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Abstract. Sepsis‑induced cardiorenal syndrome is one of 
the multiple organ dysfunctions observed in sepsis. It is 
determined by a primary dysfunction in one organ that leads 
to secondary injury to another organ. Studies have shown 
the involvement of microRNAs (miRs) in the diagnosis and 
prognosis of several pathologies. However, the implication of 
miR‑126 in the podocyte damage associated with sepsis has 
not been evaluated until now. In the current study, the miR‑126 
expression was downregulated in a podocyte injury model 
together with downregulation of nephrin expression. The 
transfection of podocytes from podocyte injury group with 
miR‑126 mimics demonstrated an increase in cell prolifera‑
tion and a decrease in cell apoptosis. Bioinformatics analysis 
predicted that the target of miR‑126 was epidermal growth 
factor‑like domain multiple 6 (EGFL6) and dyskeratosis 
congenita 1 (DKC1) and these were confirmed by dual‑lucif‑
erase reporter assay. miR‑126 upregulation determined EGFL6 
and DKC1 upregulation and prevented podocyte injury. The 
current study demonstrated that overexpression of miR‑126 
could protect podocytes from sepsis‑induced injury through 
an EGFL6/DKC1 signaling pathway.

Introduction

Sepsis is a pathological condition caused by a number of factors, 
including severe infections, burn, trauma and surgery (1‑5). 
An imbalance between the secretion of pro‑inflammatory and 
anti‑inflammatory factors that lead to multiple organ failure 
appears in the pathophysiological process of sepsis (6). Sepsis 
is one of the leading causes of mortality in critical patients (7). 
Higher mortality in sepsis appears when cardiac injury or 
acute kidney injury develops, especially in intensive care unit 

patients (8,9). Sepsis‑induced cardiorenal syndrome is one 
of the multiple organ dysfunctions observed in sepsis. It is 
determined by a primary dysfunction in one organ that leads 
to secondary injury to another organ (10). Its main clinical 
manifestation is myocardial inhibition leading to decreased 
left ventricular systolic function and cardiac output (10). 
Podocytes are differentiated cells anchored on the basement 
membrane of the glomerulus. They maintain the structure 
of glomerulus, which is an important part of the glomerular 
filtration membrane (11). Toxic effects on podocytes that lead 
to podocyte losing integrity or functional damage are the 
main causes of proteinuria and glomerulosclerosis involved 
in the occurrence and development of a number of kidney 
diseases (12).

MicroRNAs (miRs) are endogenous small molecules 
of non‑coding RNAs. Their biological effects are associ‑
ated with gene expression regulation by modifying mRNA 
protein synthesis. miRNAs influence the protein synthesis at 
one or more mRNAs genes by targeting the 3' untranslated 
region (UTR), 5'UTR region and the coding sequence of the 
gene (13). Bioinformatics and research studies demonstrate 
that there are thousands of target genes for human miRs and 
more >5,000 target genes are regulated by miRs, indicating 
their involvement in various physiological and pathological 
processes (14‑20). Environmental factors including diet, life‑
style, pollutants and carcinogens can influence the expression 
of miRs (21‑25) and modulate important molecular pathways 
implicated in the pathogenesis of chronic diseases. Studies 
have shown that the profile of miRs has a great implication in 
the diagnosis and prognosis of several pathologies, including 
types of cancer (26‑31). Disease‑associated miRs can also 
serve as targets for personalized therapy (32‑34). In the model 
of Dicer knockout mice, where miRs were knocked out, 
proteinuria, serious renal damage and changes in podocyte 
cytoskeleton proteins of podocytes are observed, showing the 
association between miR and podocyte integrity (35).

Studies have associated miR‑126 with multiple functions 
in the organism, including the development of cardiovascular 
pathologies, Parkinson's disease, diabetes, diabetic nephrop‑
athy and types of cancer (36‑40).

The present study hypothesized that miR‑126 might be 
involved in the podocyte damage associated with sepsis. 
Lipopolysaccharide (LPS) is a part of the gram‑negative bacte‑
rial cell wall  that mediates systemic  inflammation leading 
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to sepsis. LPS induces podocyte injury by mediating the 
release of pro‑inflammatory factors (41). An in vitro model of 
LPS‑induced injury in conditioned immortalized mouse podo‑
cytes was used to provide a theoretical basis for further studies 
clarifying the pathogenesis of sepsis‑induced nephrotoxicity.

Materials and methods

Cell culture and transfection. Mouse podocyte cells (SV40 
MES 13 cell line; cat. no. CRL‑1927; American Type Culture 
Collection) were cultured in Roswell Park Memorial Institute‑1640 
medium (RPMI‑1640; HyClone; Cytiva) containing 10% fetal 
bovine serum (FBS; HyClone; Cytiva) and 8x104 U/l recombinant 
mouse γ‑interferon (Beijing Solarbio Science & Technology Co., 
Ltd.) in 5% CO2 at 37˚C in an incubator (Binder GmbH). The 
cells were cultured for 3‑5 days and were then maintained in 
RPMI‑1640 medium containing 5% FBS.

Mouse podocyte cells with a density of 1.0x105 cells/well 
were inoculated in a 6‑well plate overnight. The podocyte 
injury model was established by stimulation with 10 mg/l LPS 
for 12, 24 and 36 h. The normal control group was treated 
with the same volume of phosphate‑buffered saline (PBS). 
The plates were incubated at 37˚C for 12, 24 and 36 h. The 
expression of nephrin protein was detected by western blot‑
ting. According to the results of western blotting, the optimal 
time of LPS stimulation was selected.

The cells in the miR‑126 mimic group and miR‑mimic 
negative control (NC) group were treated separated with 
miR‑126‑mimic (5'‑ACCTCCAGCTG GGTCGTAC 
CGTGAGTAATAATG‑3') and miR‑mimic NC (5'‑CTCAAC 
TGGTGTCCTGGA‑3'), then mixed Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.) until the final 
concentration in the RPMI‑1640 medium was 20 nmol/l. Cells 
were incubated for 1 h then cultured in complete medium 
for 24‑48 h. All reagents were purchased from Shanghai 
GenePharma Co., Ltd. and all experiments were performed in 
triplicate.

Reverse transcription‑quantitative (RT‑q) PCR. RT‑PCR 
Eastrop™ Super total RNA Extraction kit (Promega 
Corporation) was used to extract total RNA from samples. RNA 
was reverse transcribed into cDNA using an RT kit (Thermo 
Fisher Scientific, Inc.). RNA extraction, cDNA synthesis 
and qPCR were performed according to the manufacturer's 
protocol. When cell density reached 80%, culture medium was 
discarded, and 1 ml lysate was added to each well of a 6‑well 
plate for 10 min at room temperature. The reaction system 
(20 µl) included: 1.0 cDNA, 10.0 SYBR‑Green Master Mix 
(Thermo Fisher Scientific, Inc.), 0.5 upstream and downstream 
primers (SANGON Biotech Co., Ltd.; Table I) and 8 µl ddH2O 
(Milli‑q Academic A10; EMD Millipore). Each experiment 
was performed three times and U6 was used as the internal 
reference. The reaction conditions were as follows: 95˚C pre 
denaturation for 10 min, 95˚C for 10 sec, 60˚C for 20 sec and 
72˚C for 30 sec (40 cycles). Quantification was performed via 
the 2‑ΔΔCq method (42).

Western blotting. Mouse podocyte cells (5x105) were collected, 
rinsed with PBS, mixed with 250 µl RIPA Lysis Buffer (Thermo 
Fisher Scientific, Inc.) and left on ice for 5 min. Then the 

mixture was transferred into a new EP tube and centrifuged at 
3,000 x g, 4˚C for 10 min. The supernatant obtained was used 
to determine the total protein concentration of the cells by the 
BCA Protein Assay kit (Thermo Fisher Scientific, Inc.). The 
protein samples were diluted with 5X loading buffer (Thermo 
Fisher Scientific, Inc.) and PBS, boiled in water bath for 5 min 
and denatured. The protein liquid after denaturation was added 
to 12% SDS‑PAGE gel (Beijing Solarbio Science & Technology 
Co., Ltd.) and underwent 80 V constant pressure electrophoresis 
for 60‑120 min, each well was loaded with 20 µg protein. The 
SDS‑PAGE gel was placed onto a nitrocellulose membrane to 
perform the constant current transfer. Bovine serum albumin 
(BSA; 3%; HyClone; Cytiva) was used  for blocking at 4˚C 
for 1 h. Following blocking, the nitrocellulose membrane was 
washed with PBS and incubated with monoclonal Anti‑nephrin 
(1:1,000; rabbit antibody (Y17‑R); cat no. ab136894, Abcam), 
anti‑epidermal growth factor‑like domain multiple 6 (EGFL6; 
1:1,000; rabbit polyclonal mouse antibody 51182‑T16, Abcam), 
anti‑dyskeratosis congenita 1 (DKC1; 1:1,000; rabbit mono‑
clonal antibody, EPR10398; Abcam) and anti‑GAPDH (1:1,000; 
mouse monoclonal antibody; cat. no. K106390M, Beijing 
Solarbio Science & Technology Co., Ltd.), respectively. The 
membrane was incubated overnight at 4˚C. Then the nitrocel‑
lulose membrane was washed with PBS buffer and incubated 
with Anti‑mouse IgG for IP (HRP; 1:5,000; cat no. ab131368, 
Abcam) labeled with horseradish peroxidase at room tempera‑
ture for 30 min. Then, the nitrocellulose membrane was 
washed with PBS buffer and Chemistar ECL Western Blotting 
Substrate (Ultra‑sensitive ECL luminescent solution; Hanbio 
Biotechnology Co., Ltd.) was used for chemiluminescence. 
Kodak X (Kodak) was used to expose the nitrocellulose 
membrane for ~3 min. The X‑ray film was scanned (Oxford 
Instruments plc) and the grey analysis of the strip was processed 
by Gel‑Pro Analyzer software 4.0 (Media Cybernetics, Inc.). 
The grey value of each band was measured by software in three 
independent repeated experiments and the ratio of the grey 
value of the target gene product to that of the β‑actin product 
was used as the relative expression of the protein.

Cell viability assay using cell counting kit‑8 (CCK8). The 
treated cells of each group were inoculated into 96‑well plates 
at a density of 1x104 cells/well. The final volume of each well 
was 100 µl. Each experiment was performed in triplicate. 
After 24 h, when the cells adhere to the wall, the original 
culture medium was replaced and the cells were incubated 
with the treatment according to their time points. Following 
incubation, the cell viability was determined using a CCK‑8 
kit (Thermo Fisher Scientific, Inc.). A volume of 10 µl CCK8 
solution was added to each well and cultured in 5% CO2 at 
37˚C for 2 h. The absorbance (OD) was determined at 450 nm 
using a microplate reader. Cell survival rate was calculated 
using the following formula: Cell survival rate: OD value of 
experimental group‑OD value of blank group/OD value of the 
control group‑OD value of blank group x100%.

Terminal deoxynucleotidyl transferase dUTP nick labeling 
(TUNEL) assay. Cell apoptosis was determined using 
TransDetect® In Situ Fluorescein TUNEL Cell Apoptosis 
Detection kit (TransGen Biotech Co., Ltd.), according to the 
manufacturer's instructions. Briefly, the cells were washed 
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with PBS and fixed with 4% paraformaldehyde or biyuntian 
(p0098) for 30‑60 min. Then the cells were washed with PBS or 
Hank's balanced salt solution, followed by the addition of PBS 
containing 0.1% Triton X‑100 and incubation on an ice bath for 
2 min. To each sample, 50 µl TUNEL detection solution was 
added and incubated for 60 min at 37˚C, washed again with PBS 
and incubated with DAPI in PBS for 30 min at 30˚C. After incu‑
bation, the samples were washed with PBS for three successive 
times. The samples were observed under the IX73 fluorescence 
microscope (Olympus Corporation; x400 magnification). The 
excitation wavelength range was 450‑500 nm and the emission 
wavelength range was 515‑565 nm (green fluorescence).

Dual‑luciferase reporter assay. For the dual‑luciferase 
reporter assay, the TransDetect® Double‑Luciferase Reporter 
Assay kit (Firefly Luciferase and Renilla Luciferase and 
plasmids; TransGen Biotech Co., Ltd.) was used. The cells 
were cultured and transfected for 48 h with EGFL6 3'UTR 
wild‑type (Wt)/mutant (Mut) reporter plasmids and DKC1 
3'UTR Wt/Mut reporter plasmids with or without miR‑126 
mimic/control precursor plasmids using Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.). Each experi‑
ment was performed in triplicate. Following transfection, the 
medium was discarded and the cells were lysed with cell lysis 
buffer. The luciferase activity was measured using a GloMax 
96 microplate luminescent detector (Promega Corporation). 
Luciferase activity was normalized to that of Renilla.

Statistical analysis. SPSS 22.0 statistical software (IBM Corp.) 
was used for data analysis. The data were analyzed by t‑test for 
the differences between 2 groups and one‑way analysis of vari‑
ance (ANOVA) for the comparison of >2 groups. ANOVA with 
Dunnett's post hoc test was used to compare the data. P<0.05 
was considered to indicate a statistically significant difference.

Results

Podocyte injury model. LPS (10 µg/ml) was used to treat 
mouse immortalized podocytes for sepsis model establish‑
ment. RT‑qPCR demonstrated that the mRNA expression of 

nephrin was significantly downregulated with the prolonga‑
tion of LPS treatment, reaching the lowest level after 36 h 
of culture (Fig. 1A), showing a time‑dependent effect. The 
results of western blotting demonstrated that the protein 
expression of nephrin also significantly decreased 36 h after 
LPS stimulation (Fig. 1B). In addition, the expression level 
of miR‑126 was downregulated with the prolongation of LPS 
treatment (Fig. 1C). These results confirmed the successful 
establishment of podocyte injury model and suggested that 
miR‑126 served a role in podocyte function.

Increased miR‑126 inhibited the podocyte injury. To inves‑
tigate the specific role of differentially expressed miR‑126 
in septic podocyte injury, miR‑126 mimics and miR‑mimic 
NC were transfected into podocytes. Following transfection 
with miR‑126 mimics and miR‑mimic NC, RT‑qPCR demon‑
strated that the expressions of miR‑126 in the miR‑mimic NC 
group and the control group were in the same level (Fig. 2A). 
Following transfection with miR‑126 mimics, RT‑qPCR 
demonstrated that the expression of miR‑126 (Fig. 2A) and 
nephrin (Fig. 2B) in podocytes was promoted, indicating that 
upregulated miR‑126 might mediate inhibition of podocyte 
injury. CCK‑8 assay was used to detect the effect of miR‑126 
on the proliferation of podocytes. Results demonstrated 
that the growth of podocyte cells transfected with miR‑126 
was significantly promoted compared with podocyte injury 
group (Fig. 2C). Following transfection with miR‑126 mimics, 
the growth of podocytes was promoted and the proliferation 
ability was increased.

Increased miR‑126 inhibited the podocyte apoptosis. TUNEL 
assay results demonstrated that in the podocyte injury group 
the number of apoptotic cells was significantly increased 
compared with the control group, while the overexpression of 
miR‑126 can alleviate injury and reduce the number of apop‑
totic cells (Fig. 3).

miR‑126 target 3'UTR binding sites of EGFL6/DKC1 mRNA to 
regulate their expression and inhibit podocyte injury. Following 
co‑transfection of miR‑126 and Wt 3'UTR of EGFL6, luciferase 

Table I. Primer sequence information (Sangon Biotech Co., Ltd.).

Name Primer sequence (5'‑3')

Nephrin Upstream primers CCCTCCGGGACCCTACTG
 Downstream primers TCTGGGAGGATGGGATTGG
miR‑126 Upstream primers CGGCAGGAACCTCCTTACTC
 Downstream primers TGTGCCCTAGGGACGAAGGA
EGFL6 Upstream primers TCTGTTTGCTCTTTGATTACCG
 Downstream primers TTCCCTGTCTTCCACTTTTCAT
DKC1 Upstream primers GCTAAGTTGGACACGTCTCAG
 Downstream primers TGCAAGAGGTGTATAGTGTGTTG
GAPDH Upstream primers TGTGTCCGTCGTGGATCTGA
 Downstream primers TTGCTGTTGAAGTCGCAGGAG

miR, microRNA; EGFL6, epidermal growth factor‑like domain multiple 6; DKC1, dyskeratosis congenita 1.
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activity was significantly reduced (P<0.001; Fig. 4A). Similarly, 
as shown in Fig. 4B, luciferase activity was significantly reduced 
compared with the control group (P<0.001) after co‑transfection 
of miR‑126 and Wt 3'UTR of DKC1.When miR‑126 was 
upregulated, the protein levels of both EGFL6 and DKC1 as 
determined by western blotting were increased (Fig. 5).

Discussion

Glomerular podocytes are differentiated terminal cells with 
a weak capability of division and regeneration. Podocytes, 
endothelial cells and basement membrane act together as 
glomerular filtration barrier. Negative charge of podocytes can 

Figure 1. Podocyte injury model. (A) RT‑qPCR results of the expression of nephrin in LPS‑induced sepsis model of podocytes . (B) The expression of nephrin 
in LPS‑induced sepsis model of podocytes by western blotting. (C) RT‑qPCR results of the expression of miR‑126 in LPS‑induced sepsis model of podocytes. 
**P<0.01 vs. control. RT‑qPCR, reverse transcription‑quantitative PCR; LPS, lipopolysaccharide.

Figure 2. Increased miR‑126 inhibits podocyte injury. (A) The expression of miR‑126 following transfection with miR‑126 mimics by RT‑qPCR. (B) The 
expression of nephrin following transfection with miR‑126 mimics by RT‑qPCR. (C) Cell proliferation following transfection with miR‑126 mimics by CCK8 
assays. **P<0.01 vs. control. miR, microRNA; RT‑qPCR, reverse transcription‑quantitative PCR.



MOLECULAR MEDICINE REPORTS  23:  373,  2021 5

prevent loss (or alternatively deprivation) of albumin and other 
macromolecules (11,12). Inflammation is an important factor 
in promoting damage of podocytes and proteinuria forma‑
tion (43). The loss of podocyte structure and function is closely 

associated with inflammatory factors (11) and its mechanism 
has remains to be elucidated. The implication of inflammatory 
factors in podocyte damage has attracted the attention of a 
number of researchers aiming to find new therapeutic targets 

Figure 3. Apoptosis evaluation with TUNEL assay. (A) The TUNEL positive cells in miR‑126 mimics group. (B) The TUNEL positive cells in control group. 
(C) The TUNEL positive cells in podocyte injury group. (D) The percentage of apoptotic cells. *P<0.05, **P<0.01.

Figure 4. Target gene of miR‑126 in the podocytes. (A) Dual‑luciferase reporter assay: The luciferase activities were detected after co‑transfected with EGFL6 
3'UTR Wt/Mut reporter plasmids and miR‑126/NC mimic for 48 h in the podocyte; (B) Dual‑luciferase reporter assay: The luciferase activities were detected 
after co‑transfected with DKC1 3'UTR Wt/Mut reporter plasmids and miR‑126/NC mimic for 48 h in the podocyte. miR, microRNA; EGFL6, epidermal growth 
factor‑like domain multiple 6; UTR, untranslated region; Wt, wild‑type; Mut, mutant; DKC1, dyskeratosis congenita 1; NC, negative control group. **P<0.01.
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which can provide a fundamental theoretical basis for the 
diagnosis and treatment of kidney diseases.

The present study found that miR‑126 was downregulated 
in sepsis‑induced podocyte injury. Overexpression of miR‑126 
could protect LPS‑induced podocytes damage through an 
EGFL6/DKC1 signaling pathway. Bioinformatics analysis and 
dual‑luciferase reporter assay demonstrated that EGFL6 and 
DKC1 are the key targets of miR‑126.

miRs serve a key role in the post‑transcriptional regula‑
tion of gene expression and are involved in normal and 
pathological renal function (44). Upregulation of miR‑27a, 
miR‑21 and miR‑370 and downregulation of miR‑15b‑5p and 
miR‑34c is associated with podocytes damage in diabetic 
nephropathy (45‑49). Downregulation of miR‑120a‑5p is 
associated with increased expression of M‑type phospho‑
lipase A2 receptor, which determines podocyte apoptosis 
and the progression of membranous nephropathy (50). 
Henique et al (51) demonstrate that upregulation of 
miRNA‑92a is associated with the development and progres‑
sion of glomerulonephritis. Sepsis‑induced acute kidney 
disease is associated with the miR‑15a‑5p‑XIST‑CUL3 
regulatory axis (52). Upregulation of miR‑27b is associated 
with puromycin aminonucleoside‑induced podocytes damage 
by targeting adenosine receptor 2B (53). The present study 
focused attention on miR‑126 as one of the main regulators 
of sepsis‑induced podocytes injury, potentially by targeting 
EGFL6 and DKC1 proteins.

The EGFL6 gene is a member of the EGF superfamily. 
The members of EGF superfamily are implicated in a wild 
spectrum of functions in the organism including cell prolifera‑
tion, cell cycle and developmental processes (54). EGFL6 has 
been associated with tumor angiogenic functions in several 
types of cancers, including hepatocellular carcinoma, ovarian 
and breast cancer (54‑56). Its role in preventing LPS‑induced 
podocytes damage has yet to be investigated. The present study 
is the first, to the best of the authors' knowledge, that associates 
increased EGFL6 protein expression with a protective kidney 
effect. Further studies are required to elucidate these findings 
and potential utilization as a therapeutic strategy.

DKC1 is a gene that provides instruction for dyskerin 
protein involved in telomere integrity (57). A previous study 
demonstrated that downregulation of miR‑126 is associated 
with high glucose‑induced ageing to human glomerular mesan‑
gial cells and transfection with miR‑126 mimics can act as an 
inhibitor of telomere‑p‑53‑p21‑RB signaling pathway and delay 
the effects (58). The current study supported these findings, 
showing that the modulation of DKC1 could be involved in the 
protective mechanism of miR‑126 against podocytes damage.

The signal pathway regulated by various miRs could be 
interpreted as the key pathophysiological mechanism of 
nephropathy. These miR‑related signal pathway inhibitors or 
inducers are expected to become clinical therapeutic drugs in 
the future (59). Understanding the key mechanism of miRNA 
in the development and progression of renal injury will help 

Figure 5. Protein levels of EGFL6 and DKC1 are increased when miR‑126 is upregulated. Expression of (A) EGFL6 and (B) DKC1 proteins in miR‑126 mimic 
group and podocyte injury group. EGFL6, epidermal growth factor‑like domain multiple 6; DKC1, dyskeratosis congenita 1; miR, microRNA. **P<0.01.
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to identify new potential therapeutic targets and design new 
therapeutic strategies. At present, it has been found that these 
miRNAs serve a regulatory role in some specific molecular 
pathways (59). It is necessary to expand the interaction between 
different pathways of miRNA and construct the miRNA inter‑
action network in nephrotic patients. This will contribute to 
the understanding of the specific mechanism of miRNA in 
functional renal injury and structural renal injury.

From the perspective of treatment, miR as a new diagnostic 
and therapeutic marker of nephropathy is a new (or recent) 
trend (51). However, it is still necessary to fully understand 
the exact regulatory mechanism and specific functions of each 
miR at the transcription and translation level.

In conclusion, the present study found that miR‑126 was 
downregulated in sepsis‑induced podocyte injury and that 
overexpression of miR‑126 could protect podocytes through 
an EGFL6/DKC1 signaling pathway. However, more research 
is needed to clarify the exact function and mechanism of 
miRNAs as a specific treatment for nephropathy.
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