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Abstract. The adenosine monophosphate‑activated protein 
kinase (AMPK) is a promising target in drug development 
for various metabolic diseases. In the present study, the 
aim was to discover natural direct AMPK activators from 
natural sources, thus a virtual screening for direct AMPK 
activators was conducted by combining ligand‑based and 
structure‑based screening. A common‑feature pharmacophore 
model (HipHop1) was generated with two hydrogen bond 
acceptor lipid features and one hydrophobic region feature. 
A total of 1,235 natural products were screened using the 
HipHop1 hypothesis and CDOCKER protocol successively. 
According to the docking score, seven hit compounds were 
selected for AMPK activation assays. Ultimately, (‑)‑catechin 
(compound  522) and licochalcone A (compound 1148) 
exhibited the highest AMPK activation activity. These findings 
may contribute to the development of AMPK activators from 
medicinal plants.

Introduction

The adenosine monophosphate‑activated protein kinase 
(AMPK) is a highly conserved serine/threonine protein kinase 
present in almost all eukaryotic cells. It plays a key role in 
maintaining the balance of energy metabolism by maintaining 
glycogen reserves and efficient mitochondrial oxidative 

metabolism (1‑3). Because disorders of energy balance lead to 
various metabolic diseases in humans, such as type‑2 diabetes, 
inflammatory disorders, and cancer, there has been increasing 
interest in the development of pharmacological activators of 
AMPK (4‑7).

According to previous structural analyses, AMPK is a 
heterotrimeric complex containing α, β, and γ subunits (8‑11). 
The α subunit has two subtypes, α1 and α2, which are encoded 
by two separate genes and contain a catalytic serine/threonine 
protein kinase domain. The key phosphorylation site, Thr172, 
is located in this subunit. The β subunit serves as a bridge 
between the α and γ subunits and has two subtypes, β1 and β2, 
which are encoded by two separate genes. It is a regulatory 
unit, and the cleft between its central carbohydrate‑binding 
module and the kinase domain in the α subunit is a critical 
binding site for direct activation. The γ subunit is the allosteric 
activation site for AMP/ADP binding. It also plays a regulatory 
role based on AMP/ATP and ADP/ATP ratio, and has three 
subtypes, γ1, γ2 and γ3, which are encoded by three different 
genes.

The activation of AMPK involves multiple mechanisms. 
Firstly, AMPK is typically activated by the phosphorylation of 
Thr172 in the catalytic domain of the α subunit. This process 
is catalyzed by multiple protein kinases such as serine threo‑
nine kinase 11 calcium/calmodulin dependent protein kinase 
kinase 2, and MAP3K7 (12). Secondly, allosteric activation 
associated with increased AMP/ATP and ADP/ATP ratios 
is another mechanism for AMPK activation. AMP and its 
mimic ADP binding to the γ subunit of AMPK not only cause 
allosteric effects but also protect phosphorylated Thr172 from 
dephosphorylation (13). Therefore, any agent that can affect the 
binding of AMP/ADP to the γ subunit or inhibit mitochondrial 
ATP production would indirectly activate the phosphory‑
lated AMPK. Thirdly, some exogenous compounds, called 
direct AMPK modulators, can allosterically activate AMPK 
through an AMP‑independent pathway. The binding site of 
these activators is located in the cleft between the β subunit 
central carbohydrate‑binding module and the α subunit kinase 
domain (14,15).

Natural products are useful sources for drug development. 
Indeed, natural products coming from various medicinal 
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plants can provide abundant drug screening entities with 
high‑molecular diversity (16). Our previous studies examined 
the separation and identification of natural products from 
traditional Chinese herbs  (17‑20). Based on our previous 
studies, a natural product library containing 1,235 compounds 
derived from traditional Chinese herbs with anti‑metabolic 
effect was developed. Several of these compounds have been 
shown to promote AMPK activation, as curcumin, resveratrol, 
berberine, quercetin, and arctigenin  (21‑26). Moreover, 
whereas some of these AMPK activators can directly activate 
AMPK, others can also inhibit the respiratory chain and 
indirectly activate AMPK. Therefore, identifying the specific 
mechanisms of these natural activators may be beneficial for 
further drug development. The aim of the present study was 
to identify direct AMPK activators from our natural product 
library.

Materials and methods

Materials. Liquiritin, ononin, 5,7‑dihydroxy‑3',4',6‑trime‑
t hoxy f lavone,  leonu r i ne,  (‑) ‑ ca t ech i n,  lu t eol i n, 
licochalcone‑A were obtained from the National Institute 
for Food and Drug Control (Beijing, China). The HepG2 
liver cancer cell line was obtained from the Cell Resource 
Center of Institute of Basic Medical Sciences, Chinese 
Academy of Medical Sciences & Peking Union Medical 
College. FBS was purchased from Biological Industries. 
Modified Eagle's medium (MEM), non‑essential amino 
acids (NEAA), and penicillin/streptomycin were obtained 
from Thermo Fisher Scientific, Inc. The triglyceride (TG) 
assay kit (cat.  no.  0220/0221/0222) was purchased from 
BioSino Bio‑technology and Science Inc. Sodium oleate 
and orlistat were obtained from Sigma‑Aldrich (Merck 
KGaA). Rabbit anti‑AMPK (cat. no. 2532) and anti‑β‑actin 
(cat.  no.  4970) antibodies were from Cell Signaling 
Technology, Inc. Rabbit anti‑phosphorylated (p)‑AMPK 
antibody (cat. no. ab133448) and HRP‑conjugated secondary 
antibodies (cat. nos. ab6721 and ab6728) were from Abcam.

Data acquisition for protein and small molecules. 
The 3D st r uctu re  (PDB no.,  4CF E) of  A MPK 
heterotrimeric complex  (14) with three types of ligands 
([staurosporine, 5‑[[6‑chloranyl‑5‑(1‑methylindol‑5‑yl)-
1H‑benzimidazol‑2‑yl]oxy]‑2‑methyl‑benzoic acid, and 
AMP) was downloaded from the Research Collaboratory for 
Structural Bioinformatics Protein Data Bank (http://www.
rcsb.org/pdb/home). The protein structure was analyzed 
using Chimera 1.8.1 software (www.cgl.ucsf.edu/chimera/) 
and Discovery Studio 4.5 software (www.discoverystudio.
net). The initial activator benzimidazole derivative 991 was 
extracted as a reference ligand. All of the co‑ligands and 
water molecules were removed from the co‑crystallized 
complex. Addition of missing hydrogen atoms and 
elimination of unnecessary polymers were performed using 
the macromolecule preparation protocol, in the Discovery 
Studio software. Protein structure was further analyzed using 
a clean protein module to correct incomplete amino acid 
residues and alternate conformations. Small molecules were 
constructed using ChemBiodraw ultra 11.0 (https://www.
chemdraw.com.cn/) and employed a Chemistry at Harvard 

Macromolecular Mechanics (CHARMM) force field in 
Discovery Studio, then minimized under a Dreiding‑like 
force field and CHARMM force field successively.

The compounds selected for virtual screening were 
separated and purified from traditional Chinese herbs that 
have anti‑metabolic effects, according to our previous study. 
All the structures were determined by nuclear magnetic 
resonance spectrometry, infrared spectrum, and mass 
spectrometry (17‑20).

Molecular docking. A molecular docking analysis was 
conducted using the CDOCKER module in Discovery 
Studio 4.5. CDOCKER is a structure‑based docking 
method by grid calculation under the CHARMM force 
field  (27). It is a typical semi‑flexible docking protocol. 
The interactions between different conformations of 
ligands and macromolecules were collected and analyzed 
using a scoring algorithm. According to pre‑experimental 
results, docking parameters were set for optimization. The 
binding site sphere was defined around the activated ligand 
991 with a radius of 9.0 Å. Pose cluster radius was set as 
0.1 Å, the number of allowed random conformations was 
set to 10, the number of allowed orientations was set to 10, 
and electrostatic interactions were included. The rest of the 
parameters were set as default. The top 10 conformations 
were saved for each ligand based on scoring function value 
(‑CDOCKER interaction energy). To estimate whether the 
binding site model was sufficient for the AMPK docking 
system, a re‑docking process was performed by evaluating 
the root mean squared error (RMSD) value between the 
initial and virtual docking conformations.

Pharmacophore model generation. The pharmacophore‑based 
virtual screening is a ligand‑based virtual screening generated 
from a set of active small molecules. The Common Feature 
Pharmacophore Generation module (HipHop) in Discovery 
Studio is an appropriate application for pharmacophore 
model generation, especially for those ligands that lack 
of uniform standard activity data (28). Based on published 
reports (Table SI; Fig. S1), 28 compounds with AMPK agonist 
activity were collected and divided into two sets, of which 
18 compounds were in the training set, and the remaining 
were in the text set. The Feature Mapping function was 
used to identify key chemical features of the training set 
for predicting the considered features in the pharmacophore 
generation process. The principal value was set as 2, and 
MaxOmitFeat value was set as 0 for compounds 1‑4. The 
principal value and MaxOmitFeat value was set as 1 for other 
training set compounds. Minimum Interfeature Distance was 
set to 2.97 Å, Minimum Features was set to 3, Feature Misses 
and Complete Misses was set to 0, Conformation Generation 
was set to ‘none’. The rest of the parameters were set as 
default. The text set was prepared for the validation of the 
pharmacophore model.

Virtual screening based on pharmacophore. All the 
compounds that were optimized under the CHARMM force 
field were used as a virtual screening library in the Build 3D 
database module in Discovery Studio software. The screening 
based on pharmacophore was conducted with the Search 3D 
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database function in Discovery Studio software. The search 
method was set as ‘best’. The rest of the parameters were set 
as default. Hit compounds were used in subsequent molecular 
docking screening.

Cell culture. HepG2 cells were maintained in MEM supple‑
mented with 1% NEAA, 10% FBS and 1% P/S, and kept 
in a humidified atmosphere of 5% CO2 at 37˚C. Cells were 
grown to 70‑80% confluence, then seeded in multi‑well plates 
containing serum‑free medium and incubated for 24 h before 
treatment at 37˚C with 5% CO2.

TG accumulation inhibitory effects assay. To induce an 
intracellular lipid accumulation model, sodium oleate was 
used as previously described (29). Briefly, after seeding in 
48‑well plates in FBS‑free medium for 24 h, HepG2 cells were 
exposed to 200 µM sodium oleate in the presence or absence 
of different compounds (3 or 30 µM), or orlistat (5 µM) as 
a positive control, for another 48 h. The intracellular TG 
content was finally examined using a commercial assay kit at 
a wavelength of 492 nm after cells were washed with PBS. 
Protein concentrations were determined using a BCA protein 
assay kit at a wavelength of 562 nm. TG concentrations were 
normalized to the total protein content.

Western blot analysis. Protein isolation and western blotting 
were performed as described previously (29). Cells were homog‑
enized in ice‑cold RIPA lysis buffer for 30 min on ice to yield 
protein samples. The insoluble protein solution was removed 
by centrifugation at 10,000 x g, 4˚C for 10 min. The superna‑
tant was collected from the lysates, and protein concentrations 
were determined using the BCA protein assay kit following the 
manufacturer's instructions. Equal amounts of proteins (40 µg) 
were resolved by SDS‑PAGE on 8% gels and transferred onto 
PVDF membranes. The membranes were blocked with 5% 
non‑fat dry milk in TBST buffer for 1.5 h at room temperature. 
The membranes were incubated overnight at 4˚C with primary 
antibodies (1:500). The blots were rinsed five times with TBST 
buffer for 6 min each. The washed blots were incubated with a 
HRP‑conjugated secondary antibody (1:5,000) for 1 h at room 
temperature, then washed five times with TBST buffer. The 

Figure 1. Pharmacophore model for AMPK activation activity. (A) HipHop1 pharmacophore hypotheses for AMPK activation activity. (B) Superposition of 
HipHop1 and 991. (C) Superposition of HipHop1 and training set. (D) Ligand profiler result.

Figure 2. Pharmacophore model with hit compounds.
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Table I. Top list of hit compounds (score value >50 kcal/mol).

			   PubChem
Compound no.	C ompound name	 Scoreb, kcal/mol	CID /CAS no.c

Referencea	 991	 64.08	 45256693
152	A cotarin D	 64.2332	 2306174‑08‑1
803	 (E,E)‑terrestribisamide	 63.872	 5321825
804	N ‑p‑coumaroyl‑N'‑feruloylputrescine	 60.2194	 44241259
656	 6'‑benzoate phloroglucinol 1‑β‑D‑glucopyranoside	 59.2064	 2407648‑32‑0
1211	D emethoxycurcumin	 58.5833	 5469424
1145	L iquiritin	 57.6091	 503737
1209	 5‑hydroxy‑7‑(4‑hydroxy‑3‑methoxyphenyl)‑1‑phenyl‑3‑heptanone	 57.2732	 5318228
545	O nonin	 56.276	 442813
162	 7S,8R‑erythro‑4,7,9,9'‑tetrahydroxy‑3,3'‑dimethoxy‑8‑O‑4'‑neolignan	 56.1007	 13893597
1148	L icochalcone‑A	 55.7685	 5318998
374	E pimedokoreanin D	 55.6196	 5315125
161	 3‑[2‑(3,4‑dimethoxyphenyl)‑3‑(hydroxymethyl)‑7‑	 55.1088	 4639677
	 methoxy‑2,3‑dihydrobenzofuran‑5‑yl]‑1‑propanol
283	 (‑)‑secoisolariciresinol	 55.0016	 11552274
578	 (7S,8R)‑3,3',5‑trimethoxy‑4',7‑epoxy‑8,5'‑neolignan‑4,9,9'‑triol	 54.7096	 56838440
522	 (‑)‑Catechin	 54.2336	 73160
540	 Malaferin C	 54.1877	 71596193
1073	R osmarinic acid	 54.0327	 5281792
375	 2‑(3,4‑dihydroxy‑5‑(3‑methylbut‑2‑enyl)phenyl)‑5,7‑	 53.9136	 131676094
	 dihydroxy‑8‑(2‑hydroxy‑3‑methylbut‑3‑enyl)chromen‑4‑one
567	 2‑(4‑hydroxy‑3,5‑dimethoxyphenyl)ethyl‑β‑D‑glucopyranoside	 53.9011	 76308955
615	 Methyl 5‑O‑caffeoylquinic acid methyl ester	 53.8888	 6476139
441	 5,7‑dihydroxy‑3',4',6‑trimethoxyflavone	 53.8865	 5273755
1214	A rctigenin	 53.7069	 64981
1011	 p‑hydroxybenzoyl‑β‑D‑glucopyranoside	 53.6545	 14132342
1195	C urcumin	 53.6135	 969516
395	 3'‑(2‑hydroxy‑3‑methyl‑3‑butenyl)‑4',3,5,7‑tetrahydroxy‑	 53.1348	 1812887‑75‑4
	 5'‑prenylflavone
1007	 3,4‑dimethoxycinnamyl‑β‑D‑glucopyranoside	 52.7184	 21581586
287	 4‑O‑caffeoylquinic acid methyl ester	 52.6425	 71720840
396	 3'‑Prenylnaringenin	 52.5223	 5315396
1012	 4‑methoxybenzyl‑β‑D‑glucopyranoside	 52.4808	 10685601
566	 3‑methoxyphenethyl‑alcohol‑4‑O‑β‑D‑glucopyranoside	 52.2909	 23815379
284	 (‑)‑arctigenin	 52.1262	 119205
867	 Salidreoside	 52.0402	 159278
1147	 Glabridin	 52.023	 124052
376	 2‑(3,4‑dihydroxy‑5‑(3‑methylbut‑2‑en‑1‑yl)phenyl)‑5‑hydroxy‑8‑	 51.9827	 2196202‑19‑2
	 (2‑hydroxypropan‑2‑yl)‑8,9‑dihydro‑4H‑furo(2,3‑h)chromen‑4‑one		
553	 (‑)‑Epicatechin	 51.8918	 72276
143	L eonurine	 51.8901	 161464
1196	D esmethoxy curcumin	 51.6991	 5469424
982	 (2R,3R)‑3,5,6,7,4'‑Pentahydroxyflavanonol	 51.6525	 101353295
160	D ihydrodehydrodiconiferyl alcohol	 51.4808	 4365980
1205	 (R)‑5‑hydroxy‑1,7‑diphenyl‑3‑heptanone	 51.4631	 46213118
1140	 Hesperidin	 51.3406	 72281
137	 Phenethyl‑β‑D‑glucopyranoside	 51.1543	 11289099
669	 5,6,7,3',4'‑pentamethoxyflavone	 51.1409	 145659
560	I sotachioside	 51.1143	 15098566
166	N ‑trans ferulic acid casein amide	 51.0104	 5280537
19	L uteolin	 51.0005	 5280445
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protein bands were visualized with an enhanced chemilumines‑
cence detection kit (EMD Millipore). The optical density of each 

band was quantified using ImageJ software v1.53c (National 
Institutes of Health) and expressed as arbitrary units.

Table I. Continued.

			   PubChem
Compound no.	C ompound name	 Scoreb, kcal/mol	CID /CAS no.c

19	L uteolin	 51.0005	 5280445
752	 2‑methyl‑3‑O‑β‑D‑glucopyranosyl‑pyran‑4‑one	 50.6335	 5316639
1197	 7‑(4'‑hydroxy‑3'‑methoxyphenyl)‑1‑phenyl‑4E‑heptene‑3‑one	 50.5732	 5318278
371	 3,6,7‑trimethoxy‑9,10‑dihydrophenanthrene‑2,5‑diol	 50.5535	 14135385
552	 (+)‑Taxifolin	 50.2719	 439533
900	 3‑O‑trans‑coumaroylquinic acid	 50.2104	 11078262
665	 2S‑eriodictyol	 50.1198	 440735
434	A rtemetin	 50.0462	 5320351
382	 4,​5‑​Phenanthrenediol, 9,​10‑​dihydro‑​2,​3,​6‑​trimethoxy‑9,10‑	 50.0364	 25141334
	D ihydrophenanthrene			 

aReference ligand in 4CFE; bCDOCKER interaction energy, cFor compounds without a PubChem CID, the CAS no. is provided.

Figure 3. Docking results of 4CFE. (A) Comparison of initial conformation (purple) and virtual docking conformation (gray) of ligand 991 (reference ligand). 
(B) Overlap of hit compounds.

Figure 4. 2D interaction diagram of the top two hits. (A) Acotarin D (compound 152). and (B) (E,E)‑terrestribisamide (compound 803).
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Statistical analysis. Statistical analysis was performed using 
one‑way ANOVA followed by Tukey's post hoc test for multiple 
comparisons. All data are expressed as the mean ± SEM, n=5. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results and Discussion

Pharmacophore model generation and validation. A total 
of ten pharmacophore models were generated based on the 
spatial arrangement of key chemical features from the training 
set (details in supporting information Table SII). Each of these 
models contained at least three features.

The top ranked model (HipHop1) was chosen as the best 
hypothesis containing one hydrophobic region feature and 
two hydrogen bond acceptor lipid (Ali1 and Ali2) features 
(Fig. 1A). The hydrophobic region feature was farther from the 
other two hydrogen bond acceptor lipid features. The pharma‑
cophore hypotheses matched well with those potent ligands, 
especially with initial ligand 991. The pharmacophore model 
was also validated using the Ligand profiler method from the 
Discovery Studio software.

Virtual screening based on pharmacophore. The natural 
product library, consisting of 1,235 natural compounds, 
was constructed using Build 3D database modular. The 
screening based on pharmacophore was conducted using the 
Search 3D database. All the hit compounds were aligned 
in the pharmacophore model in Fig. 2. Compared with the 
binding site structure, the distance between the hydrophobic 
region feature and the other two hydrogen bond acceptor 
lipid features facilitated hydrogen bond interactions between 
ligands and amino acid residues B:ASN111, A:LYS29, 
B:THR106, and B:phosphoserine (SER)108 in the AMPK 
activation site and was also beneficial for hydrophobic 
interactions between ligands and the hydrophobic region of 
the receptor.

Molecular docking. Benzimidazole derivative 991 is a 
well‑characterized direct AMPK activator binding in the 
specific binding site of AMPK. The 3D crystal structure of 
AMPK‑ligand (991) complex draws a distinct image of this 
specific binding site, and paves a convenient way for screening 
of direct AMPK activators (30,31). To verify the applicability 
of the binding site model for AMPK docking screening, 
a redocking process was utilized, starting from a random 

conformation of the initial ligand 991. The RMSD value 
between the initial conformation and virtual docking confor‑
mation was 1.4035 Å (Fig. 3A). This result illustrated that 
this binding site model could simulate the real ligand binding 
model (real crystal structure of Benzimidazole derivative 991 
binding to the active site of AMPK) and could be appropriate 
for further docking studies.

The hit compounds from the pharmacophore screening 
were subjected to the CDOCKER docking process, resulting 
in 284 hit compounds for in vitro activity studies. The hit 
compounds were aligned in Fig. 3B, and all hit compounds from 
the docking study displayed similar spatial conformations. 
The top 54 hit compounds (score >50 kcal/mol) are listed in 
Table I (details of these compounds Table SIII and Fig. S2).

The 2D interaction diagram of the top two hits, acotarin D 
and (E,E)‑terrestribisamide, indicates that the residues 
A:Gly19, A:Leu18, A:ILE46, A:ASN48, B:SEP108, A:Gly25, 
and A:Lys29 were involved in the formation of hydrogen 
bonds; the residues A:Lys31, B:VAL113 and A:VAL11 were 
involved in the formation of hydrophobic interactions (Fig. 4).

TG accumulation inhibitory effects of selected compounds. 
AMPK is a key sensor that maintains the balance of energy 
metabolism by regulating glucose and lipid metabolism. 
Activation of AMPK leads to increases in fatty acid oxidation 
though multiple pathways such as activation of malonyl CoA 
decarboxylase and reduction of the inhibitory effect of malonyl 
CoA to carnitine palmitoyl transterase‑1  (1,2). Therefore, 
inhibition of TG accumulation is a preliminary indicator for 
AMPK activation (29).

TG accumulation inhibitory assays were carried out for 
preliminary activity screening in sodium oleate‑treated HepG2 
cells. Considering docking score and structural diversity, seven 
compounds (Table II) with a score >50 kcal/mol were selected 
and evaluated for their inhibitory effects on TG accumulation.

Following sodium oleate challenge, the intracellular TG 
levels increased almost four‑fold in the model group (Fig. 5), 
compared with the control. However, this increase in TG 
levels induced by sodium oleate was significantly reduced 
by ~13.8% following orlistat treatment. Moreover, 30  µM 
(‑)‑catechin (compound 522), luteolin (compound 19), and 
licochalcone A (compound 1148) also significantly reduced 
intracellular TG levels by 13.4, 9.7 and 7.7%, respectively. In 
addition, (‑)‑catechin also exhibited a moderate inhibitory 
effect on TG accumulation at a concentration of 3 µM. The 
other compounds did not result in any detectable effects.

AMPK phosphorylation effect of selected compounds in 
sodium oleate‑induced HepG2 cells. The activation effects 
of (‑)‑catechin (compound 522), luteolin (compound 19), and 
licochalcone A (compound 1148) on AMPK were further 
assessed. Immunoblotting analysis indicated that AMPK 
phosphorylation levels significantly decreased after 200 µM 
sodium oleate challenge in the model group (Fig. 6), compared 
with the control. Among the tested compounds, compound 
522 [(‑)‑catechin] and 1148 (licochalcone A) significantly 
increased AMPK phosphorylation levels at a concentration 
of 30 µM, as evidenced by higher p‑AMPK/t‑AMPK ratios. 
However, other selected compounds had no apparent effect on 
AMPK phosphorylation.

Table II. Selected compounds list for activity verification.

Compound no.	C ompound name

1145	L iquiritin
545	O nonin
441	 5,7‑dihydroxy‑3',4',6‑trimethoxyflavone
143	L eonurine
522	 (‑)‑Catechin
19	L uteolin
1148	L icochalcone A
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Comparing the results of the TG accumulation and the 
AMPK phosphorylation assays, the activity trends of these two 
tests were consistent, and compound 522 [(‑)‑catechin] and 1148 
(licochalcone A) performed well in both assays. Our findings 
agreed with the results of previous studies indicating that both 
compounds 522 [(‑)‑catechin] and 1148 (licochalcone A) are 
potential AMPK activators (32,33). According to the docking 
results, these two natural products may directly modulate 
AMPK activity in an AMP‑independent way by binding to the 
specific binding site.

Conclusions. The present study followed on our research 
efforts on the separation and purification of natural compounds 
from traditional Chinese herbs. In this study, virtual screening 
for direct natural AMPK activators was conducted using a 
combination of ligand‑ and structure‑based screening. The 
hit compounds displayed similar spatial conformations and 
bound to the AMPK‑specific binding site through hydrogen 
bonds and hydrophobic interactions. A total of seven hit 
compounds were chosen for subsequent activity validation. 
(‑)‑Catechin (compound 522) and licochalcone A (compound 
1148) performed well in two activity tests and could be 
valuable for further pharmacological evaluation. The present 

findings suggest that these two natural products may directly 
modulate AMPK activity in an AMP‑independent manner, 
through the specific binding site of AMPK. This study may 
provide insight into the development of AMPK activators from 
natural resources and their modulatory mechanisms.
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