
MOLECULAR MEDICINE REPORTS  23:  225,  2021

Abstract. Ischemia‑reperfusion injury (IRI), also called reoxy‑
genation injury, is the outcome of inflammatory processes 

and oxidative damage through the induction of oxidative 
stress. In the clinical setting, IRI contributes to severe hepatic 
injury, including liver cell death by apoptosis and ferroptosis. 
Ferroptosis is a novel type of cell death in hepatic IRI that 
involves small molecules that inhibit glutathione biosynthesis or 
glutathione peroxidase 4 (GPX4), which is a glutathione‑depen‑
dent antioxidant enzyme, causing mitochondrial damage. 
Currently, ferroptosis has been systematically described in 
neurological settings, kidney diseases and different types of 
cancer, while few studies have analysed the presence of ferrop‑
tosis and the regulatory mechanism of ferroptosis in hepatic 
IRI. Exploring the exact role played by ferroptosis in the liver 
following hepatic IRI in accordance with existing evidence and 
mechanisms could guide potential therapeutic interventions 
and provide a novel research avenue.
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1. Introduction

Ferroptosis has emerged as a novel type of regulated cell 
death  (RCD) in various diseases, particularly in hepatic or 
renal ischemia‑reperfusion injury  (IRI). The occurrence of 
ferroptosis is based on iron overload, which generates reactive 
oxygen species (ROS) and lipid peroxides, primarily phosphati‑
dylethanolamine‑OOH (PE‑OOH) in vivo (1‑3). Ferroptosis was 
identified in 2012 and was originally reported to be associated 
with mutant RAS cancer cells 1 (4,5). Although the mechanism 
of ferroptosis has a relatively specific description, primarily 
including iron‑dependent accumulation of lipid ROS and the 
consumption of plasma membrane polyunsaturated fatty acids 
(PUFAs) (5), the role of ferroptosis in cancer, heart, liver or 
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kidney injury, and neurotoxicity remains unclear (6). Severe 
hepatic IRI may lead to serious impairment of liver function or 
even acute liver failure (7,8). Therefore, it is critical to prevent 
hepatic IRI, especially in liver transplantation, due to the high 
risk of urgent re‑transplantation (9). Distinct from other types of 
RCD (apoptosis, necroptosis and autophagy), ferroptosis is char‑
acterized by resulting oxidative damage in the mitochondria, 
which exerts harmful effects on hepatic ischemia‑reperfu‑
sion (6,8). Furthermore, these injuries can be prevented by the 
ferroptosis‑specific inhibitor ferrostatin‑1 (Fer‑1) and by iron 
chelators (6,8). Therefore, ferroptosis is a potential target for 
preventing and treating hepatic IRI. Thus, exploration of the 
exact mechanisms of ferroptosis in liver cell death is required.

The present review firstly introduces the types of hepatic 
IRI and subsequently describes the molecular mechanisms of 
liver IRI. Thirdly, the general mechanisms of ferroptosis and 
the role of ferroptosis in hepatic IRI are discussed; primarily 
including the inflammatory response and oxidative stress. 
In the final part of this review, several therapeutic strategies 
associated with ferroptosis are described in detail.

2. Hepatic IRI

Types of liver IRI. Hepatic IRI is still a long‑standing problem 
in clinical conditions that occurs in hepatic resection surgery, 
liver transplantation and during states of shock. Two main 
types of hepatic IRI exist, including warm and cold IRI. Warm 
IRI, initiated by hepatocellular injury, occurs ischemia at 
routine temperature and is generally present in liver transplan‑
tation surgery or different forms of trauma or shock, and might 
lead to liver failure, or even bring the outcome of multiorgan 
failure (10). Cold IRI starts at the injury of endothelial cells 
in hepatic sinusoidal and microcirculation disorders with the 
temperature of liver decreasing rapidly and uniformly, which 
develops during in vitro preservation and is usually accom‑
panied by warm IRI in the process of liver transplantation 
surgery (10,11). Although the two IRI types might possess 
distinct initial cellular targets, they do share similar patho‑
physiological processes, including local inflammatory innate 
immune activation (10,12,13), and expression of fibronectin 
(FN) in endothelial cells is a prominent feature of the liver 
injury response (14). At present, there is no evidence that hot 
or cold IRI causes different types of cell death.

In addition, IRI can be divided into two phases, ischemia 
and reperfusion, which are primarily the result of oxidative 
stress accompanied by nutritional deficiency, loss of blood 
flow, inflammation and other conditions (15). Such trauma 
primarily causes autophagy in liver cells, including apoptosis 
and necrosis (16). There is evidence that various markers of 
autophagy are elevated throughout the entire IRI process (17). 
Among them, iron‑mediated death is primarily believed to be 
associated with oxidative stress from ROS, especially during 
blood reperfusion (18). 

Ferroptosis is a type of iron‑dependent oxidative cell death 
characterized by accumulation of intracellular ROS, which 
will be discussed in more detail. Furthermore, iron‑mediated 
cell death is an important form of autophagy (19,20).

Molecular mechanisms of liver IRI. ROS (such as OH‑ and 
HOO‑), chemically reactive species containing oxygen, are an 

important cause of initial liver injury (21) and are originally 
produced in Kupffer cells, which kill hepatocytes through lipid 
peroxidation, DNA oxidation and enzymatic degeneration (22). 
The pathway regulated by ROS that promotes apoptosis 
contains different molecules and transporters. Initially, ROS 
activates apoptosis signal‑regulating kinase  1 (ASRK1) 
through TNF‑receptor‑associated factor 2 (TRAF‑2) that leads 
to c‑Jun‑N‑terminal kinase (JNK), which directly regulates 
the activities of pro‑ and anti‑apoptotic mitochondrial proteins 
through different phosphorylation events or via upregulating 
pro‑apoptotic genes through the trans‑activation of specific 
transcription factors (23). In addition, tumour necrosis factor‑α 
(TNF‑α), subsequently released by ROS, can increase the 
damage after IRI by promoting extra release of inflammatory 
cytokines and creating positive feedback circuits, which leads 
to organ damage. Furthermore, TNF‑α regulates the produc‑
tion of gangliochemical genes and adhesion molecules that are 
absorbed into the liver, and these neutrophils are eventually 
responsible for the subsequent stage of injury. In addition to 
TFN‑α, other proinflammatory cytokines, such as IL‑1β (24), 
IL‑12 (25), IL‑18 and IL‑6 (10), are critical for the hepatic 
inflammatory response. Furthermore, IL‑12 is indispensable 
for fully producing TNF‑α in the liver and the ensuing inflam‑
matory response, which was confirmed using neutralizing 
antibodies or IL‑12 knockout mice to eliminate IL‑12 (10). 
These injuries eventually lead to biliary microcirculatory 
disorders and apoptosis of biliary epithelial cells.

Relevant proinflammatory signalling pathways include 
nuclear factor κB (NF‑κB), which is activated by proinflam‑
matory cytokines, such as IL‑1 and TNF‑α.

Of note, ROS can also stimulate NF‑κB to promote hepatic 
IRI  (26,27). Hence, antioxidants decrease the expression 
of pro‑inflammatory genes by inhibiting the activation of 
NF‑κB (28‑31). On the other hand, superoxide formation in 
endothelial cells (32) and hepatocytes (33) was recently shown 
to originate from a phagocyte‑type nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase. Therefore, inhib‑
iting Rac1, a member of the Rho family of small GTPases 
that can regulate this oxidase, attenuates intracellular oxidant 
stress and protects against hepatocyte injury during the early 
reperfusion phase (33).

3. Brief overview of ferroptosis

Ferroptosis is a form of RCD that is dependent on iron and 
ROS, and is initiated by the failure of glutathione biosyn‑
thesis or the inactivation of glutathione peroxidase 4 (GPX4), 
an antioxidant enzyme that depends on glutathione, thus 
resulting in lipid peroxidation, the consumption of PUFAs, 
and eventual cell death (4). Ferroptosis has distinct features at 
the morphological, biochemical, and genetic level compared 
with other forms of RCD, including necroptosis, apoptosis 
and autophagy. Small molecules, such as erastin, ras‑selective 
lethal small molecule (RSL3), high concentrations of gluta‑
mate, and sulfasalazine are known to reduce ferroptosis, while 
α‑tocopherol, ferrostatin‑1, liproxstatin‑1, glutathione, zileuton 
and iron chelators (such as deferasirox, deferiprone, chelation 
with deferoxamine and 1,10‑phenanthroline) are inhibitors 
involved in relevant mechanisms of ferroptosis that contribute 
to hepatic IRI (6,34,35). However, how ferroptosis plays an 
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essential role in cell injury is not well understood. Moreover, 
the detailed signalling pathway that lie between IRI induction 
and ferroptosis activation remains unknown. Validation is still 
required to understand all the molecules on this pathway, and 
the known details are summarized, which is still the inevitable 
limitation of this review.

4. The ferroptotic signalling pathway

The activation of mitogen‑activated protein kinase (MAPK), 
iron metabolism and lipid peroxidation signalling pathways 
are currently known to contribute to ferroptotic cell death (36). 
However, it has been reported that the MAPK pathway was 
associated to to cancer cell death, which inhibits ferroptosis 
induced by erastin by blocking the Ras/Raf/MEK/ERK 
pathway in Ras‑mutated cancer cells  (8). Hence, iron and 
ROS signalling pathways are primarily described in the 
present review.

Iron and ferroptosis. The principal role of iron is to transport 
oxygen in the haematological system. Iron possesses two 
forms in cells: Fe2+ and Fe3+. The Fe2+ absorbed into the blood 
is oxidized to Fe3+ by ceruloplasmin, and Fe3+ is transported 
to the tissues after binding with transferrin or is absorbed 
into the cell through the membrane transferrin receptor 
(TfR), then localised to the internal body, and Fe3+ is reduced 
to Fe2+ by the ferrireductase activity of six‑transmembrane 
epithelial antigen of prostate 3 (STEAP3). Finally, release of 
Fe2+ from the endosome to a labile iron pool is mediated by 
divalent metal transporter 1 (DMT1) in the cytoplasm. Excess 
iron is kept in the monocyte‑macrophage system of the liver, 
spleen, bone marrow and other organs in the form of ferritin 
and hemosiderin. Membrane protein ferroportin, an iron 
efflux pump that oxidizes Fe2+ into Fe3+, transmits signals to 
mediate iron output (Fig. 1). Fe2+ has the feature of a cata‑
lyst, which can transfer electrons and participate in various 
oxidation‑reduction reactions, while Fe3+ primarily exists in 
the process of transportation and storage. 

However, iron overload is recognized as poisonous to cells, 
since the transferred electrons are given to O2 and H2O2 to 
produce superoxide anions and hydroxyl radicals, which 
exert harmful influences on biological macromolecules, such 
as nucleic acids, proteins and lipids (37). Moreover, Fe2+ can 
oxidize organics combined with H2O2 to generate ROS by 
the Fenton reaction (3,37). As Wang et al (38) stated, hepa‑
tocytes and macrophages are sensitive to extracellular iron 
levels, and a high-iron diet in mice could trigger ferroptotic 
cell death. Additionally, shock protein family B member 1 
(HSPB1) inhibits ferroptosis through decreasing intracellular 
iron levels and upholding glutathione (GSH) in its reduced 
form. Furthermore, TfR1‑mediated iron uptake is inhibited 
by HSPB1, which blocks the endocytosis and recycling of 
transferrin to decrease intracellular iron levels (39‑41). These 
studies suggest that iron plays a critical role during ferrop‑
tosis, although the role of iron in the signalling pathway of 
ferroptosis remains poorly understood. To date, in addition 
to the Fenton reaction by Fe2+, there is an additional source 
involved in the iron‑dependent accumulation of lipid ROS in 
ferroptosis: Lipid peroxidation controlled by iron‑containing 
lipoxygenases (LOXs) (Fig. 1) (42).

LOXs are a family of non‑haem, iron‑containing enzymes, 
and most of them catalyse the deoxygenation of PUFAs, such as 
arachidonic acid (AA) and linolenic acid, in lipids containing 
a cis, cis‑1,4‑pentadiene into cell signalling agents (43‑45). As 
one type of PUFA, AA is converted to adrenoyl (AdA) under the 
action of elongase (2), and then on the endoplasmic reticulum 
or mitochondrial outer membrane, AA and AdA are catalysed 
by acyl‑CoA synthetase long‑chain family  4 (ACSL4) to 
form AdA‑CoA/AA‑CoA, which is next esterified to AA‑PE 
under the action of lysophosphatidylcholine acyltransferase 3 
(LPCAT3), finally forming AA‑OOH‑PE, a cell death 
signal of ferroptosis, under the oxidation of iron‑containing 
LOXs (46,47). However, the role of iron in regulating LOXs 
relies on phosphorylase kinase G2 (PHKG2), which activates 
glycogen phosphorylase (GP) to release glucose‑1‑phosphate 
from glycogen, promoting the phosphorylation of LOXs to 
synthesise lipid peroxides. Furthermore, glycogen primarily 
exists in liver and muscle tissues; therefore, glycogen break‑
down might be an important factor in ferroptosis in liver or 
muscle injury, although no current studies have confirmed 
this. In conclusion, iron‑containing LOXs are required for 
ferroptosis in the reaction of lipid peroxidation, and inhibi‑
tion of ACSL4 and LPCAT3 may decrease oxidation of some 
sensitive fatty acids in the membrane. However, more studies 
are required to further explain the detailed role of iron in 
mediating LOX activity.

ROS and ferroptosis. ROS are primarily located in the mito‑
chondria during electron transport (48), and iron‑dependent 
lipid ROS produced by the two aforementioned sources mediate 
lipid peroxidation that further promotes the accumulation of 
lipid peroxides (Fig. 1) (6). Furthermore, peroxides lead to 
fundamental changes in lipids, especially phospholipids, which 
are essential for maintaining the integrity of the mitochondrial 
membrane architecture. In addition, peroxides can affect 
the fluidity of lipids, thus blocking receptor clustering and 
propagating inflammatory signalling (49). The peroxidation 
of phospholipids also inactivates membrane‑bound proteins, 
ultimately causing destruction of the membrane (50). In addi‑
tion, the occurrence of ROS accompanies single electron 
leakage of oxidative phosphorylation in the mitochondria, thus 
decreasing the yield of ATP and inhibiting cell survival (49). 
Thus, increased mitochondrial ROS can destroy the integrity 
of the electron transport chain, causing respiratory chain 
dysfunction (51). Moreover, lipid peroxidation products lead 
to mtDNA damage, further contributing to mitochondrial 
mutations, whereas mutations in the mitochondria further 
increase levels of ROS with toxic effects (49,51), resulting in a 
vicious circle. On the one hand, stable aldehyde peroxidation 
products from PUFAs, such as 4‑hydroxynonenal and malondi‑
aldehydes, are involved in mtDNA mutations or deletions (52). 
Although aldehydes have significant toxic effects, some 
enzymes in vivo, such as cytochrome P450 (CYP), aldehyde 
dehydrogenase and aldo‑keto reductases, can metabolize them 
to less toxic compounds (53). Evidence shows that members of 
CYP3A and CYP4A oxidize 4‑hydroxynonenal (38). However, 
when mitochondrial dysfunction and increased ROS occur, 
oxidation and antioxidant systems lose balance in vivo, and the 
mitochondrial crest decreases or disappears. The outer wall 
of the mitochondrial membrane ruptures, which is a typical 
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feature of ferroptosis that differentiates it from apoptosis, 
necroptosis and autophagy (6). In conclusion, it is postulated 
that ROS‑induced ferroptosis depends on changes in the 
mitochondria.

5. Ferroptosis in hepatic IRI

Recent evidence has shown that ferroptosis is associated 
with the pathogenesis of various diseases, such as neoplastic 
diseases and ischemic injury to the brain, heart, liver, kidney 
and intestine (6‑8,54‑56). Furthermore, several studies have 
indicated that inhibitors of ferroptosis, such as ferrostatins‑1 
and liproxstatins‑1, protect against cell death in the liver, kidney, 
brain and heart ischemic injury in mouse models (55‑57). In a 
study by Yamada et al (8), the role of ferroptosis in hepatic IRI 
was explored, which established a murine model of hepatic 
ischemia‑reperfusion injury and found that upregulation of the 

ferroptosis marker Ptgs2, lipid peroxidation and liver damage 
were induced by hepatic ischemia reperfusion. Moreover, all of 
these liver cell injuries can be prevented when super‑inducing 
the ferroptosis‑specific inhibitor Fer‑1 and by iron chela‑
tion (8,54). Thus, it seems that iron overload is a critical factor 
for hepatic IRI, and the pathogenesis of hepatic IRI is partly 
attributed to ferroptosis (8).

Role of iron in inflammation in hepatic IRI. At present, it is 
widely accepted that hepatic IRI is characterized by an exces‑
sive inflammatory response, release of inflammatory cytokines 
and chemokines, as well as neutrophil and macrophages infil‑
tration. In addition, IL‑1β is the decisive factor that drives many 
sterile inflammatory diseases (58), especially in hepatic IRI 
(Fig. 2). However, there are two stages in the release process of 
IL‑1β: The synthesis of pro‑IL‑1β and the maturation of IL‑1β. 
Regarding the priming process, Toll‑like receptor 4 (TLR4) 

Figure 1. Iron metabolism in ferroptosis. Accumulation of lipid ROS: The Fenton reaction by Fe2+; lipid peroxidation controlled by iron‑containing 
lipoxygenases; and lipid auto‑oxidation controlled by iron‑catalysed enzyme. The mechanism of lipid ROS leading to ferroptosis. Complement and PMNs 
participate in the process of oxidant stress induced by Kupffer cells. ROS, reactive oxygen species; PMNs, polymorphonuclear neutrophils.
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binds to the ligands (such as heat shock proteins, fibronectin, 
fibrinogen, high mobility group box 1, hyaluronan and heparin 
sulphate) to produce signal transduction (59) and then through 
NF‑κB activation, induces pro‑IL‑1β synthesis. Concerning 
the maturation of IL‑1β, it is reported that receptor family 
pyrin domain containing 3 (NLRP3) inflammasomes play 
an important role (60‑62). Firstly, NLRP3 inflammasomes, 
containing adaptor molecule apoptosis‑associated speck‑like 
protein, containing a caspase recruitment domain, cysteine 
protease caspase‑1 and NLRP3, contribute to the activa‑
tion of caspase‑1. Secondly, pro‑IL‑1β is processed into its 
mature form by caspase‑1 as an IL‑1β converting enzyme, and 
caspase‑1 induces the release of IL‑1β. Finally, IL‑1β induces 
expression of IL‑6, TNF‑α, Ccl2, Cxcl1 and Cxcl2, leading to 
tissue injury in the ischemia‑reperfusion liver (63).

By performing real‑time RT‑PCR analysis, a previous 
investigation evaluated the expression of inflammatory cyto‑
kines and cell markers to confirm the association between 
iron overload and inflammatory response in the liver (8). The 
results showed that inflammatory cytokines and cell markers 
were significantly inhibited by Fer‑1. Furthermore, the infil‑
tration of neutrophils and macrophages was also apparently 
inhibited (8). This implies that ferroptosis in liver cell death 
might be closely associated with the inflammatory reaction in 
hepatic IRI. Further evidence demonstrated that iron is central 
to many aspects of the innate immune response, including ROS 
generation and host inflammatory regulation (1). Iron overload 
causes metabolic disturbance, leading to an increased suscep‑
tibility to infection and triggering the inflammatory response 
as the oversaturation of host transferrin leads to defective 
nutritional immunity (64). In a healthy individual, in vivo iron 

is a stable condition, and excess iron accumulation can lead to 
the production of ROS. Regarding the role of iron in inflam‑
mation in hepatic IRI, several studies have demonstrated that 
the TLR4‑activated inflammatory response is modulated 
by iron, as well as increasing oxidative stress through the 
generation of reactive oxygen and nitrogen species (65,66). As 
previously stated, induction of pro‑IL‑1β synthesis is required 
for NF‑κB activation, while ROS can activate the transcription 
factor NF‑κB (67). Furthermore, systemic iron homeostasis is 
regulated in the liver, and the hepatic hormone hepcidin is the 
central regulator (68). There are two pathways to increase the 
expression of hepcidin at the transcriptional level, including 
inflammatory cytokines, such as IL‑1β and IL‑6 via the 
JAK/STAT3 pathway, and iron via the BMP/Smad signalling 
pathway (Fig. 3) (69). Increased hepcidin downregulates the 
level of ferroportin, the sole known iron exporter on the cell 
surface of hepatocytes, so that intracellular iron levels increase 
due to suppression of iron export (69). Hence, it is conjectured 
that the inflammatory response triggered in hepatic IRI induces 
iron overload in hepatocytes. In other words, ferroptosis 
greatly contributes to the pathogenesis of hepatic IRI.

Role of iron in oxidative damage in hepatic IRI. In order 
to continue exploring the role of iron in hepatic IRI, oxida‑
tive damage in liver cell injury is described in detail in the 
present review. In the mechanism of ferroptosis occur‑
rence, iron‑dependent accumulation of lipid ROS can be 
produced from GSH depletion and NADPH‑dependent lipid 
peroxidation (5,70). Low levels of ROS, including hydrogen 
peroxide (H2O2), superoxide anions (O2‑) and hydroxyl radicals 
(‑OH) (71‑73), play an indispensable role in various molecular 
biological processes, such as intracellular messaging and 
molecular pathways in cellular progression (cell growth, 
differentiation and death) or immunity  (74), the arrest of 
growth, and defence against microorganisms and apop‑
tosis (75,76). In contrast, high or and/or inadequate removal of 
lipid ROS from Kupffer cells is the cardinal factor in vascular 

Figure 2. The role of IL‑1β in hepatic IRI. Two stages in the release process of 
IL‑1β: i) The synthesis of pro‑IL‑1β; and ii) the maturation of IL‑1β. Finally, 
IL‑1β induces expression of IL‑6, TNF‑α, Ccl2, Cxcl1, and Cxcl2, leading 
to tissue injury in the ischemia‑reperfusion liver. IRI, ischemia‑reperfusion 
injury; IL, interleukin; TNF‑α, tumor necrosis factor‑α; Ccl2, chemokine 
(C‑C motif) ligand 2; Cxcl1, chemokine (C‑X‑C motif) ligand 1; Cxcl2, 
chemokine (C‑X‑C motif) ligand 2; TLR4, Toll‑like receptor 4; NF‑κB, 
transcription factors nuclear factor κB; NLRP3, pyrin domain containing 3.

Figure 3. Regulation of iron homeostasis by increasing the expression of 
hepcidin at the transcriptional level. Increased hepcidin downregulates the 
level of ferroportin to suppress iron export. JAK, Janus kinase; BMP, bone 
morphogenetic protein; IL, interleukin.
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and parenchymal cell oxidative damage during reperfusion, 
which occurs by inducing oxidant stress (77). According to 
current studies, there are distinct factors participating oxidant 
stress. First, complement and polymorphonuclear neutrophils 
(PMNs) participate in the process of oxidant stress induced 
by Kupffer cells (Fig. 1) (78). Kupffer cells release intracel‑
lular proteins and ROS during hepatic ischemia, inducing the 
activation of complement and leading to slight initial injury. 
Complement, on the one hand, activates and further stimulates 
Kupffer cells to produce ROS, and on the other hand, directly 
or indirectly causes activation and generation of PMNs in the 
liver through aggravating the initial injury induced by Kupffer 
cells. Moreover, the mechanism of complement‑induced 
activation of neutrophils has been described in other studies, 
which demonstrated that complement factors, such as C5a, can 
recruit neutrophils into sinusoids by upregulating the Mac‑1 
receptor on circulating neutrophils  (79,80). However, the 
generation of PMNs in the liver also causes hepatocyte injury, 
and this damage further promotes the activation of comple‑
ment and PMNs, stimulating the Kupffer cells to produce 
reactive oxygen that contributes to the oxidative damage in 
hepatic IRI (81). An investigation using cobra venom factor 
(CVF) that effectively inhibits complement activation through 
the classical and alternate pathway (82,83), induced the deple‑
tion of complement and a novel soluble complement receptor 
type 1, significantly attenuating the increase of plasma alanine 
aminotransferase  (ALT) activities  (81). This experiment 
confirms that complement exerts an indispensable role in 
Kupffer cell‑induced oxidative injury. Secondly, a current view 
suggested that Kupffer cells could be potentially activated 
during the ischemic period, resulting in the Kupffer cells gener‑
ating superoxides, such as the superoxide anion radical (O2‑), 
when subjected to reoxygenation (84). This process is likely 
to be activated by nitric oxide (NOX), while the oxidase also 
stimulates the activation of ferroptosis by inhibiting gluta‑
thione biosynthesis or GPX4  (4). Moreover, NOX induces 
lipid peroxidation, producing many complex products, such 
as epoxides, hydroperoxides, and carbonyl compounds (85). 
Lipid peroxidation primarily targets cellular membranes, 
then peroxide PUFAs of membrane phospholipids, and finally 
causes structural and functional tissue damage due to the 
disintegration of the cellular membrane (86). In hepatic IRI, 
this mechanism exacerbates erythrocyte functions, impairing 
membrane integrity (87) and significantly altering erythrocyte 
deformability (86). Diminished erythrocyte deformability not 
only attenuates oxygen transport capacity of the erythrocytes 
but also affects the survival of circulating erythrocytes (87,88). 
Furthermore, another product of lipid peroxidation is malondi‑
aldehyde, which can react with DNA and as a result is toxic 
and mutagenic (88). Ultimately, malondialdehyde is substan‑
tially generated in the liver and results in the death of hepatic 
parenchyma cells. An antioxidant defence system containing 
glutathione peroxidase  (GPX), ascorbic acid (vitamin  C), 
superoxide dismutase (SOD), a‑tocopherol (vitamin E), cata‑
lase (CAT), and GSH also exists in the body to fight against the 
generation of free radicals by eliminating superoxide anions 
and hydrogen peroxides (89‑92). When the balance between 
oxidation and antioxidant systems is disrupted, increased lipid 
peroxidation can induce oxidative stress (89). As previously 
reported, iron promotes ferroptosis by lipid peroxidation 

in hepatic IRI (6,8,36). To affirm this mechanism, a mouse 
ischemic model was given iron chelation with deferoxamine 
treatment, which decreased the liver iron content and serum 
ferritin levels (8).

6. Other types of regulated cell death

In addition to ferroptosis, there are other types of regulated cell 
death, such as apoptosis, necrosis and autophagy. Apoptosis, 
a form of programmed cell death, leads to characteristic cell 
changes including blebbing, cell shrinkage, nuclear fragmenta‑
tion, chromatin condensation, chromosomal DNA fragmentation, 
and global mRNA decay, which finally leads to the formation 
of apoptotic bodies and phagocytosis of the apoptotic bodies by 
adjacent parenchymal cells, neoplastic cells or macrophages (93). 
The pathways that initiate apoptosis are categorized as intrinsic 
or extrinsic, which are initiated by different types of stimuli, and 
finally through pro‑apoptotic proteins to activate caspase‑9 and 
caspase‑8, respectively (94‑96). Bcl‑2 family members and cell 
death receptor/ligand (FasL/FasR and TNF‑α/TNFR1) are the 
main molecules of the main apoptosis signal pathway (95,97,98). 
In contrast to apoptosis, necrosis, a passive type of RCD is initiated 
by external physical or chemical factors, and mainly character‑
ized by swelling of cytoplasm and mitochondria, loss of plasma 
membrane integrity, resulting in the release of pro‑inflammatory 
factors and the inflammation in the surrounding tissue (99). 
Similar to the extrinsic signaling pathway of apoptosis, necrosis 
also is initiated by cell death receptor/ligand (FasL/FasR and 
TNF‑α/TNFR1), which forms a death‑inducing signaling 
complex (DISC) with procaspase‑8 by recruiting Fas‑associated 
death‑domain and receptor‑interacting serine/threonine‑protein 
kinase 1 (RIPK1) (94). Differentially, apoptosis originates from 
the activation of caspase‑8 by the complex, while necrosis is 
caused by deubiquitinated RIPK1 recruiting RIPK3 through the 
RIP homotypic interaction motif interaction and phosphoryla‑
tion of mixed‑lineage kinase domain‑like  (MLKL) protein 
when caspase‑8 activity is inhibited. The oligomerization of 
phosphorylated MLKL seems to bind to high‑order inositol 
phosphate (IP), which is then transferred to the plasma membrane 
to induce cytolysis, resulting in the release of pro‑inflammatory 
damage‑associated molecular proteins. Besides, it also activates 
NLRP3, then leads to the secretion of interleukin (IL)‑1β and 
IL‑18 (100). It is common that the inflammatory responses acti‑
vated by ferroptosis and necrosis both involve the participation 
of molecules such as IL‑1β and TNF‑α. However, ferroptosis 
accounts more for lipid peroxidation caused by iron overload, and 
the accumulation of ROS leads to the hepatocyte mitochondrial 
membrane permeability.

As aforementioned, hepatic IRI is divided into two 
processes: Ischemia and reperfusion. In the process of liver 
ischemia, it mainly causes hypoxia and energy depletion, and 
the reperfusion process causes oxidative stress and inflamma‑
tory reaction. Both of these processes will lead to apoptosis 
and necrosis, and finally result in autophagy. Autophagy is 
another type of RCD regarding to a process that cytoplasmic 
substances are transported to lysosomes, autophagy‑related 
protein forms autophagosomes, and finally the components 
contained are degraded. More importantly, autophagy plays 
a critical role in regulating liver metabolism, energy produc‑
tion and quality control checkpoints as organelles such as 
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mitochondria (101). However, a study shows that autophagy is 
also associated with hepatocyte death (102). Autophagy can be 
divided into three types: i) autophagy‑associated cell death; 
ii) autophagy‑mediated cell death, and iii) autophagy‑depen‑
dent cell death (103). For the first two types, autophagy plays a 
minor role in the mechanism of cell death, thus should depend 
on other types of cell death, such as apoptosis, necrosis and 
ferroptosis. The third type of autophagy can independently 
mediate the mechanism of cell death, so in the process of 
hepatocyte death, apoptosis, necrosis, autophagy and ferrop‑
tosis can be either interdependent or independently mediated. 
Interestingly, studies have shown that there is a link between 
the activation of autophagy and the development of ferroptosis, 
a process known as ‘ferritinophagy’, which is characterized by 
autophagy degradation of ferritin. In this process, the nuclear 
receptor coactivator 4, a selective cargo receptor for the turn‑
over of ferritin, enables the maintenance of iron homeostasis, 
then results in iron overload and promotes the development of 
ferroptosis through the degradation of ferritin (104,105).

7. Current therapeutic strategies in hepatic IRI

Currently, some potential therapeutic strategies have been 
reported for ferroptosis regulation in liver ischemia-reperfusion, 
primarily including antioxidants and iron‑removing mole‑
cules (such as desferoxamine, ferrostatin‑1, liproxstatin‑1, 
α‑tocopherol, ascorbic acid, GSH, alpha lipoic acid, gadolinium 
chloride, zileuton and gadolinium chloride).

Desferoxamine. As aforementioned, iron overload promotes 
lipid peroxidation and is involved in the inflammatory 
response of hepatic IRI, leading to ferroptosis in liver cells. 
Desferoxamine is an iron chelator that can decrease the levels 
of intracellular iron. Experimental studies on hepatic isch‑
emia models using desferoxamine pretreatment have shown 
beneficial effects, such as decreasing the liver iron content, 
decreasing serum ferritin levels, and restoring total GSH levels, 
in response to warm or cold hepatic ischemia (8,106,107).

Ferrostatin‑1. Ferrostatin‑1 is a first‑generation ferrostatin 
that inhibits ferroptosis by interfering with ROS accumula‑
tion from lipid peroxidation (7,8). Mechanistically, to fight 
against ferroptosis, a previous study  (108) demonstrated 
that anti‑ferroptotic activity of fer‑1 primarily depends on 
the scavenging of initiating alkoxyl radicals produced by 
ferrous iron from lipid hydroperoxides, and moreover, when 
fer‑1 attenuates lipid peroxidation, its levels are not signifi‑
cantly consumed. The mechanism underlying this effect is 
not currently understood, and more molecular studies are 
needed to explain it. In addition to ferrostatin‑1, there exits 
second‑ and third‑generation ferrostatins that are more stable, 
exhibiting increased metabolic stability in the plasma. All of 
the third‑generation ferrostatins are significantly protective 
against tissue injury, including acute kidney injury and IRI, 
in vivo (6).

Liproxstatin‑1. Liproxstatin‑1 is a potent ferroptosis inhibitor 
in Gpx4‑/‑ cells that acts by preventing ROS accumulation. 
Liproxstatin‑1 also inhibits ferroptosis in a mouse model of liver 
tissue injury induced by ischemia‑reperfusion (57). A previous 

study reported that liproxstatin‑1 decreases voltage‑dependent 
anion channel 1 levels and restores GPX4 levels to protect 
against ischemia‑reperfusion (109). Furthermore, post‑treat‑
ment with liproxstatin‑1 protects mitochondrial structural 
integrity (109). Although liproxstatin‑1 decreases ROS levels, 
it does not affect Ca2+‑induced mitochondrial permeability 
transition pore opening. Moreover, compared to fer‑1, liprox‑
statin‑1 has relatively stronger potency. Liproxstatin‑1 also 
suppresses ferroptosis‑inducing agents (FINs), comprising 
RSL3, erastin, and BODIPY  581/591 C11  oxidation  (57). 
Hence, liproxstatin‑1 may represent an extremely promising 
therapeutic drug in hepatic IRI.

α‑Tocopherol. α‑Tocopherol is a type of membrane and 
extracellular antioxidant, also called vitamin  E. It helps 
to prevent free radicals from damaging hepatic cells and 
serves as an inhibitor of protein kinase C and lipid peroxi‑
dation that increases GSH levels (110,111). The efficacy of 
protecting liver cells during ischemia‑reperfusion was shown 
in an animal experiment, which indicated that the group 
treated with α‑tocopherol exhibited a significantly higher 
survival rate (110). Another study showed that pretreatment 
with high doses of α‑tocopherol (30 and 300 mg/kg of body 
weight administered intramuscularly) enhanced ATP levels, 
attenuated lipid peroxidation, and prevented the loss of hepatic 
glutathione (111‑113). Furthermore, α‑tocopherol has shown 
beneficial effects in both cold and warm IRI, decreases mito‑
chondrial damage induced by oxidative stress (113,114). Low 
doses of α‑tocopherol can also protect against liver cell death 
if combined with gadolinium chloride (GdCl3) or ischemic 
preconditioning (IPC) (110,115).

Ascorbic acid. Ascorbic acid, also known as vitamin C, is a 
vital antioxidant with strong inhibition of lipid peroxidation 
and ROS scavenging ability (116). Ascorbic acid conveys an 
electron(s) to ROS, providing site‑specific protection against 
oxidative stress (117). The clotting factors can be used to access 
acute liver cell damage, and after treatment with ascorbic acid, 
the activity of clotting factors  I, II, V, VII, and X showed 
significant improvement  (116). Furthermore, ascorbic acid 
avoids the oxidative degradation of vitamin E (a type of anti‑
oxidant) by reacting directly with intermediates of tocopherol 
oxidation, as well as free radicals (118). Another study treated 
rats with ascorbic acid (100 mg/kg, i.v.) 5 min before sustained 
ischemia, and IPC and ascorbic acid synergistically attenuated 
mitochondrial damage during reperfusion due to decreased 
oxidant stress (119). During the process of ferroptosis in hepatic 
IRI, iron reacts with hydrogen peroxide to form hydroxyl‑like 
radicals, hydroxyl and ferric ions, and these products are 
reduced by ascorbic acid, which inhibits iron‑dependent 
Fenton reactions (120). In accordance with another study, it 
was clearly demonstrated that serum aminotransferase levels, 
lipid peroxidation, the loss of bile flow and cholate output were 
inhibited by ascorbic acid doses of 30 and 100 mg/kg but were 
promoted by a dose of 1,000 mg/kg (120). Therefore, low doses 
of ascorbic acid (30 and 100 mg/kg) have antioxidant effects, 
while high doses (1,000 mg/kg) have pro‑oxidant effects; thus, 
the dose should be adjusted when ascorbic acid is applied. 
Moreover, the therapeutic window might be appropriate over a 
short time prior to or just at the beginning of reperfusion (121). 
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GSH. GSH is a thiol‑containing compound, oxidizing sulfhy‑
dryl group of cysteine that exerts antioxidant effects (122). It is 
a substrate of GPX4, and GSH depletion results in inactivation 
of GPX4, contributing to ferroptosis by accumulation of ROS 
from lipid peroxidation (70). Therefore, pretreatment with GSH 
directly scavenges ROS (123). The GSH/GSSG redox system 
majorly regulates intracellular redox status (112) and giving 
GSH in advance may promote intracellular reduction response 
to prevent oxidative damage. However, there exit some admin‑
istrative limitations. For instance, whether intracellular GSH 
is simply available and its ability to decrease GSSG and to 
what extent are not completely understood (124). A previous 
analysis demonstrated significant protection for hepatocytes in 
both warm and cold liver ischemia by intravenous glutathione 
administration (doses over 100 mol/h/kg) (125). It is assumed 
that GSH will become an additional therapeutic approach for 
ferroptosis during hepatic IRI.

α lipoic acid (ALA). ALA is a natural compound that occurs 
in vivo. ALA is an antioxidant that provides protection against 
damage to the body's cells. Because of its antioxidant and 
oxidant‑scavenging properties, ALA may protect the liver against 
oxidative injury (126), and this function has been corroborated in 
rat liver that underwent 90 min of warm ischemia (127). ALA 
was shown to significantly decrease levels of AST, increase ATP 
content, and lower apoptotic hepatocyte injury by improving 
expression of anti‑apoptotic proteins to decrease hepatic 
injury (128). Moreover, ALA also protects against IRI caused by 
cirrhosis or steatosis due to improving cholinesterase activity in 
the serum (128). Furthermore, another study reported additional 
findings for ALA in the treatment of hepatic IRI, including 
decreasing levels of TNF‑α and IL‑1β, reversing myeloperoxi‑
dase activity (indicating increased neutrophil infiltration to the 
tissue), and maintaining regular morphology of the central vein 
and hepatocytes (126). As a powerful direct chain‑breaking 
antioxidant, ALA strengthens the antioxidant potency of both 
ascorbate and vitamin E (129). Currently, ALA is a potential 
strategy to protect against hepatic IRI.

CVF. CVF has been affirmed to be beneficial for the protec‑
tion of hepatocytes during ischemia‑reperfusion in clinical 
settings (81,130). CVF is a stable complement inhibitor from 
cobra venom that binds to factor B as a structural and func‑
tional analogue of the complement component C3b, forming 
the bimolecular complex CVF/Bb through the cleavage of 
factor D (130). CVF/Bb is a C3/C5 convertase that simul‑
taneously cleaves complement C3 and C5 (131‑133). Thus, 
continuous activation of C3 and C5 leads to the depletion of 
complement components and inhibits their activation. In a 
final analysis, through subsequently suppressing the release of 
inflammatory mediators, such as TNF‑α and IL‑1β, oxidant 
stress induced by Kupffer cells and hepatic cell apoptosis 
was decreased to attenuate hepatic injury (78,130). However, 
the window of time available for therapeutic intervention to 
block complement‑mediated inflammatory responses and 
oxidant stress in hepatic cells should be reviewed due to the 
recovery of complement activity and regeneration in hepa‑
tocytes (78,130). As an anticomplement protein, CVF may 
represent a novel therapy to improve multiple organ injury 
induced by ischemia‑reperfusion.

Zileuton. Zileuton inhibits the biosynthesis of leukotrienes 
(LTB4, LTC4, LTD4 and LTE4) because it is an active inhib‑
itor of 5‑lipoxygenase. Zileuton decreases glutamate‑induced 
ROS accumulation, significantly inhibiting glutamate‑ and 
erastin‑induced ferroptosis (134).

Gadolinium chloride. GdCl3, a rare earth metal, is a 
protective intervention in a rat hepatic reperfusion injury 
model that inhibits Kupffer cell activation (115,135). It has 
been shown that pretreatment with GdCl3 for hepatic IRI 
enhances the survival rate (115), decreases neutrophil infil‑
tration and myeloperoxidase activity  (136), and decreases 
platelet aggregation in cold‑perfusion liver (137). Additional 
experiments have concluded that GdCl3 promotes recovery of 
hepatic function (135,138), prevents sinusoid endothelial cell 
apoptosis (137), inhibits the formation of free radicals, and 
attenuates lipid peroxidation (139,140). However, the use of 
GdCl3 may induce side effects (115), including significant loss 
of bile flow, altered hepatocellular integrity (increased serum 
enzyme activities), and inhibition of phagocytic activity in 
Kupffer cells. In addition, inhibition of Kupffer cells damages 
host defences  (141,142) because the ability to clear bacte‑
rial lipopolysaccharides from the blood is deranged. Hence, 
the dose of GdCl3 should be kept as low as possible due to 
potential adverse effects, and it is necessary to monitor hepatic 
function when using GdCl3 for treatment (115).

8. Conclusions and future perspectives

Hepatic IRI is a complex process that involves various path‑
ways and is complicated by a range of factors. Therefore, it 
is important to understand the pathophysiological pathways 
involved in liver damage during ischemia‑reperfusion. This 
review discussed the detailed mechanism of ferroptosis, 
a novel and determinant type of regulated cell death, and 
concluded that it involves differential activation of various 
signal transduction pathways. Iron primarily participates in 
the relevant inflammatory response, stimulating the release 
of inflammatory and cytokines, and induces iron‑dependent 
lipid peroxidation that generates oxidative damage to hepatic 
cells. Currently, ferroptosis still comprises some challenges, 
including the lack of a specific marker for animal studies and 
clinical settings (7). Additional studies about ferroptosis in 
hepatic IRI are required to better understand the presence 
of ferroptosis in the liver. This novel type of cell death in 
hepatic IRI will provide more precise therapeutic targets and 
will be advantageous for developing new clinical therapeutic 
methods.
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