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Abstract. MicroRNAs (miRs) are reported to serve key roles 
in pulmonary arterial hypertension (PAH). miR‑1 has been 
found in cardiovascular diseases. The present study aimed 
to determine whether the knockdown of miR‑1 could inhibit 
right ventricle (RV) remodeling and thereby control PAH in 
model rats. PAH model rats were established by exposing rats 
to hypoxia, while cardiac fibroblasts (CFs) obtained from PAH 
model rats were treated with hypoxia to establish an in vitro 
model, and RV remodeling was evaluated by Masson staining 
and the levels of collagen I, collagen III, α‑smooth muscle 
actin (α‑SMA) and connective tissue growth factor (CTGF) 
evaluated by western blotting or reverse transcrip‑
tion‑quantitative PCR. The results revealed that the expression 
levels of miR‑1 were upregulated in the RV of PAH model rats 
induced with hypoxia and in the CFs treated with hypoxia. 
The mean pulmonary arterial pressure, RV systolic pressure, 
RV/(left ventricle + interventricular septum) and RV/tibia 
length were increased in PAH rats; however, the increases in 
all parameters were subsequently reversed by transfection with 
a miR‑1 antagomiR in PAH model rats. The transfection with 
the miR‑1 antagomiR inhibited the development of RV fibrosis 
and downregulated the mRNA expression levels of collagen I, 
collagen III, α‑SMA and CTGF in the RV tissue of PAH model 
rats. The upregulation of collagen I, collagen III, α‑SMA and 
CTGF expression levels in hypoxia‑treated CFs was also 
subsequently reversed by miR‑1 antagomiR transfection. The 
expression levels of collagen I, collagen III, α‑SMA and CTGF 
were also upregulated in the CFs obtained from PAH model 

rats, and these increases were attenuated by miR‑1 antagomiR 
transfection. The expression levels of phosphorylated (p)‑PI3K 
and p‑AKT were also upregulated in hypoxia‑treated CFs, 
and these increases were also inhibited by transfection with 
miR‑1 antagomiR. In conclusion, these results indicated that 
inhibiting miR‑1 may attenuate RV hypertrophy and fibrosis in 
PAH model rats, a mechanism that may involve the PI3K/AKT 
signaling pathway.

Introduction

Pulmonary arterial hypertension (PAH) is a pathological 
condition that occurs in the cardiovascular system (1). In PAH, 
pulmonary vascular resistance and pulmonary artery pressure 
increase, ultimately resulting in right heart failure and even 
death (2,3). Maladaptive processes, such as fibrosis, can damage 
or even collapse the function of the right ventricle (RV) (4). 

MicroRNAs (miRNAs/miRs) are a group of small endog‑
enous non‑coding RNAs that can negatively regulate target 
gene expression post‑transcriptionally, mainly through mRNA 
degradation or translational inhibition (5‑8). Alterations in 
the expression levels of miRNAs have been associated with a 
number of pathological disease processes, such as cardiovas‑
cular diseases. For this reason, circulating miRNAs have been 
hypothesized to be potential biomarkers or therapeutic targets 
for several types of disease, such as miR‑29 in atrial fibril‑
lation and miR‑133a in myocardial infarction (9,10). In fact, 
several miRNAs, including miR‑143, miR‑124, miR‑140‑5p 
and miR‑135a, have been reported to be dysregulated in PAH 
animal models or patients with PAH (11‑14).

Previous studies have revealed that miR‑1 was involved in 
the pathogenesis of left heart failure and left ventricle (LV) 
fibrosis (15,16). Dysregulated miR‑1 biogenesis was previ‑
ously associated with heart failure in aged rats, especially 
aged hypertensive rats (17). In addition, the expression levels 
of miR‑1 were upregulated in lungs from an experimental 
model of PAH and in the plasma from patients with PAH, and 
miR‑1 induced endothelial dysfunction, suggesting a patho‑
physiological role for miR‑1 in PAH (18). In a previous study, 
the transfection with the miR1 antagomiR downregulated 
the expression levels of TGF‑β and collagen hyperplasia in 
myocardial infarction model mice (19). However, to the best 
of our knowledge, whether miR‑1 may be involved in the 
regulation of PAH remains unknown. 
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The PI3K/AKT signaling pathway was discovered to be 
involved in the regulation of cardiac fibrosis (20). A previous 
study revealed that miR‑132 activated the PI3K/AKT signaling 
pathway by downregulating PTEN expression levels, thus 
inhibiting apoptosis and facilitating cardiomyocyte prolif‑
eration and cardiac fibrosis in dilated cardiomyopathy model 
rats (21). However, whether the PI3K/AKT signaling pathway 
may be involved in the regulatory effects of miR‑1 on cardiac 
fibrosis in PAH remains unclear. 

The present study aimed to determine whether the 
knockdown of miR‑1 could counter PAH through attenuating 
RV fibrosis in PAH model rats, and whether the PI3K/AKT 
signaling pathway may be involved in the key roles of miR‑1 
in regulating fibrosis in CFs.

Materials and methods

Animal studies. Experiments were performed using 78 
5‑6 weeks‑old male Sprague‑Dawley (SD) rats (weight, 
180‑200 g; Beijing Vital River Laboratory Animal Technology 
Co., Ltd.). All procedures were approved by the Experimental 
Animal Care and Use Committee of Nanjing Medical 
University (Nanjing, China; approval no. 17041015), and were 
conducted in accordance with the Guide for the Care and 
Use of Laboratory Animals (National Institutes of Health 
publication no. 85‑23, revised 1996) (22). The rats were kept 
in a temperature (22±1˚C) and humidity (40‑60%)‑controlled 
room under a 12‑h light/dark cycle with free access to standard 
chow and tap water. The experiments were performed at the 
Animal Core Facility of Nanjing Medical University.

Establishment of hypoxia rat model and grouping. The 
establishment of the hypoxic condition was performed as 
previously described (23). Briefly, SD rats were divided into 
2 groups: i) Normoxia group (n=8), in which rats received 
normoxia (21% O2) for 4 weeks; and ii) hypoxia group (n=13), 
in which rats received hypoxia (10% O2) (24,25) for 4 weeks. 
The expression levels of miR‑1 were subsequently determined 
in the RV of rats in the two groups. 

In another experiment, the 5‑6 weeks‑old rats were divided 
into the following groups: i) Normoxia + negative control (NC) 
antagomiR (n=10); ii) normoxia + miR‑1 antagomiR (n=10); 
iii) hypoxia + NC antagomiR (n=15); and iv) hypoxia + miR‑1 
antagomiR groups (n=15). Hypoxia and normoxia were admin‑
istered as aforementioned. Simultaneously, rats were injected 
with miR‑1 antagomiR (sequence 5'‑UGG AAU GUA AAG AAG 
UGU GUA U‑3'; Guangzhou RiboBio Co., Ltd.) or NC antagomiR 
(sequence 5'‑CAG UAC UUU UGU GUA GUA CAA‑3'; Guangzhou 
RiboBio Co., Ltd.) via the tail vein twice a week (40 mg/kg/time). 
After 4 weeks, RV function and fibrosis were determined. 

Animal experiments. SD rats were anesthetized with 50 mg/kg 
pentobarbital (i.p.). Using a PowerLab data acquisition system 
(ADInstruments, Ltd.), a 1.4F conductance micromanometer 
catheter (Millar) was inserted via the RV, across the aortic 
valve and into the RV chamber to measure the right ventricular 
systolic pressure (RVSP) and the mean pulmonary arterial 
pressure (mPAP). Subsequently, the rats were sacrificed by 
cervical dislocation following anesthesia with 3.5% isoflu‑
rane induction and 2% isoflurane maintenance. The RV, LV 

and interventricular septum (S) of the rats were separately 
dissected. The tibia length (TL) was measured and weighed 
to calculate the ratio of RV to (LV + S) and RV/TL, two key 
indicators for assessing RV hypertrophy. 

Isolation and culture of cardiac fibroblasts (CFs). Rat CFs 
were isolated from 60 male and female SD rats (age, 1‑3 days 
old; weight, 5‑8 g; Beijing Vital River Laboratory Animal 
Technology Co., Ltd.), or male 9‑10 weeks‑old PAH (PCFs) or 
normoxia (NCFs) model rats (350‑400 g; n=6 for each group). 
The rats were kept in a temperature (22±1˚C) and humidity 
(40‑60%)‑controlled room under a 12 h light‑dark cycle with 
free access to standard chow and tap water. The rats were 
sacrificed by cervical dislocation following anesthesia with 
3.5% isoflurane induction for 2 min and 2% isoflurane main‑
tenance. Death was confirmed by the absence of a heartbeat, 
and corneal reflexes and paw withdrawal response to a noxious 
pinch. Ventricular tissue was subsequently dissected, washed, 
minced and subjected to three digestions at 37˚C for 20 min in 
a solution containing a mixture of 1  mg/ml collagenase A and 
0.5  mg/ml hyaluronidase following an initial digestion step in 
a proteinase bacterial solution (4  U/ml) for 15 min. After each 
cycle of digestion, the tissue was mechanically dissociated 
using a 5 ml pipette (Eppendorf), the dissociated cells were 
collected and resuspended in Dulbecco's modified Eagle's 
medium (DMEM; Gibco; Thermo Fisher Scientific, Inc.). 
CFs were separated from the cardiomyocytes by centrifuga‑
tion (1,000 x g) at 4˚C for 5 min and cultured to confluence 
in 10‑cm cell culture dishes in DMEM supplemented with 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.), 1% penicillin 
and 1% streptomycin, and maintained at 37˚C in a humidified 
atmosphere with 5% CO2 and 95% O2. CFs from the second 
passage were used for the subsequent experiments. 

In the hypoxic group, CFs were exposed to 0, 3 or 5% 
oxygen in an incubator connected with a chamber that was 
equilibrated with a water‑saturated gas mixture of 0, 3 or 
5% O2, 5% CO2 and 95, 92 or 90% N2, respectively, at 37˚C 
for 12, 24 or 48 h. In the normoxic group, CFs were exposed to 
5% CO2 and 95% O2.

CF transfection with miR‑1 antagomiR. Negative control 
(NC) antagomiR and miR‑1 antagomiR were synthesized by 
Guangzhou RiboBio Co., Ltd. CFs were seeded into 12‑well 
plates at a density of 5x104 cells/ml and transfected with 100 nM 
NC antagomiR or miR‑1 antagomiR using Lipofectamine 3,000 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) for 6 h. 
Subsequently, the CFs were treated with hypoxic or normoxic 
for 24 h. The sequences of the oligonucleotides were as follows: 
NC antagomiR, 5'‑CAG UAC UUU UGU GUA GUA CAA‑3'; and 
miR‑1 antagomiR, 5'‑AUA CAU ACU UCU UUA CAU UCC A‑3'.

Masson's trichrome staining. The rats were sacrificed by 
cervical dislocation following anesthesia with 3.5% isoflurane 
induction and 2% isoflurane maintenance. and the hearts were 
removed. The RV tissues were fixed with 4% paraformaldehyde 
at 4˚C for 24 h, and embedded in paraffin. Cardiac sections 
(5‑µm) were subsequently analyzed using Masson's trichrome 
staining (Nanjing Biochannel Biotechnology Co., Ltd.) to 
measure the fibrosis of cardiomyocytes. Briefly, sections were 
incubated in celestine blue solution for 5 min, washed with 
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H2O; incubated in hemalun solution for 5 min, in H2O for 
10 min, in 0.5% fuchsine acid and 1.5% Ponceau xylidine for 
5 min, washed with H2O; incubated in 1% phosphomolybdic 
acid for 10 min, in 2.5% aniline blue solution for 5 min, 
washed with H2O; incubated in 1% acetic acid for 1 min, and 
then briefly in an ascending isopropanol series followed by 
xylol. All the operations were performed at room temperature. 
Then 3‑5 randomly selected fields of view were selected from 
each of three sections from one rat and observed under a light 
microscope (magnification, x200; Carl Zeiss AG). Images 
were analyzed using Image‑Pro Plus software (version 6.0; 
Media Cybernetics, Inc.).

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from RV tissues or CFs using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.). Total RNA 
was reverse transcribed into cDNA using random primers in a 
total volume of 10 µl and PrimeScript™ RT Master mix (Takara 
Biotechnology Co., Ltd.), according to the manufacturer's 
protocol, at 37˚C for 15 min and 85˚C for 5 sec. cDNA was stored 
at ‑70˚C prior to use. qPCR of miR‑1, collagen I, collagen III, 
α‑smooth muscle actin (SMA) and connective tissue growth 
factor (CTGF) expression levels were determined using SYBR 
Green I fluorescence (Invitrogen; Thermo Fisher Scientific, Inc). 
All samples were amplified in triplicate in 96‑well plates using 
the following thermocycling conditions: Initial denaturation at 
95˚C for 10 min; followed by 40 cycles at 95˚C for 10 sec and 
60˚C for 1 min. GAPDH or U6 were used as the internal controls 
for mRNA and miRNA, respectively. Relative expression levels 
were quantified using the 2‑∆∆Cq method (26‑29). The primers 
used for the qPCR are shown in Table I.

Western blotting. Total protein was extracted from CFs using 
RIPA lysis buffer (BioChannel Biotechnology Co., Ltd.) and 
homogenized. Debris that had not been homogenized was 
removed, and the supernatant was obtained through centrifu‑
gation at 12,000 x g for 10 min at 4˚C. Total protein was 

quantified by BCA (Beyotime Institute of Biotechnology), and 
~50 µg protein was separated via 8% SDS‑PAGE. The separated 
proteins were subsequently transferred onto PVDF membranes 
and blocked by 5% skimmed milk powder at room temperature 
for 1 h. The membranes were then incubated with the following 
primary antibodies at 4˚C overnight: Anti‑collagen I (1:2,000; 
cat. no. ab34710; Abcam), anti‑collagen III (1:5,000; cat. 
no. ab7778; Abcam), anti‑α‑SMA (1:2,000; cat. no. ab32575; 
Abcam), anti‑CTGF (1:1,000; cat. no. ab6992; Abcam), 
anti‑PI3K (1:1,000; cat. no. 4249; Cell Signaling Technology, 
Inc.), anti‑phosphorylated (p)‑PI3K (1:1,000; cat. no. 17366; 
Cell Signaling Technology, Inc.), anti‑AKT (1:1,000; cat. 
no. 4691; Cell Signaling Technology, Inc.), anti‑p‑AKT 
(1:2,000; cat. no. 4060; Cell Signaling Technology, Inc.) 
and anti‑GAPDH (1:10,000, cat. no. ab181602; Abcam). The 
horseradish peroxidase‑conjugated goat anti‑rabbit secondary 
antibody (1:10,000, cat. no. ab7090; Abcam) was added and 
incubated at room temperature for 1 h. ECL kit (Beyotime 
Institute of Biotechnology) was used to visualize the proteins. 
Densitometric analysis was performed using Image‑Pro Plus 
software (version 6.0; Media Cybernetics, Inc.).

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism 6.0 software (GraphPad Software, Inc.). 
Data are presented as the mean ± SEM. Statistical differ‑
ences between two groups were determined using a unpaired 
Student's t‑test, while statistical differences between multiple 
groups were determined using a one‑way ANOVA followed 
by a Bonferroni's post hoc test. A total of 3 experimental 
repeats were performed. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Hypoxia induces PAH in rats. PAH was successfully induced 
by hypoxia in the rat model, as evidenced by an increased 
mPAP (Fig. 1A) and RVSP (Fig. 1B) compared with rats 

Table I. Primers used for reverse transcription‑quantitative PCR. 

Gene Species Accession number Primer sequence (5'→3')

Collagen I Rat BC133728 F: TCAAGATGGTGGCCGTTAC
   R: CTGCGGATGTTCTCAATCTG
Collagen III Rat DN815278 F: CGAGATTAAAGCAAGAGGAA
   R: GAGGCTTCTTTACATACCAC
α‑smooth muscle actin Rat BC158550 F: GTCCCAGACATCAGGGAGTAA
   R: TCGGATACTTCAGCGTCAGGA
Connective tissue growth factor Rat BC072503 F: CAGGGAGTAAGGGACACGA
   R: ACAGCAGTTAGGAACCCAGAT
miR‑1 Rat NR032116 F: GGGGTGGAATGTAAAGAA
   R: TGCGTGTCGTGGAGTC
U6 Rat K00784 F: GCTTCGGCAGCACATATACTAAAAT
   R: CGCTTCACGAATTTGCGTGTCAT
GAPDH Rat AF106860 F: GGCACAGTCAAGGCTGAGAATG
   R: ATGGTGGTGAAGACGCCAGTA

F, forward; R, reverse.
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exposed to normoxia. Hypoxia exposure also significantly 
increased RV/(LV + S) (Fig. 1C) and RV/TL (Fig. 1D) in the 
rats compared with normoxia exposure.

Expression levels of miR‑1. The expression levels of miR‑1 
were significantly increased in the RV of PAH model rats 
exposed to hypoxia compared with rats exposed to normoxia 
(Fig. 2A). To determine the effect of hypoxia on the expres‑
sion levels of miR‑1 in CFs, three gradient O2 concentrations 

were used. The expression levels of miR‑1 in CFs were 
sequentially upregulated as the O2 concentration gradually 
decreased compared with the normoxia group; the exposure to 
5 or 3% O2 significantly upregulated miR‑1 expression levels 
compared with exposure to normoxia. Notably, exposure to N2 

was more powerful in upregulating miR‑1 expression levels 
compared with 5% O2 exposure (Fig. 2B). 3% O2 was selected 
for use in the following experiments. The expression levels of 
miR‑1 were significantly upregulated following 24 h, but not 

Figure 1. Establishment of PAH model rats through induction by hypoxia. (A) mPAP, (B) RVSP, (C) RV/(LV+S) (D) and RV/TL were increased in PAH 
model rats exposed to hypoxia. The results are presented as the mean ± SEM. n=8 in normoxia group and n=13 in hypoxia group. *P<0.05 vs. normoxia. 
mPAP, mean pulmonary arterial pressure; RVSP, right ventricle systolic pressure; RV, right ventricle; LV, left ventricle; S, interventricular septum; TL, tibia 
length; PAH, pulmonary arterial hypertension.

Figure 2. Expression levels of miR‑1 in the RV of rats and CFs. (A) miR‑1 expression levels were upregulated in RV of PAH model rats exposed to hypoxia. 
miR‑1 expression levels were upregulated in CFs exposed to (B) hypoxia and (C) hypoxia for different durations. (D) miR‑1 antagomiR transfection significantly 
downregulated the expression levels of miR‑1 in the RV of PAH model rats. (E) miR‑1 antagomiR transfection significantly downregulated the expression 
levels of miR‑1 in CFs. The results are presented as the mean ± SEM. n=8 in normoxia group and n=13 in hypoxia group. *P<0.05 vs. normoxia/0 h/normoxia + 
NC antagomiR; #P<0.05 vs. 5% O2. miR, microRNA; PAH, pulmonary arterial hypertension; CFs, cardiac fibroblasts; NC, negative control. 
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12 h, of hypoxia exposure compared with CFs not exposed to 
hypoxia; however, this upregulation was not further enhanced 
after 48 h of exposure compared with 24 h (Fig. 2C). Thus, 
24 h hypoxia stimulation was used in the following in vitro 
experiments. miR‑1 antagomiR significantly downregulated 
the expression levels of miR‑1 in the RV of rats compared 
with the NC antagomiR (Fig. 2D). Furthermore, the expres‑
sion levels of miR‑1 were significantly downregulated in 
CFs transfected with miR‑1 antagomiR compared with NC 
antagomiR (Fig. 2E).

Effects of miR‑1 antagomiR on PAH. Hypoxia‑induced an 
increase in mPAP, which was inhibited by miR‑1 antagomiR 
(Fig. 3A). RVSP was increased in the rats treated with hypoxia, 
which was reversed by miR antagomiR (Fig. 3B). The increase 
of RV/(LV+S) of rats induced by hypoxia was alleviated by 
miR antagomiR administration (Fig. 3C). RV/TL was elevated 
in the rats treated by hypoxia, and this increase was attenuated 
by administration of miR‑1 antagomiR (Fig. 3D). 

Effects of miR‑1 antagomiR on fibrosis in PAH model rats. 
According to the results of Masson's trichrome staining, the 
RV fibrosis was increased following hypoxia treatment; this 
increase was subsequently partially reversed following miR‑1 
antagomiR transfection (Fig. 4A). The mRNA expression 
levels of collagen I, collagen III, α‑SMA and CTGF in the 
RV of PAH model rats exposed to hypoxia were significantly 

upregulated; these increases were partially inhibited following 
miR‑1 antagomiR transfection (Fig. 4B).

Effects of miR‑1 antagomiR on fibrosis in CFs. Following 
3% O2 exposure (hypoxia), the mRNA expression levels of 
collagen I, collagen III, α‑SMA and CTGF were significantly 
upregulated in CFs compared with the normoxia group, 
which were all subsequently attenuated following miR‑1 
antagomiR transfection (Fig. 5A). The protein expression 
levels of collagen I, collagen III, α‑SMA and CTGF were also 
significantly upregulated in CFs exposed to hypoxia compared 
with the normoxia group, and these increases were partially 
inhibited by miR‑1 antagomiR transfection (Fig. 5B). 

Effects of miR‑1 antagomiR on fibrosis in CFs. The expres‑
sion levels of collagen I in CFs isolated from PAH model rats 
(PCFs) were significantly upregulated compared with CFs 
isolated from normoxia rats (NCFs), while the subsequent 
transfection with miR‑1 antagomiR inhibited this upregulation 
(Fig. 6). Collagen III expression levels were also significantly 
upregulated in PAFs compared with NCFs, and were also 
attenuated by miR‑1 antagomiR transfection. Similarly, the 
expression levels of α‑SMA and CTGF in PCFs treated with NC 
antagomiR were upregulated compared with in NCFs treated 
with NC antagomiR, and the increases in α‑SMA and CTGF 
expression levels in PCFs were inhibited by miR‑1antagomiR 
transfection.

Figure 3. miR‑1 antagomiR transfection attenuates hypoxia‑induced PAH in rats. miR‑1 antagomiR transfection inhibited the increases in the (A) mPAP, 
(B) RVSP, (C) RV/(LV+S) and (D) RV/TL in PAH model rats exposed to hypoxia. The results are presented as the mean ± SEM. n=10 in normoxia + NC 
antagomiR and normoxia + miR‑1 antagomiR groups and n=15 in hypoxia + NC antagomiR and hypoxia + miR‑1 antagomiR groups. *P<0.05 vs. normoxia + NC 
antagomiR; #P<0.05 vs. hypoxia + NC antagomiR. miR, microRNA; PAH, pulmonary arterial hypertension; mPAP, mean pulmonary arterial pressure; 
RVSP, right ventricle systolic pressure; RV, right ventricle; LV, left ventricle; S, interventricular septum; TL, tibia length; NC, negative control.
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Involvement of the PI3K/AKT signaling pathway in PAH. The 
expression levels of p‑PI3K/PI3K were upregulated in CFs 
exposed to hypoxia, and this increase was subsequently inhibited 
by miR‑1 antagomiR transfection. Furthermore, the expression 
levels of p‑AKT were also upregulated in CFs exposed to hypoxia 
compared with the normoxia CFs, and this increase was partially 
reversed following miR‑1 antagomiR transfection (Fig. 7).

Discussion

Hypoxia plays an initiating role in the pathogenesis of PAH. 
Numerous miRs have been found to be dysregulated in the 

lung and heart of PAH model rats under chronic hypoxic and 
monocrotaline (MCT) environments (30‑32). The results of 
the present study demonstrated that knocking down miR‑1 
expression attenuated PAH and RV fibrosis in PAH model 
rats, a process that was suggested to involve the PI3K/AKT 
signaling pathway.

PAH is refractory and devastating; however, there are 
currently no effective treatments available. miRNAs have 
emerged as novel targets for PAH treatment and numerous 
miRNAs play a role in the development of PAH (33). For example, 
one previous study reported that miR‑204 expression levels 
were downregulated in lung tissue from humans, mice and rats 

Figure 4. miR‑1 antagomiR attenuates RV fibrosis in hypoxia‑induced PAH model rats. (A) miR‑1 antagomiR transfection inhibits the increase in RV fibrosis 
in PAH model rats exposed to hypoxia. (B) miR‑1 antagomiR transfection inhibits the upregulated expression levels of collagen I, collagen III, α‑SMA 
and CTGF in the RV of PAH model rats exposed to hypoxia. The results are presented as the mean ± SEM. n=10 in the normoxia + NC antagomiR and 
normoxia + miR‑1 antagomiR groups and n=15 in the hypoxia + NC antagomiR and hypoxia + miR‑1 antagomiR groups. *P<0.05 vs. normoxia + NC antagomiR; 
#P<0.05 vs. hypoxia + NC antagomiR. Scale bar, 100 µm. miR, microRNA; RV, right ventricle; PAH, pulmonary arterial hypertension; SMA, smooth muscle 
actin; CTGF, connective tissue growth factor; NC, negative control.
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with PAH, and knocking down miR‑204 expression increased 
the proliferation and decreased the apoptosis of pulmonary 

artery smooth muscle cells in patients with PAH (34). The 
expression levels of miRNAs show model‑derived differences. 

Figure 5. miR‑1 antagomiR attenuates the fibrosis of CFs induced by hypoxia. miR‑1 antagomiR transfection inhibited the upregulation in the (A) mRNA 
and (B) protein expression levels of collagen I, collagen III, α‑SMA and CTGF in CFs induced by hypoxia. The results are presented as mean ± SEM. 
*P<0.05 vs. normoxia + NC antagomiR; #P<0.05 vs. hypoxia + NC antagomiR. miR, microRNA; CFs, cardiac fibroblasts; SMA, smooth muscle actin; 
CTCF, connective tissue growth factor; NC, negative control. 
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Figure 6. miR‑1 antagomiR attenuates the fibrosis in CFs isolated from PAH model rats. The expression levels of collagen I, collagen III, α‑SMA and CTGF 
in PCFs treated with NC antagomiR were upregulated compared with NCFs treated with NC antagomiR. These increases were subsequently inhibited by 
transfection with the miR‑1 antagomiR. The results are presented as the mean ± SEM. *P<0.05 vs. normoxia + NC antagomiR; #P<0.05 vs. hypoxia + NC 
antagomiR. miR, microRNA; CFs, cardiac fibroblasts; PAH, pulmonary arterial hypertension; SMA, smooth muscle actin; CTGF, connective tissue growth 
factor; NC, negative control; PCFs, CFs isolated from PAH model rats; NCFs, CFS isolated from normoxia rats.

Figure 7. Enhancement of PI3K/AKT signaling pathway is inhibited by miR‑1 antagomiR. (A) Representative western blotting of p‑PI3K, PI3K, p‑AKT and 
AKT expression levels. Expression levels of (B) p‑PI3K/PI3K and (C) p‑AKT/AKT were upregulated in CFs induced by hypoxia, and this increase was reversed 
by transfection with miR‑1 antagomiR. The results are presented as the mean ± SEM. *P<0.05 vs. normoxia + NC antagomiR; #P<0.05 vs. hypoxia + NC 
antagomiR. miR, microRNA; p‑, phosphorylated; NC, negative control; CFs, cardiac fibroblasts.
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For example, MCT and hypoxia induced consistent changes 
in miR‑30c and miR‑451, yet regulated miR‑22 and miR‑21 
differently, suggesting that hypoxia‑ and MCT‑induced PAH 
share some common elements relating to miRs regulation 
and differential regulation on miRs (31). The results of the 
present study revealed that the expression levels of miR‑1 in 
the RV were upregulated in rats with hypoxia‑induced PAH. In 
PAH model rats, mPAP and RVSP were also increased, while 
knocking down miR‑1 expression with an antagomiR reversed 
these increases in PAH model rats. These results suggested 
that the expression levels of miR‑1 may be dysregulated in 
the RV of PAH model rats, and that knocking down miR‑1 
expression may significantly attenuate PAH.

PAH exerts significant pressure on the RV, usually resulting 
in RV remodeling (35). Pathological hypertrophy is a feature 
of RV remodeling (36). Restoring the expression of miR‑223 
in the lungs of rats with MCT‑induced PAH provided benefi‑
cial effects on RV hypertrophy and vascular remodeling in a 
previous study (37). In the present study, RV hypertrophy was 
increased in PAH model rats exposed to hypoxia, as indicated 
by the increases in the RV/(LV+S) and RV/TL. Transfection 
with the miR‑1 antagomiR reversed these increases, indicating 
that knocking down miR‑1 may control RV hypertrophy in 
PAH model rats.

RV fibrosis is another feature of PAH‑induced RV 
remodeling, which is consistently observed in patients with 
PAH (38,39) and animal models (40,41). The present study 
found that the expression levels of collagen I, collagen III, 
α‑SMA and CTGF were upregulated in the RV of PAH 
model rats exposed to normoxia, and these increases were 
inhibited following miR‑1 antagomiR transfection. miR‑1 
antagomiR also attenuated the increases in the expression 
levels of collagen I, collagen III, α‑SMA and CTGF in CFs 
stimulated with hypoxia. Similarly, the expression levels of 
collagen I, collagen III, α‑SMA and CTGF in CFs from PAH 
model rats were upregulated, which were downregulated by 
miR‑1 antagomiR transfection. These results suggested that 
knocking down miR‑1 expression may reverse the fibrosis of 
RV in PAH model rats.

The PI3K/AKT signaling pathway plays a key role in 
the fibrosis of the heart (42). Cardiac fibroblast proliferation 
and migration following myocardial infarction were found 
to be regulated by the PTEN/PI3K/AKT/mTOR signaling 
pathway (20). PI3K/AKT signaling was also demonstrated 
to be necessary for hypoxia‑induced CF differentiation and 
extracellular matrix synthesis (43). The results of the present 
study reported that the expression levels of p‑PI3K were upreg‑
ulated in CFs exposed with hypoxia, while the transfection 
with the miR‑1 antagomiR partially inhibited this increase. 
Furthermore, the expression levels of p‑AKT were also upregu‑
lated in CFs exposed with hypoxia, and these expression levels 
were also reversed following miR‑1 antagomiR transfection. 
These results indicated that the PI3K/AKT signaling pathway 
may be involved in the regulation of miR‑1 in the cardiac 
fibrosis of PAH.

In conclusion, the findings of the present study suggested 
that knocking down miR‑1 expression may control PAH, and 
attenuate RV hypertrophy and fibrosis induced by PAH. The 
results indicated that these effects may occur via a regulatory 
mechanism that may involve the PI3K/AKT signaling pathway. 

Future studies should aim to analyze the expression levels 
of miR‑1 in patients with PAH to determine whether miR‑1 
expression is dysregulated. The present results suggested that 
miR‑1 may be a potential novel target for the treatment of PAH.
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