renal tissue of 
Pkd1Flox/‑; Ksp‑Cre mice. Therefore, GB may inhibit cyst cell 
proliferation by downregulating the p38 MAPK signaling 
pathway, including p‑MAP3K7, p‑MKK3 and p‑p38 expres‑
sion levels in the kidneys of Pkd1Flox/‑; Ksp‑Cre mice. 
Moreover, Cur failed to inhibit the MAP3K7/p38 signaling 
pathway.

mTOR serves an important role in the regulation of 
cyst cell proliferation in ADPKD (58). The present study 
also evaluated the effects of Cur and GB on the mTOR 
pathway. Unexpectedly, Cur inhibited the PI3K/mTOR 
pathway, including p‑PI3K, p‑AKT, p‑mTOR, p‑4E‑BP1 
(S65) and p‑p70S6k, in the kidneys of Pkd1Flox/‑;Ksp‑Cre 
mice. However, GB was not able to block the PI3K/mTOR 
pathway. The cyst surrounding cell proliferation may be 
regulated by EGFR/ERK1/2, p38 and mTOR  (6). Cur 
reduced the cyst diameter by blocking EGFR/ERK1/2 and 
PI3K/mTOR signaling pathways. Moreover, GB decreased 

cyst diameter by downregulating EGFR/ERK1/2 and p38 
signaling pathways.

However, there were several limitations in this study. 
First, it was not clear which signaling pathway had the 
largest effect on cyst formation, and the specific interac‑
tions between the identified signaling pathways were not 
studied. Considering that there are numerous types of 
combinations of Cur and GB, it is difficult to use specific 
inhibitors to prove their inhibition is indeed as a result of 
EGFR/ERK1/2, JNK and PI3K/mTOR signaling pathways. 
Our previous studies (15,17) and other studies (63,64) have 
confirmed that the mechanism of Cur or GB is associated 
with ERK1/2 and mTOR signaling pathways. Accordingly, 
the mechanism of Cur and GB is credible, but at present, it 
is complex to identify the most important relative signaling 
pathway. Thus, future studies will optimize the combination 
of Cur and GB, and use specific inhibitors to clarify the key 
mechanism of inhibition of cystogenesis. Secondly, average 
daily consumption of Cur and GB in humans may be insuf‑
ficient to exert notable biological effects (42,65). Considering 
the oral bioavailability of Cur in mice is very low, the present 
study administered Cur subcutaneously. Cur has no obvious 
adverse effect on human health (31), while GB only affects 
early‑stage embryonic development in mice (66). Therefore, 
a Cur and GB combination may have risks of various interac‑
tions and side‑effects, which should be further researched. 
Although clinical trials have demonstrated that low or 
similar doses of Cur or GB can be used to treat certain kidney 
diseases (67), there is no direct evidence showing that GB and 
Cur administration reached the kidney in the present study. 
GB is mainly excreted in urine (68), but Cur is metabolized 
in the liver and excreted in feces (69). Thus, the pharmacoki‑
netics of Cur and GB will further studied. Finally, the present 
study did not assess any specific markers of renal fibrosis 

Figure 8. Tentative hypothesis for the mechanisms via which Cur and GB 
slows cysts development. It was proposed that the cyst structure may be formed 
as a result of central area cell apoptosis mediated by JNK and surrounding 
area cell proliferation mediated by ERFR/ERK, p38 and PI3K/mTOR. Cur is 
more effective compared with GB in inhibiting the JNK signaling pathway, 
which leads to thick‑walled cysts after treatment with Cur and thin‑walled 
cysts after GB treatment. Moreover, Cur combined with GB induces cysts to 
form round shaped cell colonies. Cur, curcumin; GB, ginkgolide B.
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and cyst derivation. The rapid development of ADPKD 
is associated with progressive fibrosis  (14), and epithelial 
changes lead to fibrosis in ADPKD (70). ERK and JNK/p38 
MAPK, PI3K/Akt pathways are activated in fibrosis  (70). 
In the present study, it was not possible to confirm fibrosis 
development and determine which cysts were derived from 
which tubules, as more advanced technologies and methods 
are required to examine these factors, in which specialist 
staining of fibrosis and various tubules is performed to track 
these over longer periods of time.

In conclusion, the present study demonstrated that Cur 
combined with GB inhibited cystogenesis more effectively 
compared with either treatment alone, both in vitro and in vivo. 
The molecular mechanism via which Cur and GB reduced cyst 
formation was found to be mediated by regulation of different 
signaling pathways, including EGFR/ERK1/2, JNK, p38 and 
mTOR. The novel combination of Cur and GB may serve as a 
more effective treatment for ADPKD.
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