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Abstract.Programmedcelldeathprotein-1 (PD-1)/programmed
death protein ligand-1 (PD-L1) inhibitors for treatment
of a various types of cancers have revolutionized cancer
immunotherapy. However, PD-1/PD-L1 inhibitors are asso-
ciated with a low response rate and are only effective on a
small number of patients with cancer. Development of an
anti-PD-1/PD-L1 sensitizer for improving response rate and
effectiveness of immunotherapy is a challenge. The present
study reviews the synergistic effects of PD-1/PD-L1 inhibitor
with oncolytic virus, tumor vaccine, molecular targeted drugs,
immunotherapy, chemotherapy, radiotherapy, intestinal flora
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and traditional Chinese medicine, to provide information for
development of effective combination therapies.
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1. Introduction

Advances in immunotherapy have revolutionized cancer
therapy. Programmed death receptor-1 [programmed cell
death protein 1 (PD-1)] and programmed death protein
ligand-1 [programmed death-ligand 1 (PD-L1)] inhibitors,
have improved tumor therapy in cancer immunotherapy (1).
The combination of PD-1 and PD-L1 inhibits the activity of
T cells and act as the ‘brake’ of immunity, thereby preventing
effector immune cells from killing cancer cells (2). Common
PD-1/PD-L1 inhibitors in clinical used include Nivolumab,
Pembrolizumab, Atezolizumab, Durvalumab and Avelumab (3).
PD-1/PD-LI inhibitors block PD-1/PD-L1 pathway to restore
normal immune function of T cells. Effector T cells play a role
in recognizing and killing tumors (4). Various PD-1/PD-L1
inhibitors have been approved by the United States Food and
Drug Administration (US FDA) for the treatment of various
tumors (5). PD-1/PD-LI inhibitors are characterized by high
efficacy and fewer adverse events (6). However, PD-1/PD-LI
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inhibitors are associated with low response rate when used as
a monotherapy with few patients meeting the treatment condi-
tions and the high cost of treatment (7). In addition, immune
regulatory signaling pathways are complex, so even those
patients who are initially sensitive to PD-1/PD-L1 therapy
may develop resistance or relapse. Therefore, there is need
to develop approaches to improve sensitivity of PD-1/PD-LI
inhibitors (8).

Tumor-related gene deletions and mutations are impli-
cated in anti-PD-1/PD-LI resistance (9). For example, Janus
kinase (JAK)1, JAK2 and (32 microglobulin mutations cause
antigen presentation barriers, which induce CD8-infiltrated
T cells to lose major histocompatibility complex (MHC) I
and reduce sensitivity to IFN-y (10). Mutation or activation
of epidermal growth factor receptor (EGFR), T cell immu-
noglobulin mucin 3 (Tim-3), lymphocyte activation gene-3
(LAG-3), T cell Ig and ITIM domain (TIGIT) and other
T cell depletion-related protein receptors results in a gradual
loss of T cell proliferative potential and effector function,
thus inducing drug resistance against PD-1 inhibitors (11-13).
Immune checkpoint inhibitors (ICIs) inhibit checkpoints of
the immune system rather than directly enhancing immune
function. A single ICI is not effective in activating immune
response. Therefore, there is a requirement to explore novel
alternative strategies and personalized immunotherapy strat-
egies through a combination of PD-1/PD-L1 inhibitors with
small molecular targets, chemotherapy and radiotherapy to
improve sensitivity to activated anti-tumor immune response
and the response rate of patients and solve the bottleneck of
drug resistance (14). The present study summarizes previous
studies on the anti-tumor effects of PD-1/PD-LI inhibitors
combination therapy to provide information for clinical and
basic research (Fig. 1).

2. Combination of oncolytic virus (OVs) with PD-1/PD-L1
inhibitors

Tumor virus therapy induces immunogenic death on
target cells and induces immune response by releasing
pathogen-associated molecular pattern and damage-asso-
ciated molecular pattern (15,16). As a result, tumor virus
therapy improves the sensitivity of tumor cells to immu-
notherapy thus improving therapeutic effect. OVs mediates
clearance of cancer cells or killing of cancer cells by targeting
the tumor vascular system and inducing immunity (17).
Talimogene laherparepvec, a herpes simplex virus expressing
granulocyte-macrophage colony stimulating factor, was the
first US FDA approved oncolytic therapy (18). Local intratu-
moral injection of the virus into tumors improves the overall
survival rate of patients (19). A previous study (7) reported
on the treatment of 21 patients with advanced melanoma with
Talimogene laherparepvec combined with Pembrolizumab.
The study report that therapy was well tolerated, with fatigue,
fevers and chills as the common adverse events. The therapy
showed no dose-dependent toxic reaction and an objec-
tive response rate (ORR) of 62%. Patients who responded
to the combination therapy showed an increase number of
CD8+T cells (7). Vaccinia virus is a highly immunogenic
oncolytic immunotherapy vector (20,21). Previous studies
report that vaccinia virus attracts effector T cells in mouse

model of colorectal cancer and ovarian cancer (22,23).
A combination of vaccinia virus with PD-L1 inhibitor
enhances the infiltration of effector CD4+ and CD8+T cells
and increases granzyme B, ICOS, perforin and IFN-vy, thus
improving the survival rate (23).

PD-1/PD-L1 drug resistance is a main challenge, there-
fore, studies are required to explore novel approaches to
improve immunogenicity of tumors and overcome resistance
to immunotherapy (8). Rotavirus vaccine has immuno-
stimulatory and anti-tumor effects (24). Administration
of rotavirus in tumors overcomes drug resistance against
PD-L1 inhibitors and has a synergistic effect with PD-L1
inhibitors. Heat- and UV-inactivated rotaviruses have no
oncolytic activity but offer a synergistic effect with immune
checkpoint-targeted antibodies through upregulation of
the double-stranded RNA receptor retinoic acid-induced
gene 1 (25). Rotaviruses have been used clinically and
can be used for clinical sensitization of anti-PD-1/PD-L1
therapy (25) (Table I).

3.Combination of cancer vaccine with PD-1/PD-L1 inhibitors

Tumor vaccine enhances immunogenicity and activates the
immune system of the patient, thus controlling or eliminating
tumors (26). DNA vaccine, a universal and personalized cancer
treatment containing multiple new antigen coding sequences,
is ideal for new antigen vaccination (27). DNA vaccine induces
Cytotoxicity of CD8 T cells. A single dose of DNA vaccine
combined with anti-PD-1 treatment significantly delays tumor
growth in tumor-bearing mice inoculated with MC38 colon
cancer cell line and some of the tumors are cleared completely,
with a cure rate of 25%, and this indicates that tumor vaccine
works synergistically with immune checkpoint blocking
therapy (28).

Lmdd-MPFG vaccine promotes expression of PD-L1 in
HCC cells but re-sensitizes tumor local T cell to respond to
anti-PD-1 immunotherapy (29). Lmdd-MPFG vaccine activates
NF-«kB pathway and autophagy pathway in tumor-associated
macrophages (TAMS). In addition, it converts M2 TAMS to
M1 and induces the expression of antineoplastic factors, thus
restoring T cell response to PD-1 inhibitors (29). Lmdd-MPFG
vaccine acts synergistically with PD-1 inhibitors in treatment
of liver cancer (29).

The tumor vaccine OVA @ Mn-DAP with nano-scale
coordination polymer as a carrier, prepared from Mn?* ions,
Nodl1 agonist and DAP as organic ligands, promotes matu-
ration of dendritic cells and cross-presentation of antigens.
Further, it prevents occurrence of B16-OVA tumors and
works synergistically with PD-1 inhibitors to inhibit tumor
growth (30).

Nivolumab combined with a multi-peptide vaccine (gp100,
MART-1 and NY-ESO-1 with Montanide ISA 51 VG) was
investigated as adjuvant therapy in resected stage I1IC and IV
melanoma patients (31). The study findings showed that the
treatment strategy was well tolerated. Common adverse events
observed included fatigue, rash/pruritus, nausea/diarrhea,
arthralgias and endocrinopathies. Although related grade 3
events occurred in 4 out of 33 patients, they were manage-
able. Notably, the combination therapy significantly increases
CD8+ T-cell levels and decreases PD-1 expressing T-cells. In
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Figure 1. Schematic diagram of combined treatment regimen for PD-1/PD-L1 inhibitors. PD-1, programmed cell death protein-1; PD-LI, programmed death

protein ligand-1.

addition, significant increases in CD25+ regulatory T cells
(Tregs)/CTLA4+/CD4+ T-cell populations are observed with
anti-PD-1 therapy (31). These findings imply that synergistic
activity of nivolumab and anti-PD-1 therapy is mediated
through CTLA-4 and/or Tregs (32).

A previous phase I study (33) evaluated a vaccine that
targets <20 predicted personal tumor neoantigens in patients
with previously untreated high-risk melanoma following
surgical resection. In that study, vaccine-induced polyfunc-
tional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%)
of the 97 unique neoantigens used across patients, respectively.
These T cells discriminated mutated antigens from wild-type
antigens and recognized autologous tumors. Out of the six
vaccinated patients, four showed no recurrence at 25 months
following vaccination, whereas two showed recurrent disease
and were subsequently treated with anti-PD-1 (pembroli-
zumab) therapy achieving complete tumor regression, with the
expansion of a repertoire of neoantigen-specific T cells (33).

A previous study (34) explored the synergistic effect
of a vaccine targeting HER2A16 on anti-PD-1 therapy in
enhancing antitumor immunity in a model of advanced HER2*
breast cancer. HER2A16 is a critical oncogenic pathway and
spontaneous tumors driven by HER2A16 are reflective of
clinically advanced immunosuppressive HER2* breast cancer.
Endogenous HER2A16* breast cancers show no response to
anti-PD-1 as a single agent. Treatment with anti-PD-1 is not
effective in increasing systemic anti-HER?2 T-cell responses.
However, combination of anti-PD-1 with Ad-HER2A16-KI
significantly increases survival rate, with ~30% of mice exhib-
iting complete tumor regression and long-term tumor-free
survival. These findings show that vaccinated mice are char-
acterized by a high IFN-y gene signature score. In addition,

the results show that HER2A16 vaccination induces systemic
adaptive immune responses and increases HER2-specific
CDS8 T cells that infiltrate into tumors. Therefore, addition
of anti-PD-1 effectively induces HER2-specific T cells in
TME (34) (Table II).

4. Combination of molecular targeting drugs with
PD-1/PD-L1 inhibitors

Combined application of vascular endothelial growth factor
(VEGF) and PD-1/PD-L] inhibitors. VEGF is an angiogenic
factor that regulates the growth and survival of vascular
endothelial cells, thereby causing immunosuppression (35)
(Fig. 2). VEGF inhibitors are used to prevent angiogenesis and
to promote differentiation of immune cells. Co-blocking of
PD-1 and VEGF enhances efficacy of PD-1 inhibition (36). A
clinical trial showed that the combination of VEGF and PD-1
inhibitors is effective in cancer treatment (NCT01472081) (37).
Another study reported that PD-L1 inhibitors combined with
VEGEF receptor 2 (R2) small molecule inhibitors significantly
downregulated the expression levels of PD-1 and PD-LI,
and inhibited tumor growth by increasing tumor infiltrating
lymphocytes (TILs) and decreasing Tregs and myeloid-derived
suppressor cells (MDSCs) (38).

Bevacizumab was the first antiangiogenic drug and vascular
modulator used for clinical treatment of solid tumors (39).
Bevacizumab binds to vascular endothelial growth factor
A, blocks interaction of its receptor VEGFR-1/VEGFR-2,
induces tumor vascular degradation and inhibits tumor
growth. Bevacizumab confers immunomodulatory effects
by inhibiting VEGF and promoting DC maturation (40). In
addition, it reverses immunosuppression by increasing T cell
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Table I. Combination therapy of oncolytic viruses with PD-1/PD-L1 inhibitors.

Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Ribas et al, 2017 Talimogene laherparepvec + Pembrolizumab ~ ORR 62% @)
CD8+ T cells Increased
Liu et al, 2017 Vaccinia virus + Anti-PD-L1 Tumor burden Reduced 23)
Survival rate Improved
Granzyme B, Perforin, IFN-y, Increased
1COS, Effector CD4+ and
CD8+T cells
Shekarian et al, 2019  Rotavirus vaccine + Anti-PD-L1 Tumor size Reduced 25)
Percent survival Improved
PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.
Table II. Combination of cancer vaccines with PD-1/PD-L1 inhibitors.
Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Tondini et al,2019 DNA vaccine + Anti-PD-1 Tumor growth Delayed (28)
Cure rate 25%
Xu et al, 2020 Anti-PD-1 + Lmdd-MPFG vaccine Percent survival Prolonged (29)
Tumor volume Retardation
TAMS Converted M2 TAMS to M1
PD-L1 Promoted
Zhao et al,2019 OVA@Mn-DAP vaccine + Anti-PD-1  Tumor-infiltrating Increased (30)
lymphocytes
Tumor size Inhibited
Percent survival Prolonged
Gibney e al,2015  Nivolumab + A multi-peptide vaccine =~ CD8+/CD25+Treg/ Increased (€2))]
CTLA4+/CD4+ T-cells
PD-1 Decreased
Crosby et al,2020  Ad-HER2D16-KI + Anti-PD-1 vs. Survival Prolonged (34)
Anti-PD-1 IFN-vy Increased

PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.

infiltration. Furthermore, it enhances anti-tumor activity of
PD-L1 antibody Atezolizumab (41). Phase III randomized
controlled trials showed that Atezolizumab combined with
chemotherapy and Bevacizumab improves progression-free
survival (PFS) and overall survival (OS) of patients with
metastatic NSCLC. Moreover, Bevacizumab monoclonal
antibody increases sensitivity of Atezolizumab therapy (42)
(Table II1).

Combined application of EGFR and PD-1/PD-LI inhibitors.
EGFR is a transmembrane tyrosine kinase receptor, implicated
in tumor cell proliferation, invasion and metastatic angiogen-
esis (43) (Fig. 2). EGFR tyrosine kinase inhibitor (EGFR-TKI)
inhibits EGFR, reduces T cell apoptosis and increases produc-
tion of IFN-y (44). However, most patients develop acquired drug
resistance following EGFR-TKIs treatment (45). Activation of

EGFR pathway during tumorigenesis induces tumor immune
escape mediated by PD-L1 (46). A previous study has explored
the combination of PD-1/PD-L1 inhibitors and EGFR-TKIs
for clinical use. Efficacy of PD-1/PD-LI inhibitors combined
with EGFR-TKIs in treatment of advanced EGFR mutant
NSCLC has not yet been fully explored. Advanced patients
with NSCLC and acquired tolerance to first or second genera-
tion of EGFR-TKIs should be treated with third generation
of EGFR-TKIs before PD-1/PD-L1 inhibitors in case of a
T790M mutation (47). In EGFR-TKIs-resistant EGFR mutant
NSCLC, positive expression rate of PD-L1 in T790M negative
patients was higher compared with that in T790M-positive
patients (48). T790M negative patients were more sensitive to
anti-PD-1 therapy after EGFR-TKIs treatment (48). Another
clinical study reports that patients with advanced NSCLC and
EGFR mutations show immune responses to PD-1/PD-L1
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inhibitors following EGFR-TKIs pretreatment and chemo-
therapy (49).

However, a clinical study reports that EGFR inhibitors do
not improve sensitivity to PD-1/PD-L1 inhibitors. Phase I/II
clinical trials (NCT02039674; keynoteo-021) explored effect
Erlotinib or Gefitinib combined with Pembrolizumab for
treatment of advanced NSCLC patients with EGFR sensitive
mutations. The results showed that combination of these drugs
could not improve efficacy and showed no synergistic effect
with Pembrolizumab in killing tumor cells (50) (Table I1I).

Combined application of indoleamine 2,3-dioxygenase (IDO)
and PD-1/PD-L1 inhibitors. IDO is a rate-limiting enzyme
that breaks down tryptophan, reduces the number and
activity of CDS8T cells and is implicated in immunosuppres-
sion (Fig. 2). Increase in IDO activity is associated with poor
clinical efficacy of PD-1 inhibitors (51). A clinical trial on
immunotherapy combined with IDO inhibitors showed high
efficacy. A combination therapy of Bms-986205, a potent
oral IDO1 inhibitor and Nivolumab resulted in grade 1-2
toxicities with the exception of 3 cases of grade 3 hepatitis,
rash and hypophosphatemia (52). Phase II clinical trials of
the effect of Indoximod, an IDO inhibitor on melanoma
(NCTO02073123) (53), pancreatic cancer (NCT02077881) (54)
and castrated prostate cancer (NCTO01560923) (55) are
underway with promising results. The ORR of melanoma
patients treated with Indoximod combined with Ipilimumab,
Nivolumab or Pembrolizumab was 52% (56). Epacadostat,
an oral drug targeting IDO pathway is in phase I/II clinical
trials (NCT 02327078, NCT 02178722) for treatment of
multiple malignant tumors. Preliminary results show that
ORR for melanoma is 75 and 4% for colorectal cancer. A
combination with Pembrolizumab is relatively safe, however
3% of patients stopped treatment due to adverse events (57)
(Table I11).

Combined application of LAG3and PD-1/PD-LI1 inhibitors.
LAGS3 serves a protective role in autoimmunity through direct
inhibition of T-helper (Th) cell response by MHCII. LAG3 has
a negative regulatory effect on T cells. Continuous exposure of
antigens in tumor microenvironment leads to sustained expres-
sion of LAG3 (58) (Fig. 2). LAG3 and PD-1 have synergistic
effects, and a previous study has recently explored combined
immunotherapy for LAG3 and PD-1 (12).

A combination of anti-LAG3 and PD-1 inhibitors yielded a
100% tumor clearance in an EG7 lymphoma model, whereas
tumor clearance rate in mice treated with PD-1 inhibitors alone
was 50% (59). Targeted inhibition of LAG3 and PD-1 showed
significant tumor regression in B16-F10 recurrent melanoma
model (60).

These findings show that LAG3 and PD-1 acts synergisti-
cally. Bispecific LAG3/PDI1 antibodies are being developed
to improve efficacy of PD-1 inhibitor monotherapy by inhib-
iting both LAG3 and PD-1 (61). BMS-986016 was the first
anti-LAG3mAb to be developed. The first phase of I/I1a trial
has been launched to evaluate efficacy of LAG3 inhibitors
combined with Nivolumab in treatment of advanced malig-
nant tumors (NCT01968109) (62). Merck conducted a phase I
clinical trial of anti-LAG3 monoclonal antibody (MK-4280)
to evaluate safety and tolerance of the drug (63). MK-4280
combined with PD-1 blocker (Pbrobrolizumab) is currently
under clinical trial of 70 patients with metastatic solid tumors
(NCT02720068) (58) (Table III).

Combined application of Tim-3 and PD-1/PD-LI inhibitors.
Overexpression of Tim-3 is positively associated with poor
prognosis of lung, gastric, prostate and cervical cancer (64).
Interaction between Tim-3 on effector T cells and Galectin-9
on tumor cells induces T cell apoptosis and suppresses immune
response (Fig. 2). Blocking Tim-3 enhances T cell prolifera-
tion and immune function (65). Tim-3 is highly expressed in
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Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Zhao et al,2019 PD-L1 inhibitors + VEGFR2  TILs Increased (38)
small molecule inhibitors TAMs, MDSC:s, Hindered
(apatinib) TGF-3, Tumor growth Decreased
Survival Prolonged
Reck er al, 2019 Anti-PD-L1+ Bevacizuma+  PFS 10.2 months vs. 6.9 months 42)
Chemotherapy vs. (0N} 13.3 months vs. 9.4 months
Bevacizuma + Chemotherapy
Haratani et al, 2017 PD-1/PD-L1 inhibitors+ ORR T790M-negative patients (24%) 48)
EGFR-TKIs vs. T790M-positive patients (13%)
Yang et al, 2019 Pembrolizumab + Erlotinib ORR 41.7% vs. 14.3% (50)
vs. Pembrolizumab+ PFS 19.5 months vs. 1.4 months
Gefitinib
Siu et al, 2017 IDO1 inhibitor Safety All treatment-related adverse (52)
(BMS-986205) + Nivolumab events were grade 1/2 except
vs. BMS-986205 three grade 3 toxicities
Zakharia et al,2016 IDO inhibitor (Indoximod) + ORR 52% (56)
Ipilimumab, Nivolumab or
Pembrolizumab
Hamid et al, 2017 IDO inhibitor (Epacadostat) ORR 75% of melanoma and 4% of 57
+ Pembrolizumab colorectal cancer
Huang et al, 2015 Anti-LAG3 + Anti-PD-1 vs.  Tumor clearance 100% vs. 50% 59)
Anti-PD-1
Goding et al,2013  Anti-PD-L1 + anti-LAG-3 Tumor area Reduced (60)
antibodies
Sakuishi ef al,2010  Co-blocking Tim-3 and PD-1 Tumor Size Reduced 67)
pathways
Friedlaender et al, ~ Co-blocking Tim-3 and PD-1 ~ An ongoing Anti-tumor study of TIM3 and 1)
2019 pathways phase I trials PD-L1 inhibitors is under way
(NCT03099109; NCT02608268)
Davar et al, 2018 Anti-Tim-3(TSR-022)+ PR 1 case of 11 evaluable patients (72)
anti-PD-1(TSR-042) with 100 mg dose vs. 3 cases
of 20 evaluable patients with
300 mg dose
SD 3 cases of 11 evaluable patients
with 100 mg dose vs. 8 cases of
20 evaluable patients with
300 mg dose
Chauvin et al,2015  Anti-TIGIT+ anti-PD-1 vs. NY-ESO-1-specific CD8+ Anti-TIGIT+ anti-PD-1>anti- (74)
anti-TIGIT vs. anti-PD-1 T cell TIGIT/anti-PD-1
Johnston et al, 2014  Anti-TIGIT + anti-PD-L1 vs. Tumor volume Anti-TIGIT+ anti-PD-L1 (76)
anti-TIGIT vs. anti-PD-L1 <anti-TIGIT/anti-PD-L1
Percent survival Anti-TIGIT+ anti-PD-L1
>anti-TIGIT/anti-PD-L1
Morales-Kastresana Combination of anti-4-1BB,  Survival Extended (80)
etal,2013 anti-OX40 and anti-PD-L1 Tumor-infiltrating Increased
lymphocytes
Tolcher ef al,2017  4-1BB (Utomilumab) Safety Treatment-emergent adverse (83)

+ Pembrolizumab

Activated memory/
effector CD8+ T cells

events were mostly grades1-2
Increased
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Table III. Continued

Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Postow et al,2015  Nivolumab + Ipilimumab vs. ORR 61% vs. 11% 87)
Ipilimumab The median reduction 68.1% vs.5.5%
in tumor volume
Larkin et al, 2015 Nivolumab + Ipilimumab vs. PFS 11.5 months vs. 2.9 months vs. (88)
Ipilimumab vs. Nivolumab 6.9 months,
Safety Grade 3 or 4 adverse events:
55.0% vs.27.3% vs. 16.3%
Omuro et al, 2018 Nivolumab + Ipilimumab vs.  Tolerance 80% vs. 70% vs.90%, (89)
Ipilimumab vs. Nivolumab Safety Fatigue: 55% vs. 80% vs. 30%

Diarrhea: 30% vs. 70% vs. 10%

PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.

CD8 positive tumor infiltrating lymphocytes in solid tumor
mice (66). Tim-3 (+) PD-1 (+) TILs is a severe failure pheno-
type, which does not proliferate to produce IL-2, TNF and
IFN-vy (67). A previous study reported that blocking Tim-3
and PD-1 pathways effectively controls tumor growth through
synergistic activity (67). A combination of Tim-3 inhibitor
and PD-1 inhibitor in mice with lung cancer upregulates
expression of TILs (68). Administration of PD-1 inhibitors
only results in drug resistance promoting tumor progression.
Co-administration with Tim-3 inhibitor restores anti-tumor
effect and increases survival time (69,70). These findings
imply that Tim-3 inhibitor may increase IFN-vy levels and
increase T cell proliferation (13). Co-administration of Tim-3
and PD-1 shows synergistic effect on anti-tumor cells. An
anti-tumor study on combination of Tim-3 and PD-L1 inhibi-
tors is underway (NCT03099109 and NCT02608268) (71).
Currently, only Phase I results have been reported (72) on
Tim-3 antibodies (TSR-022) and PD-1 inhibitors (TSR-042)
combination therapy. A total of 39 patients with NSCLC who
were treated with PD-1 inhibitors were further treated with
TSR-042, at a fixed dose of 500 mg combined with TSR-022
100 mg (14 cases)/3 weeks and 300 mg (25 cases)/3 weeks. Of
the 11 patients who received a dose of 100 mg TSR-022, 1 case
was partially responsive (PR) and 3 cases were stable disease
(SD). For 20 patients who received a dose of 300 mg TSR-022,
3 cases were PR and 8 cases were SD. All reactions occurred in
PD-L1 positive patients. Only 12 PD-L1 positive patients were
analyzed, 4 were PR and 6 were SD (the 2 other patients were
not specifically identified). The current dose was well toler-
ated. The disease control rate was 55% and the disease control
rate was 83% in PD-L1 positive subgroups (72) (Table I1I).

Combined application of TIGIT and PD-1/PD-LI inhibi-
tors. TIGIT is a member of the immunoglobulin superfamily
which is exclusively expressed in lymphocytes. When it binds
to its ligand CD155, TIGIT inhibits T cell proliferation and
IFN-vy production. Therefore, activation of TIGIT pathway
induces tumor immune escape (73) (Fig. 2). Co-blocking of
PD-1/PD-L1 and TIGIT pathways restores the function of
failed CD8+T cells. In patients with melanoma, co-blocking

of TIGIT and PD-1 increases the proliferation of CD8 TILs,
cytogenesis and degranulation (74). In a mouse CT26 tumor
model, co-inhibition of TIGIT and PD-L1 enhances CTL
functions and restores CD8+T functions (75). Combination
therapy induces tumor regression and tumor antigen-specific
protective memory (76). TIGIT synergized with other
co-suppressor molecules PD-1 and Tim-3 to inhibit effector
T cell response and promote T cell dysfunction. Therefore,
inhibiting TIGIT with PD-1 or Tim-3 may promote anti-tumor
immunity and induce tumor regression (77). Phase I clinical
trials are underway to evaluate the safety and efficacy of
anti-TIGIT monoclonal antibodies (OMP-31M32; NCT
03119428) (78) (Table III).

Combined application of 4-1BB (CDI137) agonists and
PD-1/PD-L1 inhibitors. 4-1BB (CD137) is an inducible
costimulatory receptor. On binding to its ligand (4-1BBL), it
triggers the proliferation and activation of immune cells (79)
(Fig. 2). A combination of PD-1 inhibitors and 4-1BB
agonists has a strong synergistic effect. The combination
also exerts significant effects on mice cancer models with
poor immunogenicity (80). Utomilumab (PF-05082566) is a
human monoclonal antibody that stimulates 4-1BB (81). As
an accelerator of the immune system, Utomilumab has been
investigated in clinical research (82). A study has shown that
the level of activated memory/effector CD8+T cells in periph-
eral blood increases following treatment with a combination of
Utomilumab (0.45-5.0 mg/kg) and Pembrolizumab (2 mg/kg).
The combination is safe and well tolerated, consistent with the
expected side effects of Pembrolizumab alone (83). Urelumab
(BMS-663513) was the first anti-4-1BB drug to enter clinical
trials. Studies show that a combination use of Urelumab and
Nivolumab is well tolerated. The overall response rate of meta-
static melanoma was 47% (84) (Table III).

Combined application of cytotoxic T lymphocyte associated
protein 4 (CTLA-4) and PD-1/PD-LI inhibitors. Ipilimumab
(Anti-CTLA-4) is an immunomodulatory monoclonal anti-
body that targets cell surface antigen CTLA-4 as an ICL (85)
(Fig. 2). The use of CTLA-4 and PD-1 inhibitors, either as
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singly or as combinations, has been approved by US FDA for
the treatment of metastatic melanoma (86).

In a phase II clinical study, the objective response
rate of patients with advanced melanoma who received
Nivolumab + Ipilimumab was significantly higher than that
of patients who received Ipilimumab + placebo (61 vs. 11%).
In the Nivolumab + Ipilimumab group, 22% of the patients
showed complete response (87). A clinical study has shown
that Nivolumab combined with Ipilimumab yields a PFS of
11.5 months, whereas the PFS of Ipilimumab or Nivolumab
alone was 2.9 and 6.9 months, respectively. The probability
of treatment-related grade 3 or 4 adverse events in Nivolumab
group, Ipilimumab group and combination group was 16.3,
27.3 and 55.0%, respectively (88). Another clinical study has
explored the safety and tolerance of Nivolumab with or without
Ipilimumab in the treatment of recurrent glioblastoma. It has
been reported that the tolerance of Nivolumab 3 mg/kg group
exceeds that of Nivolumab 1 mg/kg + Ipilimumab 3 mg/kg
and Nivolumab 3 mg/kg + Ipilimumab 1 mg/kg subgroups
(90 vs. 70 vs. 80%, respectively). Fatigue and diarrhea were
the most common treatment-related adverse events associ-
ated with the aforementioned drugs (30 vs. 80 vs. 55%;
10 vs. 70 vs. 30%, respectively) and no other side effects were
observed. Tolerance to the combination was negatively influ-
enced by the dose of Ipilimumab (89) (Table III).

5. Combination of chemotherapy with PD-1/PD-L1
inhibitors

Chemotherapy usually kills cancer cells by targeting their
DNA synthesis and replication (90). It also promotes the
presentation of tumor antigens following cancer cell death,
activates tumor specific T cells, facilitates DCs maturation,
stimulates type I interferon response and eliminates bone
marrow-derived immunosuppressive cells (91). Appropriate
combination of chemotherapeutic drugs and PD-1/PD-L1
inhibitors can enhance the efficacy of PD-1 blockers and
produce a more sustained anti-tumor response, especially in
tumors with poor immunogenicity and sensitivity to chemo-
therapy. A study has shown that Pembrolizumab combined
with pemetrexed/carboplatin enhances improves symptoms of
metastatic non-squamous NSCLC and has been approved by
US FDA (92). Application of Pembrolizumab in combination
with pemetrexed and platinum increases the PFS of metastatic
NSCLC (93). For untreated patients with metastatic squamous
NSCLC, the PFS and OS of Pembrolizumab combined treat-
ment group versus the placebo group were 6.4 months vs.
4.8 months and 15.9 months vs. 11.3 months, respectively. The
risk of death decreased by 36% and the risk of disease progres-
sion or death reduced by 44% in the Pembrolizumab combined
treatment group (94) (Table IV).

6. Combination of radiotherapy with PD-1/PD-L1 inhibitors

Radiotherapy (RT) has profound immunological effects. Basic
research studies have demonstrated that RT can improve the
efficacy of PD-1 inhibitors (95). Cancer cells can be killed by
radiation. RT activates the immune system by triggering the
release of tumor antigens (96). Basic research and clinical trials
have revealed that RT synergizes with immunotherapy when

applied together (97,98). A study has shown that PD-1 inhibitors
combined with RT can activate CTLs and reduce immunosup-
pressive cells (99). A combination of RT and PD-1/PD-L1
inhibitors significantly improves the survival rate and reduces
the tumor volume in mice (100). Compared with the control
group, co-treatment of RT and PD-1 significantly increased
the expression of PD-L1, CD8+T cells and interferon-y in
tumor cells (101). Clinical studies have provided evidence that
anti-PD-1 therapy can significantly improve the control rate
and OS rate of patients with melanoma brain metastasis who
received stereotactic radiotherapy (102). Clinical trials of the
efficacy of Nivolumab combined with RT in the treatment of
NSCLC (NCT02768558) and glioblastoma (NCT02617589)
are under way (103).

Immunotherapy amplifies the rare systemic effects of radio-
therapy, while radiotherapy renders immune-excluded tumors
quickly responsive to immunotherapy (104). MDSCs have been
implicated in development of radioresistance. Accumulation
of MDSC in the tumor microenvironment promotes tumor
relapse by directly affecting tumor cell survival and indirectly
affecting local T cell suppression (105). A combination of
irradiation (IR) and anti-PD-L1 therapy enhanced the activa-
tion of CD8+ T cells and inhibition of TUBO tumor growth.
CDS8+ T cells induce the apoptosis of MDSCs through TNF-a
following combination therapy (95). PD-L1 is upregulated in the
tumor microenvironment following IR. IR-induced increases
in tumor-infiltrating lymphocytes (TILs) and upregulation of
PD-L1 could provide an opportunity for PD-L1 blockade (106).
The combination of IR and anti-PD-L1 treatment optimizes the
tumor immune microenvironment and results in tumor regres-
sion (95). Local radiotherapy significantly adds to the systemic
efficacy of immunotherapy. Combining single-site stereotactic
body radiotherapy (SBRT) with pembrolizumab improves
response rates in metastatic NSCLC. PD-L1-negative patients
benefited from SBRT (107). This study also suggested that the
way to improve the effect of immunotherapy was to treat with
local radiotherapy to synergize the local and systemic effects
of both modalities. Immunotherapy increased the local effect
of radiotherapy in all treated sites. Radiotherapy suppresses
the tumor burden allowing immunotherapy better to eliminate
micro-metastatic disease (108). In addition, a study demon-
strated that higher single doses of RT from 12-18 Gy blunt
the efficacy of anti-tumor immunity. They also reduce IFN-f3
production and abrogate DC-mediated CD8+T-cell priming,
suggesting that RT doses below 12 Gy may be more immu-
nogenic (109). Another study confirmed that a single dose
of 15 Gy irradiation results in higher tumor immune cell
infiltration than a fractionated (3 Gy x 5) schedule (110). The
differences in the above results might be due to differences
in the genetic backgrounds of mice, immune competence
and immunogenicity of models and radiosensitivity of cell
lines (111) (Table IV).

7. Combination of intestinal microflora with PD-1/PD-L1
inhibitors

Intestinal microflora influences the effects of immuno-
therapy in cancers. A previous study reported that oral
Bifidobacterium can significantly decrease the growth rate
of melanoma, promote the maturation of dendritic cells and
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Table I'V. Combination of chemotherapy or radiotherapy with PD-1/PD-L1 inhibitors.

Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Langer et al,2016  Pembrolizumab + Chemotherapy ORR 55% vs.29% (92)
vs. Chemotherapy The incidence of grade 3 or 39% vs.26%

worse treatment-related adverse
events
Gandhi ef al,2018  Pembrolizumab + Chemotherapy Rate of Overall survival at 69.2% vs.49.4% (93)
vs. Placebo + Chemotherapy 12 months
PFS 8.8 months vs. 4.9 months
Paz-Ares et al,2018 Pembrolizumab + Chemotherapy PFS 6.4 months vs. 4.8 months 94)
vs. Placebo + Chemotherapy (ON] 15.9 months vs. 11.3 months
Deng et al, 2014 Irradiation (IR) + Anti-PD-L1 vs. Tumor volume 25.59+10.26 mm vs. (95)
Anti-PD-L1 vs. IR 587.3£169.1 mm vs.
402.8+76.73 mm
The percentage of MDSCs in ~ 0.38+0.16% vs.
the total CD45+ cell population 7.33+2.22% vs.
4.78+2.49%
Sharabi ef al, 2015 XRT + Anti-PD-1 Tumor volume Inhibited 99)
T-cell infiltration Increased
Dovedi et al,2014  RT + PD-1/PD-L1 blocking Tumor volume Inhibited (101)
Percent survival Improved
Ahmed et al,2016  Stereotactic radiation + local lesions control rates at 91 and 85% (102)
Anti-PD-1 6 and 12 months
OS rates at 6 and 12 months 78 and 55%

PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.

production of IFN-y and enhance the anti-tumor effect of
PD-1 inhibitors (112). The abnormal composition of intestinal
flora may affect the response of patients to cancer immu-
notherapy (113). Transplantation of fecal bacteria improved
the anti-tumor effect of PD-1 inhibitors (114). A study has
shown that the clinical response of PD-1 inhibitors is depen-
dent on the relative abundance of Akkermansia muciniphila.
Oral supplementation of Akkermansia muciniphila restores
the efficacy of PD-1 inhibitors in an IL-12-dependent
manner (115). In another study, intestinal microflora regu-
lated the response of anti-PD-1 immunotherapy to melanoma
patients (116).

Patients with abundant beneficial intestinal bacteria
(Ruminococcaceae/Faecalibacterium) have improved
antigen presentation, effector T cells function in periph-
eral and tumor microenvironment and strong anti-tumor
immune response (117). By contrast, the intestinal harmful
bacteria (Bacteroidales) weakened antigen presentation and
impaired anti-tumor immune response (118,119). Response
to PD-1 inhibitors is influenced by the composition of intes-
tinal flora, but not to oral flora (120). Other studies suggest
that patients with melanoma responsive to Nivolumab were
rich in Fecalibacterium prausnitzii, Bacteroides thetaiota-
micron, B. longum, C. aerofaciens and E. faecium. Patients
who responded well to Pembrolizumab were rich in intes-
tinal Dorea formicogenerans (121,122) (Table V).

8. Combination of Traditional Chinese Medicine with
PD-1/PD-L1 inhibitors

Diosgenin is a natural steroidal saponin (123). A combination
of diosgenin with PD-1 inhibitor suppresses tumor growth,
increased T cell infiltration and IFN-y expression in tumor
tissues. Diosgenin stimulates the immune cells thereby
improving the response rate and therapeutic effect of PD-1
inhibitors (124). Diosgenin treatment downregulates intestinal
Bacteroidetes but upregulated Clostridiales, Lactobacillus
and Sutterella (124).

Icariinpossesses a variety of pharmacological and biological
activities. Icaritin is now under clinical trial for the treatment
of PD-L1 positive advanced liver cancer (NCT03236649) and
advanced breast cancer (NCT01278810). Pre-clinal studies
have shown that Icaritin can effectively reduce the tumor load
of B16F10 melanoma and MC38 colorectal cancer in mice and
its therapeutic effect is T cell-dependent. It increased CDS§
T cell infiltration and the number of effector memory T cells.
A combination of PD-1 inhibitor and Icaritin significantly
suppressed tumor growth (125).

Rhus verniciflua Stokes (RVS) has been shown to contain
a large number of bioactive phytochemicals, including alka-
loids, polyphenols and flavonoids, which block the interaction
between PD-1/PD-L1 and CTLA-4/CD80. Thus, RVS might
be used as an immune checkpoint blocker (126).
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Table V. Combination of intestinal microflora with PD-1/PD-L1 inhibitors.

Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Sivan, 2015 Bifidobacterium + Anti-PD-L1 Tumor volume Reduced (112)
IFN-vy, DCs Increased
Routy et al, 2018 A. muciniphila + Anti-PD-1 vs. PR 69% vs.31% (115)
Anti-PD-1 SD 58% vs. 42%
PD 34% vs. 66%
Tumor size A. muciniphila +Anti-PD-1<
Anti-PD-1
Frankel et al,2017  Ipilimumab + Nivolumab vs. RECIST response 67% vs.23% (121)
Pembrolizumab SD 8% vs. 23%
Matson, 2018 Fecal material from three IFN-vy, Tumor-infiltrating ~ R>NR (122)
responder patient donors + specific CD8+ T cells
Anti-PD-L1(R) vs. Fecal Tumor volume R<NR

material from three
non-responder patient
donors + Anti-PD-L1(NR)

PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.

Ganoderma lucidum reduces the proportion of PD-1
positive cells in B lymphocytes. It can, therefore, be used
to develop a new type of immunomodulator for the preven-
tion and treatment of cancer (127). The combination of
Ganoderma lucidum and paclitaxel inhibits the expression of
immune checkpoints (PD-1 and Tim-3) and restored TILs. The
combination regulates the development of 4T1-breast cancer in
mice (128) (Table VI).

9. Conclusion and future perspectives

The anti-tumor response rate of PD-1 inhibitors is low. Patients
sensitive to PD-1/PD-L1 inhibitors develop drug resistance,
tumor recurrence and disease progression and the mortality
rate of patients with advanced tumor stages is high. A study has
reported that patients with melanoma sensitive to anti-PD-L1
antibody treatment show increased levels of interferon-y and
related genes in blood prior to treatment (129). Anti-PD-1
therapy downregulates expression of IFN receptor-related
genes and MHC I and upregulates inhibitory receptors on the
surface of T cells (10). Furthermore, the inhibitory receptors
inhibit the cytotoxic activity of T cells and these effects can
be attributed to drug resistance against ICIs. Several basic
and clinical studies are exploring effective combination and
sequence of PD-1/PD-L1 inhibitors and other anti-tumor
therapies to induce tumor cell immunogenicity and improve
effectiveness of anti-tumor effect of PD-1/PD-L1 inhibitors.
These advances will provide effective therapies for patients
who are unresponsive to current treatment regimens. However,
development of these combination therapies possesses several
challenges.

Development of effective antineoplastic therapy should
consider medical costs and adverse reactions for each treat-
ment. Therefore, it is necessary to determine predictive
biomarkers for individualized therapy, so as to predict efficacy

and adverse reactions of PD-1/PD-LI inhibitors. At present,
some patients are not sensitive to PD-1/PD-L1 inhibitors. Lack
of biomarkers for predicting response rate limits the effective-
ness of clinical treatment strategies, thus there is need to screen
novel biomarkers for predicting immunotherapy responses in
patients.

In order to increase the proportion of patients benefiting
from PD-1/PD-L1 inhibitors, studies should explore
potential predictive biomarkers for anti-tumor treatment.
PD-L1 expression is a potential biomarker for predicting
effectiveness of PD-1/PD-L1 immunotherapy on patients
with cancer thus identifying patients who may benefit from
immunotherapy. Expression of PD-L1 is associated with
several TILs and activated tumor antigen-specific T cells
induces expression of PD-L1 (130,131). However, expression
of PD-L1 in tumor tissues is heterogeneous and changes
with tumor treatment (132,133). Several staining antibodies
are used in immunohistochemical methods (IHC) to detect
PD-L1 expression and the staining techniques (manual
and automated) vary (134-136). Currently, effectiveness of
PD-L1 detection as an anti-tumor immune response index is
still controversial. The association between the expression of
PD-1 or PD-L1 at the tumor site and disease outcome varies
in patients with different tumors (137-139). Therefore, it is
difficult to achieve consistent results with PD-L1 detection,
hindering application of anti-PD-1/PD-L1 therapy as preci-
sion medicine.

TIL in tumor tissue demonstrates the presence of immune
response by the body (140). TIL positive + PD-L1 posi-
tive group show improved PD-1/PD-L1 inhibitor immune
response compared with TIL negative + PD-L1 positive group.
This implies that the number of TIL can predict efficacy of
PD-1/PD-L1 inhibitors (141). TIL mainly infiltrates into
tumor nests, tumor stroma and tumor invasive margins of
tumor tissues and different parts have different associations
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Table VI. Combination of Traditional Chinese Medicine with PD-1/PD-L1 inhibitors.

Author(s) (year) Interventions Primary end point(s) Results (Refs.)
Dong et al,2018  Diosgenin + anti-PD-1 vs. Mean tumor weigh 1,980.00+861.22 mg vs. (124)
diosgenin vs. anti-PD-1 3,203.33+641.43 mg vs.
2,530.00+584.04 mg
Hao et al, 2019 Icariin + anti-PD-1 + anti- Average inhibition rates 65% vs.34.2% (125)
CTLA-4 vs. anti-PD-1 + anti-
CTLA-4
Lietal, 2019 Rhusverniciflua Stokes The IC50 of blocking 26.22 pg/ml (126)
PD-1/PD-L1 interaction
Wang et al,2019  Ganoderma lucidum PD-1 Decreased 127)
Suetal,2018 Ganoderma lucidum + Paclitaxel =~ Tumor weight Decreased (128)
Tumor infiltration lymphocytes  Increased
PD-1, Tim-3 Inhibited

PD-1, programmed cell death protein-1; PD-L1, programmed death protein ligand-1.

with therapeutic effects (142). Therefore, it is necessary to
further determine the association between the quantity and
quality of TIL and other infiltrating immune cells and tumor
immune response. In addition, local radiotherapy is effective
in inducing inflammation, which may benefit patients without
sustained immune response (99). Radiotherapy should not be
used in patients with significant tumor infiltration, as this may
impair the ongoing immune response (143,144). Effects of
different therapies on immune response should be considered
when designing combination therapies with chemotherapy and
targeted therapy.

Mismatch repair (MMR) is a set of susceptibility genes
isolated from hereditary non-polyposis colorectal cancer.
Mutations in these gene leads to loss of mismatch repair
function, resulting in microsatellite instability (MSI) which is
prone to tumors (145). Microsatellite instability high (MSI-H)
attracts tumor-infiltrating lymphocytes (TILs) and upregu-
lates PD-L1 expression in tumor epithelial cells (146). MMR
deficiency (MMR-D) type solid tumors have more tumor
neoantigens to enhance anti-tumor immune response and show
an improved response to PD-1 monoclonal antibody, thereby
improving immune suppression and restoring anti-tumor
immunity (147). MMR-D is a predictor for anti-PD-D efficacy.
However, MMR-D only occurs in a small number of patients.
Further pre-clinical and clinical research should be performed
before clinical application.

The therapeutic effect of PD-1 inhibitors is high in patients
with a high mutation load of tumor mutation burden (TMB).
Tumor cells with high TMB expression have higher levels of
neoantigens, which stimulate a stronger anti-tumor immune
response (148). TMB and PD-L1 have similar predictive func-
tion. However, TMB is not associated with PD-L1 expression.
TMB is an important and independent predictive biomarker,
which can predict the effectiveness of ICIs (149).

Further studies should explore ways to alleviate side
effects of immunotherapy. Resistance of malignant tumors
against PD-1/PD-L1 inhibitors can be overcome by use
of combination therapy of PD-1/PD-L1 inhibitors (150).

Notably, a combination of anti-PD-1/PD-L1 therapy is more
effective compared with use of anti-PD-1/PD-L1 inhibitors
alone. However, combination therapy is associated increased
side effects (88). A study revealed that patients younger than
65 years old benefit more from nivolumab plus ipilimumab
treatment than patients older than 65 years old. Therefore,
combination therapies with ICIs should be carefully chosen
for patients >65 years of age (151). Goals for treatment of
patients with advanced cancer is usually palliative, prolonging
survival, controlling symptoms and improving quality of life.
Therefore, studies should explore combination therapies with
ICIs and fully understand the toxic effects of immunotherapy,
chemotherapy and radiotherapy to make sound treatment deci-
sion. Side effects such as immune disorders caused by ICIs are
called immune-related adverse events. Common adverse reac-
tions include diarrhea, fatigue, itching, rash, nausea and loss
of appetite. Severe adverse reactions include severe diarrhea,
colitis, myocarditis and cardiac insufficiency, liver dysfunc-
tion, pneumonia and glomerulonephritis (88,152,153). Serious
side effects may require discontinuation of treatment, although
patients may have an immune response thereafter. Intravenous
corticosteroids or immunosuppressive drugs should be given
if necessary. Some treatment-related autoimmune responses,
such as rashes, are associated with improved prognosis (154).
This implies that occurrence of adverse reactions is manifested
by activation of immune system and represents action of PD-1/
PD-L1 inhibitor, which eliminates tumors. There is an overlap
between autoimmune reaction and anti-tumor immune reac-
tion. Further studies should be performed to explore adverse
drug reactions associated with immunotherapy.

Clinical application of molecular targeted drugs is asso-
ciated with challenges such as acquired drug resistance and
side effects which need to be minimized. Several studies are
exploring the development of molecular targeted drugs with
higher efficiency and fewer side effects (155,156). Studies
exploring sequence, dosage and safety of PD-1 inhibitors and
EGFR should be performed (157,158). Development of combi-
nation therapies will improve efficacy and reduce side effects
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of molecular targeted drugs. A number of clinical studies on
combination therapies between chemotherapy and radiotherapy
with immunotherapy are underway. An open-label, random-
ized phase 3 study showed that pembrolizumab+chemotherapy
significantly improved OS in the total population. The data
support the use of pembrolizumab+platinum +5-FU as new
first-line standards of care for recurrent/metastatic head and
neck squamous cell carcinoma (NCT0235803) (159). In the
KEYNOTE-189 and KEYNOTE-407 studies (phase III),
PFS and OS were significantly longer in patients treated with
pembrolizumab and chemotherapy compared with those in
patients treated with chemotherapy alone (93,94). Anti-PD-1
therapy enhances the efficacy of radiotherapy in metastatic
gastric cancer treatment by increasing the CD8* T cell/effector
regulatory T cell ratio in TILs (160). Another study showed
that patients with metastatic NSCLC treated with nivolumab
or pembrolizumab-+radiotherapy did not have increased grade
3/4 immune-related adverse events (161). The combination of
chemotherapy and radiotherapy with PD-1/PD-L1 inhibitors
induces lasting immune response in treatment of tumors when
other treatment strategies fail.

Despite a significant number of basic and ongoing clinical
trials aimed at improving effectiveness of combination thera-
pies, intestinal flora combined with PD-1/PD-L1 inhibitors is
a novel approach for cancer treatment. However, differences
between basic and clinical trial results occur due to high vari-
ability of bacteria in intestinal tract and the effects produced
by bacteria in the laboratory. Less diverse bacteria used in
basic trials may not fully represent the complicated environ-
ment in the intestinal tract. Therefore, further studies should
explore the mechanism of intestinal flora, side effects, optimal
dosage and species for human use for development of effective
combination therapies.
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