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Abstract. MicroRNAs (miRNAs) perform a variety of impor‑
tant cellular functions, including regulating the cell cycle, 
apoptosis and differentiation, amongst others. Recent research 
has demonstrated an essential function performed by miRNAs 
in regulating pyroptosis, which is a type of programmed cell 
death associated with inflammatory responses that plays a 
critical role in numerous diseases. Through direct or indirect 
action on proteins associated with the pyroptosis signaling 
pathway, miRNAs are involved in the pathological processes 
of cardiovascular, kidney and immune diseases, among 
others. The present review discusses the maturation process 
of miRNAs and the process of pyroptosis, with a specific 
focus on the transport of miRNAs to damaged cells via 
exosomes, shedding vesicles and protein stabilized complexes, 
as well as the role of different miRNAs in the regulation of 
pyroptosis through different gene and protein targets. The aim 
of the present review was to provide a novel insight into the 

regulatory role of miRNAs in pyroptosis and new treatment 
options for pyroptosis‑associated diseases.
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1. Introduction

The transcription of genetic information from DNA to RNA 
and the subsequent translation into proteins constitutes the 
core of molecular biology. It has been long established that the 
key factor in gene regulatory networks is the protein‑coding 
gene. Non‑coding RNAs (ncRNAs) were first identified in the 
early 1990s with the advent of RNA interference technology. 
However, it took ~10 years until the fundamental roles of 
ncRNAs in gene silencing and biological functions were 
recognized (1). MicroRNAs (miRNAs/miRs) are a major 
family of ncRNAs, and numerous studies have demonstrated 
that most miRNAs play key roles in biological processes 
and cellular metabolism, which are tightly regulated at 
multiple levels. Aberrant miRNA expression is involved in 
various pathophysiological processes, such as spinal cord 
injury, neurodegenerative and cardiovascular diseases, 
and aging (2‑5). However, to the best of our knowledge, the 
potential mechanisms have not yet been fully elucidated.

Pyroptosis is a form of programmed cell removal as a result 
of various factors. Firstly, it is through a CARD‑containing 
inflammasome that a directly‑activated inflammatory caspase 
triggers the removal of cells (6). Secondly, the pores, 1‑2 nm 
in diameter, develop in the plasma membrane of cells due to 
the activation of the inflammatory caspase, resulting in cell 
swelling due to water uptake and subsequent cell lysis through 
rapid disruption of the plasma membrane. Thirdly, the local 
or systemic inflammatory effects are amplified by membrane 
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rupture and various cytosolic contents entering the extracel‑
lular environment, for example, interleukin (IL)‑1β and 
IL‑18 (7,8). Pyroptosis processes function as a double‑edged 
sword through both rapidly eliminating intracellular pathogens 
by coordinating antimicrobial host defenses, and deleteriously 
amplifying local destructive pathways (9,10). The regulatory 
mechanisms of pyroptosis involve a variety of molecular 
mechanisms and signaling pathways, but there has been little 
research investigating the effects of miRNAs on the regulatory 
mechanisms of pyroptosis. In the present review, the expres‑
sion of miRNAs and the association between miRNAs and 
pyroptosis are summarized in order to provide a novel insight 
into the prevention and treatment of diseases associated with 
pyroptosis.

2. Overview of ncRNAs

ncRNAs fall into the category of functional RNA mole‑
cules responsible for the coding of substances other than 
protein (11). In 1970, most scholars widely accepted that 
humans have >10,000 genes, the majority of which possess 
protein‑coding functions (12). By the 1990s, the existence 
of numerous more genes had been revealed in the Human 
Genome Project and Encyclopedia of DNA Elements. 
Genomic transcription is common, but >80% of genes are 
transcribed into ncRNAs, which lack the ability to encode 
proteins (13,14). Nevertheless, a number of recent studies 
have demonstrated that numerous ncRNAs not only regulate 
DNA expression, but are also involved in several complex 
biological processes (4,15,16).

The ncRNAs are classified into three major subclasses 
according to their sequence length and structure: Short 
ncRNAs (<200 nucleotides in length), long ncRNAs (lncRNAs; 
>200 nucleotides in length) and circular RNAs (17). Based on 
their localization and function, ncRNAs can also be divided 
into lncRNAs, miRNAs, ribosomal RNAs (17), transfer 
RNAs (18), piwi‑interacting RNAs (19), exosomal RNAs (20), 
small interfering RNAs (21), small nucleolar RNAs (22) 
and small nuclear RNAs (23). Due to the limited number of 
protein‑coding genes, miRNAs, of which there are several in 
the non‑coding transcriptome, are attracting much attention 
as potential therapeutic targets for human diseases. However, 
the functions, target specificity and molecular mechanisms of 
numerous miRNAs remain to be determined. Therefore, the 
ways in which miRNAs can be utilized in the clinical setting 
remain to be further studied (24).

3. Overview of miRNAs

Discovery and origin of miRNAs and communication of 
miRNAs between cells. As small ncRNA molecules (19‑25 
nucleotides in length), miRNAs can regulate the way in which 
protein‑coding genes are negatively expressed (25). Since 
miRNAs were first identified in Caenorhabditis elegans in 
1993 (26), with the continuous maturity of sequencing tech‑
nologies, scholars have discovered >1,000 types of miRNA 
genes within the human body (27,28). As much as ~30% of 
the human genome is suspected to be subject to regulation 
by miRNAs, thus implying their significance in regulating 
gene expression. Biological activities such as growth, cell 

multiplication, apoptosis, the immune response and pyroptosis 
are all associated with miRNAs (29).

The biogenesis of miRNAs and various other small‑size 
RNAs are different. miRNAs are obtained by creating distinc‑
tive hairpin structures after folding back transcripts (30). A 
two‑step cleavage process is required for miRNA biogenesis. 
The first step is miRNA cleavage by the ribonucleases Drosha 
and DiGeorge syndrome critical region gene 8 (DGCR8). A 
miRNA duplex is obtained from the second cleavage event 
performed by Dicer and argonaute protein (31). The processes 
are shown in Fig. 1. However, there are some endogenous 
small RNAs stemming from the hairpins with a far greater 
length, thus making small RNAs, bimolecular RNA duplexes 
or the precursors lacking double‑stranded character even more 
diversified (25).

There are three major miRNA communication pathways 
between cells that inhibit pyroptosis, including exosomes, 
shedding vesicles and RNA‑binding proteins (Fig. 1). In 
exosome pathways, studies have identified that miR‑148a 
derived from the M2 exosome, which is secreted by 
macrophages, can inhibit thioredoxin interacting protein 
and the toll‑like receptor 4/NF‑κB/NLR family pyrin 
domain‑containing 3 (NLRP3) inflammasome signaling 
pathway (32,33). Wang et al (34) also reported that macro‑
phages secrete exosomes that release miR‑155 into the 
cytosol, which can directly target forkhead box O3 (FOXO3a) 
to inhibit pyroptosis in uremic cardiomyopathy. Regarding 
the shedding of vesicles, it was revealed that extracellular 
vesicles carrying miR‑21‑5p affect podocyte pyroptosis in 
diabetic nephropathy (35). Another communication pathway 
is associated with RNA‑binding proteins (36), such as 
RNA‑Binding Protein Dnd1. It has been reported that Dnd1 
can stabilize miR‑221, which can further suppress activation 
of the NLRP3/apoptosis‑associated speck‑like protein 
containing a CARD (ASC)/pro‑caspase‑1 inflammasome 
pathway (37,38).

miRNA maturation pathways and regulatory mechanisms 
of miRNAs. The maturation of miRNA is a tightly regulated 
multistep procedure. In most cases, the respective facilitators 
are what the transcription of intergenic miRNAs with gene 
regulatory regions is reliant on. In addition, the expression 
of host mRNAs determines the transcription of intronic 
miRNAs. Following transcription, primary miRNAs undergo 
two processes that form mature miRNAs of 21‑22 nucleotides 
in length (39,40). When liberating a 60‑70 nucleotide‑length 
stem loop intermediate, the first process is the nuclear cleavage 
of the primary miRNA in the nucleus, which is then referred to 
as the precursor miRNA. The cleavage occurs through the use 
of the Drosha RNase III endonuclease (41). As performed by 
the enzyme Dicer, which is also an RNase III endonuclease, the 
second step occurs in the cytoplasm, whereby the protein Dicer 
acts with argonaute protein to cleave the pre‑miRNA into ~22 
nucleotide miRNA duplexes (double‑stranded RNA) (42,43). 
The mechanism by which miRNAs regulate gene expression 
is relatively simple. It requires an ideal base pairing between 
the seed and target sequences. The direct interaction between 
miRNA and mRNA can silence the majority of mRNAs 
targeted by miRNAs, thus inducing mRNA degradation 
and/or inhibiting mRNA translation (44,45). It is common 
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that miRNAs are able to bind to multiple mRNA species and 
inhibit the expression of several different transcripts simul‑
taneously (46). Individual miRNAs target mRNAs, which 
frequently encode the proteins performing relevant func‑
tions (47). However, miRNA inhibitory effects on individual 
mRNAs are generally modest when it comes to regulating 
critical biological events, and the combined effects of several 
miRNAs on multiple mRNAs can induce strong biological 
responses (48,49).

4. Pyroptosis

Origin and characteristics of pyroptosis. Cell death is not only 
the end of life, it is also necessary to sustain life. There are three 
different types of cell removal that have been widely studied: 
Apoptosis (50), autophagic cell death (51) and necrosis (52). 
Among the most classical types of cell death, apoptosis 
features a number of morphological changes: Cell shrinkage, 
cytoplasm condensation, chromatin condensation and apop‑
totic body formation. In contrast to necrotic cells, apoptotic 
cells do not release intracellular contents into the extracellular 
environment upon death (53). Cytoplasmic vacuolization, 

phagocytic uptake and consequent lysosomal degradation are 
the manifestations of autophagic cell removal (54). Pyroptosis, 
as the other form of programmed cell death, has been widely 
investigated. Pyroptosis was first observed in Shigella flex‑
neri‑infected macrophages in 1992 by Zychlinsky et al (55). 
In 2001, caspase‑1‑dependent cell removal was termed pyrop‑
tosis, combining the Greek roots ‘pyro’, associated with fire or 
fever, and ‘ptosis’, signifying decline (56). The characteristics 
of pyroptosis include pore formation in plasma membranes, 
cell swelling and discharge of pro‑inflammatory cytokines 
(IL‑1β and IL‑18) (57,58). The process is mediated by Nod‑like 
receptors with C‑terminal leucine‑rich repeats (LRRs) that can 
detect the pathogen‑associated molecular patterns (PAMPs) 
or the damage‑associated molecular patterns (DAMPs). Next, 
through the homotypic interaction of NACHT domains, NLR 
monomers oligomerize before attaching to an adapter protein 
known as ASC/PYCARD, by means of PYD‑PYD interaction. 
Subsequently, procaspase‑1 is recruited by adaptor proteins 
and cleaved into caspase‑1. Caspase‑1‑mediated pyroptosis 
requires pores to develop in the cell membrane, thus causing 
water influx and the discharge of pro‑inflammatory factors, 
such as IL‑18 and IL‑1β (59,60).

Figure 1. Graphical depiction of the process of miRNA regulating pyroptosis. On secreting cells, miRNAs are first transcribed as pri‑miRNAs, typically 
by RNA polymerase II. Pri‑miRNAs are processed by the Drosha‑DGCR8 complex in the nucleus to generate pre‑miRNAs, which are then exported to 
the cytoplasm to be cleaved by Dicer, producing duplexes containing both Ago and guide miRNA strands. The passenger strand is degraded and the guide 
strand is loaded onto an Ago to form the miRISC. On recipient cells, DAMPs and PAMPs can activate the NLRP3 inflammasome, which includes NLRP3, 
ASC and pro‑caspase‑1 and cleavage of the caspase‑1 precursor, which activates caspase‑1. Caspase‑1 then regulates the production of the inflammatory 
cytokines IL‑1β and IL‑18. Horizontal transfer of miRNAs from secreting cell to receiving cell includes three pathways: i) First pathway, active secretion via 
MVBs, such as exosomes; ii) second pathway, shedding vesicles are another active secretion pathway; and iii) third pathway, uses RNA‑binding protein to 
secrete miRNA. For instance, HDL can associate with exogenous miRNAs and deliver them to recipient cells. The received miRNAs regulate the activity of 
NLRP3 by targeting SIRT1. In addition, the expression of ELAVL1, which is a target of miRNAs, can affect the activity of caspase‑1 and NLRP3 to regulate 
pyroptosis. In addition, miRNAs also can regulate the activity of caspase‑1 by affecting FOXO3 and FOXO1 expression. miRNA, microRNAs; pri‑miRNA, 
primary miRNA; pre‑miRNA, precursor miRNAs; miRISC, miRNA‑induced silencing complex; DAMPs; danger‑associated molecular patterns; PAMPS 
pathogen‑associated molecular patterns; NLRP3, NLR family pyrin domain containing 3; ASC, apoptosis‑associated speck‑like protein; SIRT1, silencing 
information regulator 2‑related enzyme 1; GSDMD, gasdermin D; ELAVL, ELAV‑like RNA binding protein 1; FOXO, forkhead box O; IL, interleukin; 
HDL, high density lipoprotein; MVBs, multivesicular bodies.
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Canonical and non‑canonical pathways of pyroptosis. 
Signaling pathways for pyroptosis mainly include a canon‑
ical pathway that depends on caspase‑1 activation, and a 
non‑canonical pathway that relies on caspase‑4/5 (human) or 
caspase‑11 (mouse) activation.

In the canonical pathway, LRR recognition of DAMPs 
and PAMPs can activate the NLRP3 inflammasome, which 
includes NLRP3, ASC and pro‑caspase‑1 and cleavage of the 
caspase‑1 precursor, which activates caspase‑1. Caspase‑1 then 
regulates the production of the inflammatory cytokines IL‑1β 
and IL‑18 (61). Following the activation of caspase‑1 acting 
on gasdermin‑D (GSDMD), GSDMD is cleaved to generate a 
reactive amino (N) end and a carboxyl (C) end. The formation 
of 10 to 15‑nm pore‑like structures inside the membrane lipid 
bilayer is preceded by the oligomerization of an N‑terminal 
domain (62). These pores are assumed to play the role as 
conduits in the discharge of small molecules, such as IL‑1β and 
IL‑18. These mechanisms are shown in Fig. 1. Furthermore, 
a local inflammatory response is prompted by stimulating 
various target cells, such as monocytes, macrophages and 
dendritic cells. In the meantime, systemic inflammatory 
functions, such as neutrophil recruitment, are initiated (63).

The non‑canonical pathway of inflammasome activa‑
tion is dependent on human caspase‑4/‑5 and murine 
caspase‑11. Caspase‑4 is linked to pyroptotic cell removal 
in monomyelocytic cell lines (THP1 and U937) as a result 
of delivering lipopolysaccharide (LPS) within cells (64). 
In addition, the activated stimuli and function of caspase‑5 
have been revealed. Both caspase‑4 and ‑5 were verified by 
Viganò et al (65) as critical downstream targets for activating 
LPS in human monocytes. Furthermore, intracellular LPS can 
be sensed by caspases‑4 and ‑5, both of which contribute to 
self‑activation (64). Caspase‑11 has two different effects. Not 
only does caspase‑11 activation directly lead to macrophage 
pyroptosis, but it also acts as a binding partner in regulating 
how caspase‑1 is activated, leading to the production of IL‑1β 
and IL‑18, and subsequent pyroptosis (66‑68).

5. Association between miRNAs and pyroptosis

miRNA pathways regulating cell pyroptosis
Post‑transcriptional modifications negatively regulate 
inflammasome activation. Generally involved in the patho‑
logical processes of various diseases, miRNAs can bind to 
complementary target mRNAs, thus regulating gene expres‑
sion in a negative way (25,69). Thus, numerous mRNAs that 
encode proteins with shared biological processes are regulated 
by one miRNA. In addition, one mRNA can also be regulated 
by a number of other miRNAs. It was indicated that miRNAs 
perform regulation in two ways. One way is inhibiting 
mRNA translation. Another way is decreasing target mRNA 
amounts (70,71). As revealed by some previous studies, NLRP3 
is a direct target for miR‑223, which negatively regulates the 
development of inflammasomes (69,72). Bauernfeind et al (69) 
identified miR‑223 as playing a vital role in regulating the 
activity performed by NLRP3 inflammasomes in macro‑
phages. For suppressed expression, miR‑233 gets attached to a 
preserved binding site within the 3'‑untrnaslated region (UTR) 
of NLRP3 (69). Thus, miR‑223 plays a crucial role in NLRP3 
inflammasome activity for rheostat control considering 

the strict transcriptional regulation of NLRP3 mRNA. 
Furthermore, a previous study revealed that the same site in the 
NLRP3 mRNA 3'‑UTR was targeted by EBV miR‑BART15 
for hindering the inflammasome from being activated (72).

Transcription factors negatively regulating inflammasome 
activation. Silencing information regulator 2‑related enzyme 
1 (SIRT1) and FOXO3a expression levels were silenced by 
the transcription factors negatively regulating pyroptosis (73). 
SIRT1 is essential for suppressing apoptosis, decreasing 
inflammatory reactions, preserving mitochondrial function 
and oxidative stress. STAT1 hinders pyroptosis by making 
the NLRP1 and NLRP3 inflammasomes less active (74). In a 
bioinformatics analysis, Wang et al (75) revealed that miR‑9‑5p 
could bind to the 3'‑UTR of SIRT1 for the negative regulation 
of SIRT1 expression. In addition, Ding et al (76) revealed 
that SIRT1 was targeted by miR‑29a in H9c2 cardiomyocytes 
using a dual luciferase assay. The inhibition of SIRT1 resulted 
from miR‑29a binding to SIRT1, which promoted pyroptosis.

Another transcription factor is FOXO3a, which was 
reportedly associated with the negative regulation of pyrop‑
tosis. As revealed in a previous study, miRNAs enhanced the 
downregulation of FOXO3a before the decreased suppression 
of apoptosis, as regulated by FOXO3a (77). This led to the 
upregulation of caspase‑1 and the induction of pyroptosis (78).

miRNA suppresses pyroptosis by inhibiting caspase‑1. As a 
major enzyme involved in regulating pyroptosis, caspase‑1 
processes pro‑IL‑1β and pro‑IL‑18 into mature inflammatory 
cytokines (57,79). The activation of caspase‑1 and subsequent 
cleavage of GSDMD contributes to the formation of pores 
on the cell membrane, thus causing pyroptosis. Jin et al (80) 
demonstrated caspase‑1 to be a functional downstream target 
of miR‑214, revealing that partial sequences of miR‑214 
could bind to sites in the caspase‑1 3'‑UTR (80). This may be 
evidence to support that caspase‑1 is targeted by miRNA to 
regulate pyroptosis. These regulating pathways are presented 
in Fig. 1.

Association between miRNAs and pyroptosis in disease. 
Cardiovascular disease. i) Myocardial infarction (MI). The 
various types of miRNAs that target pyroptosis following 
MI have been extensively studied. Mezzaroma et al (81) 
demonstrated the presence of the NLRP3 inflammasome in 
the heart in an experimental mouse model of MI. However, 
whether miRNAs inhibit pyroptosis in such cases should be 
further investigated and validated. Thus, Li et al (82) revealed 
that miR‑135b targeted and regulated caspase‑1, as assessed 
by a luciferase assay. By detecting the expression of mRNA, 
the study further discovered that miR‑135b downregulated the 
mRNA expression of caspase‑1, suggesting that miR‑135b is 
associated with MI and that its expression can assist with the 
diagnosis and treatment of MI (82).

ii) Diabetic cardiomyopathy (DCM). Some studies have shown 
that miRNAs regulate pyroptosis over the course of DCM. 
A study by Yang et al (83) reported that miR‑214‑3p targets 
caspase‑1 to regulate the expression of NLRP3, IL‑1β and 
IL‑18 in DCM. Cell dysfunction in vitro was triggered, and the 
pathological process of DCM in vivo was facilitated as a result 
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of inflammatory cytokine enhancement (83). Furthermore, 
Li et al (84) revealed that miR‑30d increased the downregula‑
tion of FOXO3a in a diabetic rat model. Thus, miR‑30d directly 
represses FOXO3a expression, which leads to the inhibition 
of its downstream proteins. Subsequently, the upregulation of 
caspase‑1 occurred, which contributed to pyroptosis. These 
findings provide another potential mechanism of cardio‑
myocyte pyroptosis: The upregulation of miR‑30d promotes 
pyroptosis via the downregulation of FOXO3a, which may 
increase apoptosis repressor with caspase recruitment domain, 
thus promoting caspase‑1 expression and subsequently 
increasing IL‑1β and IL‑18 levels, ultimately increasing the 
levels of pyroptosis (84). In addition, Jeyabal et al (85) revealed 
that in human cardiomyocytes, hyperglycemic conditions 
enhance the expression of ELAV‑like RNA binding protein 1 
(ELAVL1), and the expression levels of caspase‑1 and IL‑1β 
are increased. Furthermore, ELAVL1‑knockdown inhibited 
pyroptosis through NLRP3, caspase‑1 and inflammatory 
cytokine inhibition. In addition, direct targeting of ELAVL1 
by miR‑9 was confirmed via bioinformatics analysis and 
target validation assays (85). Thus, the application of miR‑9 
can inhibit not only the ELAVL1 overexpression caused by 
hyperglycemia but also cardiomyocyte pyroptosis. Overall, 
these studies show that miRNA can inhibit caspase‑1‑induced 
pyroptosis, and their results may identify novel therapeutic 
targets in the pyroptosis signaling pathway in DCM.

iii) Atherosclerosis. Atherosclerotic plaques result in inflam‑
matory processes and lipid metabolism abnormalities (86). 
Furthermore, several studies have revealed that cholesterol 
crystals and oxidized low‑density lipoproteins (ox‑LDLs) can 
cause inflammasome activation, and have also demonstrated 
the role of pyroptosis in atherosclerosis (87,88). In addition, 
miRNAs play a crucial role in treating endothelial dysfunc‑
tion and have potential for treating atherosclerosis (89). 
Thus, miRNAs may contribute to the progression of athero‑
sclerosis via pyroptosis. In human aortic endothelial cells, 
ox‑LDL‑activated pyroptosis was indicated by Li et al (90) 
as capable of suppressing miR‑30c‑5p. Furthermore, FOXO3 
is considered to be a target gene of miR‑30c‑5p; however, 
whether it promotes or inhibits FOXO3 expression remains 
controversial. These findings provide an alternative method 
for treating atherosclerosis (90). Furthermore, the impact 
of lncRNA metastasis‑associated lung adenocarcinoma 
transcript 1 on high glucose‑induced cell pyroptosis can be 
offset by the overexpression of miR‑22 (91). Functioning 
as a DNA demethylase, tet methylcytosine dioxygenase 2 
(TET2) is effective in decreasing atherosclerosis (92). In a 
study by Zhaolin et al (93), a bioinformatics analysis was 
performed to determine whether miR‑125a‑5p can bind to 
the 3'‑UTR of TET2 mRNA. As revealed by a luciferase 
reporter gene assay, the expression of TET2 could be 
suppressed by an miR‑125a‑5p mimic and enhanced by an 
miR‑125a‑5p inhibitor, implying that targeting the TET2 
3'‑UTR may result in abnormal mitochondrial DNA methyla‑
tion levels and mitochondrial dysfunction, which induces the 
production of reactive oxygen species and activates NF‑κB, 
and subsequently, induces the formation of the NLRP3 
inflammasome (93). Thus, miR‑125a‑5p may regulate TET2 
expression from the perspective of post‑transcription.

With regard to other cardiovascular diseases, such as viral 
myocarditis, Tong et al (94) revealed that the downregulation 
of NLRP3 and caspase‑1 expression could decrease pyroptosis 
following the inhibition of miR‑15 (94).

iv) Ischemia‑reperfusion (I/R) injury. According to previous 
studies, small miRNAs are associated with I/R injury (95,96). 
In addition, pyroptosis plays a crucial role in the tissue 
impairments caused by I/R injury (97). Thus, there may be 
an association between miRNAs and pyroptosis in I/R injury. 
As revealed by Wu et al (98), the direct binding of FOXO3a 
with miR‑155 could enable the induction of pyroptosis in 
renal tubular cells, which plays a vital role in the regulation 
of various cellular activities. Capable of inhibiting apoptosis, 
the proteins downstream of FOXO3a cause both the intrinsic 
and extrinsic pathways of cell death to be antagonized, thus 
producing an inhibitory effect (98). Thus, miR‑155 has a 
significant role in renal tubular cell pyroptosis. Furthermore, 
in a study on blood perfusion following myocardial ischemia, 
Lin et al (99) revealed that miR‑149 can bind to the 3'‑UTR to 
negatively regulate FOXO3 expression, whereas silencing of 
FOXO3 promoted pyroptosis in I/R‑treated cells.

A previous study demonstrated that the suppression of 
pyroptosis and alleviation of inflammatory reactions were 
largely affected by SIRT1 (100). In addition, Ding et al (76) 
revealed that myocardial I/R injury can be alleviated 
by inhibiting miR‑29a, targeting SIRT1 and decreasing 
NLRP3‑mediated pyroptosis.

Neurodegenerative disease. Individuals aged >90 years have 
a high risk of developing Parkinson's disease (PD) (101). An 
increasing number of studies have shown that the pathophysio‑
logical process of PD is closely associated with miRNAs (102). 
In a recent study, Zeng et al (103) demonstrated that FOXO1 
expression in patients with PD can be enhanced by down‑
regulating miR‑135b, which can also affect the activation of 
the NLRP3 inflammasome and pyroptosis. With respect to 
PD, one of the complicated mechanisms of its progression is 
miR‑135b‑mediated cell death (103). Fan et al (104) confirmed 
that the expression of Renilla luciferase can be decreased by 
miR‑7 via the NLRP3 3'‑UTR as analyzed using a luciferase 
assay, which enabled the assessment of NLRP3 protein 
translation levels (104). In addition, miR‑7 overexpression 
significantly downregulated NLRP3 protein expression levels. 
By contrast, miR‑7 silencing upregulated the expression of 
NLRP3. The protein levels of caspase‑1 or IL‑1β production 
were unaffected by miR‑7 overexpression or silencing, 
suggesting that miR‑7 targets NLRP3 (104,105). This may 
represent a novel therapeutic avenue for neurodegenerative 
diseases, including PD.

Cancer. As revealed by a previous study, both glioma 
tissues and cell lines had significantly upregulated caspase‑1 
expression levels, but significantly downregulated miR‑214 
expression levels (106). This same studied demonstrated via 
a luciferase reporter assay that caspase‑1 was a target gene 
of miR‑214, and intervention with pyroptosis was found to 
render miR‑214 effective in restricting cell migration and 
multiplication (106). In addition, miR‑181a could enhance the 
growth and invasiveness of osteosarcoma cells by blocking 
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the activation of NLRP3‑dependent pyroptosis, as proposed 
by Tian et al (107). These findings suggested that miR‑181a 
could serve as a therapeutic target in osteosarcoma progres‑
sion. In summary, miR‑214 and miR‑181 are associated with 
the regulation of pyroptosis in cancer.

Other diseases. In LPS‑induced septic shock, Xue et al (108) 
revealed that the knockdown of miR‑21 downregulated 
NLRP3, ASC and caspase‑1 protein levels and inflammasome 
activation in myeloid cells. In acute lung injury, Ying et al (109) 
showed that alveolar macrophage inflammation and pyroptosis 
can be decreased by the overexpression of miR‑495, while 
negative regulation of the NLRP3 gene rendered the NLRP3 
inflammasome less active. The association between miRNAs 
and pyroptosis is summarized in Table I.

6. Conclusion

Recently, the regulation of pyroptosis in different pathological 
situations has attracted significant attention. Considering the 
complex functions of miRNAs in regulating cell proliferation, 
survival and death, it is sensible to predict that miRNAs are 
also associated with biological functions, such as pyroptosis. 
The present review discussed the maturation process of 
miRNAs and the process of pyroptosis, with a focus on the 
transport of miRNA to damaged cells through exosomes, 
shedding vesicles and protein stabilized complexes. Currently, 

these miRNA communication pathways between cells that 
regulate pyroptosis are less studied in diseases. This needs 
to be a focus of attention in future research. The review also 
determined the different miRNAs that specifically regulate 
the process of pyroptosis through different genes and protein 
targets. In addition, the review aimed to summarize the 
current evidence available to verify the mechanisms under‑
lying miRNA regulation in pyroptosis. Moreover, it provided 
evidence of the regulatory role of miRNAs on pyroptosis in 
the cardiovascular system, nervous system and cancer, which 
indicates that miRNAs may play an important role in the 
regulation of pyroptosis. Apart from contributing evidence 
that miRNAs mediate cell death, an attempt was made to 
provide recommendations for further research into inves‑
tigating other mechanisms by which miRNAs may regulate 
cell death. It is expected that the current understanding of 
miRNA‑dependent regulation of pyroptosis can be improved 
by performing further research. The present review provides 
a novel insight into potential targets for the development of 
novel therapeutic strategies to alter miRNAs in vivo to treat 
pyroptosis‑associated diseases.
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