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Abstract. Circular RNAs (circRNAs) are a class of non‑coding 
RNAs formed by covalently closed loops through back‑splicing 
and exon‑skipping. circRNAs have been confirmed to play a vital 
role in various biological functions, acting as microRNA sponges 
and reservoirs, as well as combining with RNA‑binding proteins 
during the progression of multiple cancer types. Therefore, the 
present review evaluated recent research articles in PubMed that 
were published between November 2017 and September 2020. 
Key word search strings included: ‘Circular RNA (circRNA) 
AND bladder cancer  (BC)’, ‘circular RNA (circRNA) AND 
prostate cancer (PCa)’ and ‘circular RNA (circRNA) AND renal 
cell cancer (RCC)’. In total, >58 circRNAs were found to be 
implicated in urological cancers, with several of the circRNAs 
targeting common carcinogenic pathways, such as the AKT, 
TGF‑β, MAPK, VEGF and even metabolic pathways. circRNAs 
are important modulators of BC, PCa and RCC. circRNAs are 
functionally implicated in the pathogenesis of these cancer types, 
and have been found to act as biomarkers for the diagnosis and 
prognosis of urological cancer. However, to the best of our knowl‑
edge, the functions of circRNAs in tumors of the urinary system 
remain largely unknown and require further research.
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1. Introduction

Cancer is one of the leading cause of mortality worldwide; 
however, with incidences of cardiovascular disease decreasing 
in several countries, cancer is most likely to soon become 
the leading cause (1). According to estimates, there were 17.0 
million new cases and 9.5 million cancer‑related deaths world‑
wide in 2018, with bladder cancer (BC), prostate cancer (PCa) 
and renal cell cancer (RCC) ranking 12th, 3rd and  16th, 
respectively, in terms of global incidence (2). Surgical resec‑
tion is the most common treatment method for these diseases, 
but its effect remains unsatisfactory. For example, the recur‑
rence rates of BC and RCC are 50 and 40%, respectively (3,4). 
Furthermore, although 80% of newly diagnosed PCa cases are 
sensitive to androgen deprivation therapy, >50% of patients with 
PCa develop recurrence, infiltration or metastasis, or progress 
to hormone refractory PCa (5). Therefore, determining a new 
preventive and therapeutic target for these malignant tumors is 
an urgent requirement.

Circular RNAs (circRNAs), a class of non‑coding RNAs 
ubiquitous in the cytoplasm of various eukaryotic cells, 
commonly originate from back‑splicing events of exons or 
introns  (6). ‘Exon skipping’ and ‘direct back‑splicing’ are 
the two mechanisms that lead to the formation of exonic or 
exon‑intron circRNAs, in which the 3' and 5' ends of circRNAs 
are covalently joined together to form single‑stranded contin‑
uous loop structures, and can be regulated by certain splicing 
factors (Fig. 1). The outstanding characteristics of circRNAs 
include their marked stability, high abundance, evolutionary 
conservation and tissue‑specific expression (7). In addition, 
circRNAs are different from microRNAs (miRNAs/miR) 
and long non‑coding RNAs (lncRNAs), as they lack a 5'cap 
and a 3'polyadenylated tail, and they have the ability to 
encode regulatory peptides (8). To date, ~15,000 circRNAs 
have been identified in both humans and mice, representing 
15  and  40%  of the total circRNAs in humans and mice, 
respectively (9).

One of the main functions of circRNAs is to sponge 
miRNAs that regulate the function of target genes, with 
common features such as being derived from one or more 
exons of known protein‑coding genes and being formed by a 
back‑splice event. In addition, these circRNAs are predomi‑
nantly localized in the cytoplasm, occupying the same space 
as miRNAs (10). circRNAs also act as a reservoir for miRNAs, 
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which means that they can increase the availability of miRNAs 
for binding to and inhibiting their target mRNAs (Fig. 1) (11). 
Another study confirmed that circRNAs play crucial roles in 
tumor growth, metastasis, epithelial‑mesenchymal transition 
(EMT) and treatment resistance (12). However, the function 
of circRNAs in tumors of the urinary system remains unclear. 
The aim of the present review was to illustrate the roles of 
circRNAs in BC, PCa and RCC.

2. circRNAs in BC

circRNAs act as oncogenes in BC. circRNA‑miRNA‑mRNA 
interaction networks, as a major function of circRNAs, have 
been associated with cell signaling transduction in BC. For 
instance, the expression levels of TGF‑β2, Smad3 and phos‑
phorylated (p)‑Smad3 could be increased by circ_0005777 
(circRIP2), which reverses the miR‑1305‑induced suppres‑
sion of BC progression (Fig.  2)  (13). AKT signaling is 
another regulator of cancer metastasis. The expression of 
p‑AKT/PI3K was increased by circKIF4A (circ_0007255), 
which promoted BC growth and metastasis in  vitro and 
in vivo. circKIF4A could act as a sponge for miR‑375 and 
miR‑1231 to enhance the level of Notch2, which has been 
found to play an oncogenic role in BC (14). Likewise, Notch1, 
NICD‑1 and HES1, all downstream genes of the Notch 
signaling pathway, have been shown to be highly expressed 
in BCa and repressed by circ_0008532 and MTGR1. In addi‑
tion, circ_0008532 was shown to increase the progression of 
BC by regulating MTGR1 expression, an effect that could 
be reversed by miR‑155‑5p/miR‑330‑5p. circ_0008532 is 
derived from the MTGR1 gene (15). circ_0068871 produced 
at the fibroblast growth factor receptor 3 gene (FGFR3) was 
highly expressed in BC, activated p‑STAT3 and facilitated 
tumor development; however, its effects could be reversed 
by miR‑181a‑5p (16). The incidence and metastasis of BCa 
is 4‑fold higher in men compared with that in women, 
indicating that sex steroid pathways play a vital role in BC 
progression (2). Indeed, estrogen receptor α (ERα) exhibits 
low expression in BC, decreases the expression of epidermal 
growth factor receptor, and is mediated by circ_0023642 and 
miR‑490‑5p. Moreover, circ_0023642 was found to promote 
the metastasis of BC, but its effect could be inhibited by 
ERα (17).

Unlike healthy cells, tumor cells do not undergo apop‑
tosis when mitosis arrests, thus the dysfunction of mitosis 
and apoptosis participates in tumor progression  (18). For 
instance, kinesin family member  2C  (KIF2C), a mitotic 
centromere‑associated kinesin, is highly expressed in BC, is 
upregulated by circRGNEF (circ_0072995) and is downregu‑
lated by miR‑548; it also enhances tumor progression following 
circRGNEF upregulation or miR‑548 downregulation, and 
circ_0072995 is derived from the RGNEF gene (Table I) (19). 
Another study demonstrated that insulin‑like growth factor 
binding protein 2 (IGFBP2), a key anti‑apoptotic regulator, 
is upregulated by circVANGL1 or inhibited by miR‑1184 in 
BC. In addition, circVANGL1 facilitates tumor progression 
by upregulating IGFBP2, while its effect could be reversed 
by miR‑1184; circVANGL1 is derived from the VANGL1 
gene  (20). Notably, BC stem cells (BCSCs), which have 
self‑renewal and differentiation capacities, may contribute to 

the tumor initiation, metastasis, recurrence and drug resistance 
of BC (21). For example, circ_103809, which is derived from 
the zinc finger RNA‑binding protein gene, is highly expressed 
in BCSCs and has been shown to increase the cell oncosphere 
formation and aggressiveness of BC, and decrease the expres‑
sion of miR‑511 (22).

circRNAs can bind to numerous RNA‑binding proteins 
(RBPs), acting as protein sponges or decoys to regulate protein 
functions. Hypoxia‑inducible factor‑1α enhances the expres‑
sion of circ_403658, and promotes BC growth in vitro and 
in vivo. In addition, circ_403658 improves the expression of 
L‑lactate dehydrogenase A chain (LDHA), vascular endothe‑
lial growth factor and VEGF receptor in BC, and increases 
lactate production, LDH activity, ATP production and glucose 
uptake in tumor cells. LDHA serves as a key checkpoint of 
glycolysis (Fig. 2) (10). In addition, as a member of the zinc 
finger protein (ZNF) family, circZNF139 (circ_0001727) is 
derived from the ZNF139 gene, which is highly expressed in 
BC, and promotes tumor cell development by improving the 
level of p‑AKT and PI3K (23).

circRNAs act as tumor suppressors in BC. The abnormal 
activation of transcription factors promotes the prolifera‑
tion and differentiation of tumor cells (24). For instance, 
ΔNP63, a transcription factor of the p53 family, is 
upregulated by circ family with sequence similarity 
114  member  A2 (FAM114A2), thus suppressing the 
miR‑762‑induced growth of urothelial carcinoma of the 
bladder. circFAM114A2 (circ_0001546) is derived from 
the FAM114A2 gene (25). circ activin A receptor type 2A 
attenuates tumor growth and aggressiveness in vitro and 
in vivo by improving the expression of eye absent 4 (EYA4), 
and reduces miR‑626‑induced BC progression. EYA4 is 
a transcription factor  (26). A different study illustrated 
that Krüppel‑like factor (KLF)9 and KLF10, which are 
zinc finger transcription factors, repress the progress of 
miR‑636‑ and miR‑570‑3p‑induced BC through the upregu‑
lation of circ protein tyrosine phosphatase receptor type A 
and circFUT8 (circ_0003028), respectively (27,28). c‑Myc 
is a famous oncogene and transcription factor, that has been 
reported to participate in the progression of bladder cancer. 
For example, c‑Myc promotes the growth and mobility of 
BCSCs, an effect that could be improved by miR‑147 or 
repressed by circ_0068307; circ_0068307 is derived from 
the ALG3 α‑1,3‑mannosyltransferase gene (29). In addition, 
c‑Myc sabotages the G0/G1 phase of circ chromodomain 
Y‑like (CDYL)‑induced cell cycle arrest, consequently 
facilitating the progression of BC; circCDYL is generated 
from the CDYL gene (Table II) (7).

Abnormal cell signal transduction is closely associated with 
the occurrence of BC. For example, circ_0071662 abolishes the 
activation of AKT by increasing the expression of 15‑hydroxy‑
prostaglandin dehydrogenase, and inhibits BC development; 
however, its effect could be reversed by miR‑146‑3p  (30). 
Furthermore, the expression of PETN is upregulated by circ 
solute carrier family 8 member A1 (SLC8A1) or downregu‑
lated by miR‑130b/miR‑494 in BC. circSLC8A1 blocks BC 
progression by sponging miR‑130b/miR‑494, and impairs the 
expression of p‑AKT; circSLC8A1 (circ_0000994) is derived 
from the SLC8A1 gene (Fig. 2) (31). Another study showed 
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Figure 1. Functions of circRNAs. (A) circRNAs can act as miRNA sponges and subsequently regulate the expression of relevant target genes. (B) circRNAs 
can bind to several proteins and mediate their actions. (C) circRNAs can be translated into peptides or proteins. (D) circRNAs exist in the serum and other 
bodily fluids, and can function as molecular biomarkers for the diagnosis and treatment of cancer. ecircRNA, exonic circRNA; circRNA, circular RNA; AGO2, 
Argonaute‑2; RBP, RNA‑binding protein. 

Figure 2. Representative diagram of circRNAs that interact with the circRNA‑miRNA‑mRNA regulatory network/RBPs and regulate oncogene or tumor 
suppressor signaling pathways. The diagram mainly shows that circZNF139 and circKIF4A activate the AKT pathway through p‑AKT in BC, and that 
circFNTA, circ_403658 and circRIP2 activate the MAPK, metabolic and TGF‑β signaling pathways through p‑ERK, LDHA and miR‑1305/TGF‑β2, respec‑
tively, in BC. Furthermore, circ102004 and circZNF609 activate the MAPK and metabolic pathways through p‑EKT and miR‑186‑5p/AMPK, respectively, 
in PCa. Moreover, circMYLK, circTLK1 and circPRRC2A activate the VEGF pathway through miR‑513a‑5p/VEGFC, VEGFA and VEGFC, respectively, 
in RCC. By contrast, circSLC8A1 and circ5912 deactivate the AKT and TGF‑β pathways through miR‑130b/miR‑494/PTEN and TGF‑β2, respectively, in 
BC. In addition, circ_0001206 deactivates the TGF‑β pathway through miR‑1285‑5p/Smad4 in PCa, and circC3P1 deactivates the AKT pathway through 
miR‑21/PTEN in RCC, which suggests that the circRNA‑miRNA‑mRNA interaction networks and RBPs that sponge circRNA serve a critical role in BC, 
PCa and RCC progression through signaling pathways. circRNA, circular RNA; EMT, epithelial‑mesenchymal transition; RBP, RNA‑binding protein; PCa, 
prostate cancer; BC, bladder cancer; RCC, renal cell cancer; miR, microRNA.
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that circ_0006260 inhibits tumor progression by upregulating 
membrane‑associated ring finger 1 (MARCH1) in BC, an 
effect that could be reversed by miR‑653. MARCH1 belongs to 
the E3 ligase family (32). In addition, cyclin D1 and p21, which 
control the cell cycle, are upregulated by miR‑27a‑3p and 
miR‑1178‑3p, resulting in the facilitation of tumor progression. 
By contrast, circNR3C1 and circZKSCAN1 act as a sponge 
for miR‑27a‑3p and miR‑1178‑3p to repress the cell develop‑
ment induced by miR‑27a‑3p and miR‑1178‑3p, respectively, 
in BC (33,34).

EMT plays a crucial role in the metastasis of BC (35). 
Indeed, circ phosphatidylinositol binding clathrin assembly 
protein (PICALM) inhibits cell metastasis and reduces the 
expression of β‑catenin, vimentin, zinc finger E‑box binding 
homeobox 1 (ZEB1), Slug and N‑cadherin, which were found 
to be associated with EMT in BC; however, those effects could 
be reversed by miR‑1265. circPICALM is derived from the 
PICALM gene (36). Notably, circRNA acts as a double agent 
in BC. For instance, circ5912 sabotages tumor growth in vitro 
and in vivo, and reduces the TGF‑β2‑induced EMT process. In 
addition, circ5912 attenuates early stage cancer progression, 
but promotes cancer development following the occurrence of 
distant metastasis (Fig. 2) (37).

3. circRNAs in PCa

circRNAs act as an oncogene in PCa. The circRNA‑ 
miRNA‑mRNA axis plays a vital role in PCa progression. A 
disintegrin and metalloprotease 17, as a downstream of the 
Notch signaling pathway, was found to be highly expressed 
in PCa and to increase cell proliferation and invasion. 
Notably, its effect could be promoted by circ homeodo‑
main interacting protein kinase 3 (HIPK3) or impaired by 
miR‑338‑3p. circHIPK3 is derived from the HIPK3 gene (5). 
Another study demonstrated that circZNF609 enhances 
PCa cell growth and metastasis, and increases the ratio of 
p/total‑AMP‑activated protein kinase (AMPK) by upregu‑
lating miR‑186‑5p, which promoted tumor progression 
through the activation of the AMPK signaling pathway (38). 
Furthermore, forkhead box p4 (FOXP4), a member of the 
FOXO family, was found to promote PCa progression in vitro, 
an effect that could be reversed by miR‑1182 or enhanced by 
circ ATP‑binding cassette subfamily C member 4 (ABCC4). 
circABCC4 (circ_0030586) is derived from the ABCC4 gene 
(Table I) (39).

circRNAs also interact with RBPs in PCa. Fused in 
sarcoma (FUS), a nuclear DNA/RNA‑binding protein that 
regulates different steps of gene expression, acts as an onco‑
gene in multiple cancer types (40), is overexpressed in PCa, and 
by binding to circ0005276, upregulates X‑linked inhibitor of 
apoptosis (XIAP), the host gene of circ0005276. Furthermore, 
XIAP and circ0005276 enhance tumor growth and improve 
the expression of N‑cadherin in PCa (41). circHIPK3 facilitates 
the G2/M transition of PCa cells by modifying cell division 
cyclin 25, which causes G2/M cell cycle arrest (42). In addition, 
circ102004 promotes PCa tumor growth in vitro and in vivo 
by increasing the levels of p‑ERK, p‑AKT, p‑JNK, JNK and 
β‑catenin, which have been found to be positively correlated 
with tumor aggressiveness; circ102004 is derived from onco‑
gene ubiquitin‑specific peptidase 22 (Fig. 2) (43).

circRNAs act as a tumor suppressor in PCa. Previous 
evidence has confirmed that Smad4, as a central mediator of 
the TGF‑β signaling pathway, represses androgen receptor 
(AR) transactivation and exhibits low expression in PCa (44). 
circ_0001206 is derived from the CRKL gene, and was found 
to reduce PCa development by regulating Smad4; however, 
this effect could be reversed by miR‑1285‑5p (Fig. 2) (45). 
circRNA also acts as a reservoir for miRNA in PCa. For 
example, circRNA17 (circ_0001427) enhances the function of 
miR‑181c‑5p to suppress AR‑splicing variant 7 (ARv7) expres‑
sion and improves the ability of miR‑181c‑5p to inhibit tumor 
progression. ARv7 has been found to be positively correlated 
with enzalutamide resistance in PCa (11).

circRNA can both sponge miRNA and interact with 
RBPs in PCa. For instance, P53 and RNA‑binding protein 25 
(RBM25; a transcriptional target of p53) increase the expres‑
sion of circ_000350 [circ angiomotin‑like 1 (circAMOTL1L)] 
in PCa. circAMOTL1L and RBM25 impair cell mobility 
and diminish the level of vimentin and β‑catenin in PCa. 
circAMOTL1L is derived from the AMOTL1 gene. In addi‑
tion, circAMOTL1L inhibits tumor growth and enhances the 
expression of protocadherin α8 (Pcdha8) in PCa; however, 
these effects could be reversed by upregulating miR‑193a‑5p 
or depleting p53. Pcdha8 is a tumor suppressor and a member 
of a subset of the cadherin superfamily (Table II) (46). In 
addition, circ itchy E3 ubiquitin protein ligase‑overexpres‑
sion reduces PCa growth by sponging miR‑17‑5p to rescue 
the degradation of homeobox protein Hox‑B13 (HOXB13) 
in vitro and in vivo (47). HOXB13 has been verified to act as 
an oncogene in PCa.

4. circRNAs in RCC

circRNAs act as an oncogene in RCC. The activation of the 
EMT process and VEGF signaling pathway contributes to 
tumor initiation (48). The expression of ZEB2 is upregulated 
by circ pecanex 2 (PCNXL2) or downregulated by miR‑153 
in RCC. In addition, circPCNXL2 (circ_406752) is derived 
from the PCNXL2 gene, and enhances tumor growth in vitro 
and in vivo, while its effect can be reversed by miR‑153 (49). 
The expression of N‑cadherin, Snail and vimentin could be 
increased by circ proline rich coiled‑coil 2A (PRRC2A) and 
circ myosin light chain kinase (MYLK), which abolish the 
tumor suppression effect of miR‑514a‑5p/miR‑6776‑5p and 
miR‑513a‑5p, respectively, in RCC. In addition, circPRRC2A 
and circMYLK have been shown to facilitate tumor progres‑
sion by upregulating transient receptor potential cation 
channel subfamily  M member  3 (TRPM3) and VEGFC, 
respectively. TRPM3 has been reported to act as an onco‑
gene in metastatic RCC. VEGFC is a member of the VEGF 
family and circPRRC2A is derived from the PRRC2A 
gene (Fig. 2) (50,51). Chromobox 4, as a SUMO E3 ligase, 
upregulates the level of VEGFA, and represses cell growth 
and metastasis in RCC following circTLK1‑silencing or 
miR‑136‑5p‑overexpression. Circ tousled‑like kinase  2 
(TLK1; circ_0004442) is derived from the back‑splicing of 
the TLK1 mRNA (52).

The abnormal activation of transcription factors 
promotes the proliferation and differentiation of tumor 
cells  (24). For example, SRY‑box transcription factor 12 
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(SOX‑12), which was overexpressed in ccRCC, was upregu‑
lated by circ_001895 or downregulated by miR‑296‑5p. 
Furthermore, the high expression of circ_001895 led to 
increased tumor growth and metastasis by regulating 
SOX‑12, and improving the expression of N‑cadherin, 
while those effects could be reversed by miR‑296‑5p (53). 
The interferon regulatory factors  (IRFs) are a family of 
master transcription factors that regulate pathogen‑induced 
innate and acquired immune responses (54). By contrast, 
the IRF7 overexpression in RCC was found to facilitate 
tumor progression in vitro, and to be increased by circ‑egl‑9 
family hypoxia inducible factor 3 (EGLN3) or repressed by 
miR‑1299; circ‑EGLN3 (circ_0031594) is derived from the 
EGLN3 gene (Table I) (55).

circRNAs act as tumor suppressors in RCC. Cell signaling 
transduction plays a vital role in the occurrence of RCC. 
circ complement component 3 precursor pseudogene (C3P1) 
is derived from exons 27‑29 of the complement component 
3 precursor pseudogene, decreases the ratio of p/total‑PI3K, 
p/t‑AKT, p/total‑p65 and p/total‑IκBα, promotes the expres‑
sion of Bcl‑2, cleaved caspase‑3 and cleaved caspase‑9, 
and consequently inhibits tumor progression in kidney 
cancer. These circC3P1‑induced effects could be reversed 
by the upregulation of miR‑21 through targeting PTEN 
in RCC (Fig. 2) (56). FOXK2 was found to translocate to 
the nucleus, be dependent on the AKT‑mTOR signaling 
pathway, be expressed at a low level in ccRCC, and impair 
tumor cell proliferation and metastasis; however, its effect 
could be enhanced by circ_0001846 or attenuated by 
miR‑148a‑3p (57).

Notably, circRNAs can sponge miRNAs to protect RBP 
degradation in RCC. The overexpression of circ‑AKT3 leads 
to the inhibition of tumor growth and metastasis, and sponges 
miR‑296‑3p to avoid the mRNA degradation of E‑cadherin. 
circ‑AKT3 (circ_0017252) is derived from the AKT3 gene 
locus  (58). circ Rap guanine nucleotide exchange factor 5 
(RAPGEF5; circ_0001681) is derived from the RAPGEF5 
gene, and could be upregulated by thioredxin interacting 
protein (TXNIP) or downregulated by miR‑27a‑3p in RCC 
cells. circRAPGEF5 overexpression leads to a repres‑
sive effect on the progression and aggressiveness of RCC 
by upregulating TXNIP; however, these effects could be 
reversed by miR‑27a‑3p. In addition, patients with RCC and 
high circRAPGEF5 expression have been associated with an 
improved overall survival (OS) and recurrence‑free survival 
(RFS) rate (Table II) (59).

5. circRNAs act as biomarkers for the diagnosis and prog-
nosis of BC, PCa and RCC

In the past few decades, tumor diagnosis and prognosis have 
largely depended on radiography testing and pathological 
examinations. Nowadays, circRNA also acts as a biomarker 
for the diagnosis and prognosis of urological neoplasms. For 
example, circEGLN3 can distinguish ccRCC from normal 
tissues with 97% accuracy (60). circRNAs abundantly exist in 
exosomes of patients with urological cancer, which indicates 
that they can play a diagnostic role in liquid biopsies. The level 
of circ protein tyrosine kinase 2 (circ_0003221) was increased 

in the lymph nodes of a nude mouse model and in vivo, as well 
as in the blood of patients with BC, and promoted the progres‑
sion of BC (61). Similarly, the expression of circ_0044516, 
circFOXO3 and circ formin 2 (circ_0005100) was increased in 
the blood of patients with PCa, and promoted tumor progres‑
sion by sponging miR‑29a‑3p and miR‑1238, respectively 
(Table I) (62‑64).

circ protein arginine methyltransferase 5 (PRMT5; 
circ_101320) and circ_0001445 have been shown to facilitate 
the progression of BC by sponging miR‑30c and miR‑107, 
respectively. Furthermore, patients with BC and a high level 
of circPRMT5 and circ_0001445 displayed poor disease‑free 
survival (DFS) and OS rate  (65,66). The overexpression 
of circ_0085576 has been shown to increase RCC tumor 
progression following Yes1‑associated transcriptional 
regulator upregulation and miR‑498‑silencing. In addition, 
patients with ccRCC and a high level of circ_0085576 had 
a poor OS and DFS rate; circ_0085576 is derived from the 
ArfGAP with SH3 domain ankyrin repeat and PH domain 
1 gene (67). By contrast, circ_0004826 and circ_0077837, 
which are spliced from the utrophin and erythrocyte 
membrane protein band 4.1‑like 2 genes, respectively, are 
usually expressed at a low level in BC, inhibit tumor cell 
development and act as a biomarker for OS and RFS in 
patients with BC (Table II) (68). circRNAs can also act as 
biomarkers for the effect of drug treatment. circ_0004870 
is an exonic circRNA located on chromosome 20, which has 
been found to be downregulated in enzalutamide‑resistant 
cells and expressed at a low level in an AR‑positive cell line 
(LNCaP clone 1/9), thus acting as a biomarker for the effect 
of enzalutamide treatment in PCa (69)

6. circRNAs act as therapeutic targets for BC, PCa and 
RCC

The overexpression of circ_0084171 and circELP3 result in an 
increase in tumor growth and promotion of cisplatin resistance 
in BC. In addition, circ_0084171 improves the expression of 
p‑ERK1/2 and p‑MEK1/2 in BC, while those effects could 
be reversed by miR‑370‑3p (Fig.  2)  (70,71). Furthermore, 
circ_0039569 is derived from the C‑C motif chemokine 
ligand 22 (CCL22) gene, is highly expressed in RCC and 
promotes tumor development after sponging miR‑34a‑5p 
or over‑regulating CCL22. Furthermore, the inhibition of 
circ_0039569 may enhance the drug sensitivity of RCC cells; 
however, the study suggesting this did not provide any details 
to prove it (Table II) (72).

By contrast, the overexpression of CDR1 antisense RNA 
(Cdr1as; circ_0001946) and circ‑Foxo3 has been shown to 
increase cell apoptosis and decrease cisplatin chemoresistance 
reduced by miR‑1270 and miR‑191 in BC, consequently 
suppressing tumor development. circ‑Foxo3 is derived from 
FOXO3 mRNA, and Cdr1as is formed by back‑splicing of 
the cerebellar degeneration‑related protein 1 gene (73,74). A 
different study illustrated that the overexpression of circHIPK3 
has been shown to lead to an increased sensitization of BC 
cells to gemcitabine and act as a biomarker for DFS in patients 
with BC (75). In addition, the apoptosis and chemosensitivity 
of docetaxel in androgen‑dependent PCa cells could be 
increased by the overexpression of circFoxo3. Furthermore, 
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the upregulation of circfoxo3 enhanced the chemosensitivity 
of PCa‑bearing mice to docetaxel and prolonged the life span 
of these mice (Table II) (76).

7. Conclusion

In conclusion, circRNAs, as a family of non‑coding RNAs that 
can form a loop with joined 3'heads and 5'tails, are character‑
ized by abundant, highly stable, evolutionarily conserved and 
tissue‑specific expression. Several studies have shown that 
circRNAs play a crucial role in tumor growth, metastasis and 
treatment resistance (12). circRNAs have shown an ability to 
help determine the pathogenesis, and serve as a biomarker for 
the diagnosis and prognosis, of urological cancer. Clinical trials 
using treatment and diagnostic methods involving circRNAs are 
now being conducted, including trials in hepatocellular carci‑
noma and myocardial infarction (77,78). However, a number of 
limitations in the recently published studies of circRNAs were 
identified. For example, circZNF139 and circ‑ZKSCAN1 are 
identical circRNAs that are known as circ_0001727, but display 
opposite roles in BC (23,34). In addition, circ‑Foxo3 serves as 
both an oncogene and tumor suppressor in PCa (63,76), and 
circ5912 serves as a double agent in BC (37). Therefore, the 
function of circRNAs in tumors of the urinary system remains 
largely unclear and further research is required.
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