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Abstract. With‑no‑lysine kinase 3 (WNK3) is a serine/threo‑
nine kinase that functions by regulating downstream signaling 
molecules. WNK3 mainly regulates intracellular and extra‑
cellular Na+, Cl‑ and K+ levels by regulating downstream ion 
transporters, the disruption of which has been associated with 
cerebral ischemia, epilepsy, glioma and other diseases. In addi‑
tion, WNK3 was demonstrated to regulate neuronal splicing 
factor RNA binding fox‑1 homolog‑1 to influence autism. Over 
the past 20 years, accumulating evidence has reported that 
dysfunctional WNK3 signaling was involved in the pathologies 
of various neurological disorders; therefore, WNK3 has become 
a promising therapeutic target for ameliorating the corresponding 
symptoms of such disorders. The present review aimed to provide 
a general overview of the expression patterns and physiological 
functions of WNK3 signaling and its pathophysiological roles 
in neurological diseases, such as epilepsy, ischemic brain injury, 
intracerebral hemorrhage, autism, glioma and schizophrenia.
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1. Introduction

With‑no‑lysine kinases (WNKs) are a class of protein kinases 
that were initially discovered in multicellular organisms (1). 
Four WNK genes, namely WNK1, WNK2, WNK3 and WNK4, 
have been identified in the human genome, which are encoded 
by genes on chromosome 12, 9, X and 17, respectively (2). A 
defining characteristic of WNK family members is the absence 
of a catalytic lysine residue specifically located in the N‑terminal 
kinase domain (3). WNKs have been reported to play an impor‑
tant role in cell and body physiology (4). For example, WNK1 
was found to be expressed in a variety of tissues, including 
the kidney, heart and brain (5), and two major transcripts have 
been identified: One is mainly produced in the heart, muscles 
and brain and is called L‑WNK1, while the other shorter tran‑
script is primarily located in the kidney, thus is also known as 
kidney‑specific WNK1, as it is only expressed in distal convo‑
luted tubules and connecting tubules (6,7). WNK1 is widely 
expressed and has been reported to be involved in the regulation 
of numerous cellular processes (8). For example, WNK1 in 
regulation of the podocyte actin cytoskeleton, biophysical prop‑
erties of glomerular capillaries and slit diaphragm structure, all 
of which are essential (9). Notably, due to the observed associa‑
tion between WNK1 mutations and familial hypertension and 
autonomic neuropathy, the function of WNK1 in the kidney 
and nervous system has been extensively studied (10). WNK1 
is self‑phosphorylated on serine residues, and mutations in the 
gene encoding WNK1 were found to cause high blood pressure 
in humans (7). Similar to WNK1, WNK4 is also expressed in the 
kidney and has been closely associated with hypertension (11). 
The loss of introns in the WNK1 and WNK4 genes has been 
discovered to lead to pseudoaldosterone deficiency type II, a 
disease associated with salt‑sensitive hypertension and hyperka‑
laemia (12,13). This may be due to the influence of WNK1 and 
WNK4 on the ion reabsorption signaling pathway (14). WNK1 
and WNK4 can also activate the Na+‑Cl‑ cotransporter (NCC) 
of distal concentric tubules through the serine/threonine‑protein 
kinase STE20/serine/threonine kinase 39 (SPAK)/odd‑skipped 
related transcription factor 1 (OSR1) signaling pathway, forming 
the WNK/SPAK/OSR1/NCC phosphorylation cascade, which 
was reported to be involved in the regulation of renal pressure 
homeostasis by regulating intracellular ions and water (15,16). 
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Unlike other WNKs, WNK2 is not expressed in the 
kidney (17). WNK2 is a neuron‑rich kinase mainly expressed 
in neocortical pyramidal cells, thalamic relay cells, cerebellar 
granulosa cells and Purkinje cells in the brain (18). Through 
large‑scale genomic and epigenomic analyses of human inva‑
sive gliomas, WNK2 was identified to be a tumor suppressor 
gene (19‑21). In addition, epigenetic silencing of WNK2 was 
found to occur in all grades of meningiomas (19).

As a member of the WNK family, WNK3 is composed of 
1,800 amino‑acid residues (22). The WNK3 gene is made up of 
an amino‑terminal domain, a highly conserved serine/threonine 
kinase domain, an autoinhibitory domain, and at least two 
coiled‑coil domains (Fig. 1) (23). The human WNK3 gene is 
located on chromosome Xp11.22 (24). The molecular weight of 
WNK3 is 192 kDa and the protein kinase catalytic domain of 
WNK3 is located between residues 147 and 405 (25). WNK3 is 
found in almost all tissues of the human body, but was found to 
be highly expressed in the brain (26). Among all members of the 
WNK family, the WNK3 expression was reported to be highest 
in the brain (27). In the brain, WNK3 transcriptional products 
were found to be located in the cortex, thalamus, hypothalamus 
(including the suprachiasmatic nucleus and supraoptic nucleus), 
raphe nuclei, cerebellar Purkinje cell layer, locus coeruleus and 
reticular structures  (28). These expression patterns suggested 
that WNK3 may play an important role in brain diseases.

The present review searched relevant literature from PubMed 
(https://pubmed.ncbi.nlm.nih.gov/), Ovid (https://ovidsp.
ovid.com/), Cochrane Library (https://www.cochranelibrary.
com/library), Embase (https://www.embase.com/) and CNKI 
(https://www.cnki.net/) databases. The retrieval time was set 
to be from database establishment to August 2020. To avoid 
omissions, the full text of the literatures was scanned and the 
reference lists from the included studies were also screened 
manually and classified into different neurological diseases. 
Then, the role and molecular mechanisms of WNK3 in 
neurological diseases were analyzed, and the applications of 
WNK3 and its downstream signaling pathways in neurological 
diseases were systematically described. Neurological diseases 
are complex and difficult to treat. Currently, there is a lack of 
knowledge of the role and mechanism of action of WNK3 in 
the nervous system (27). Therefore, the present review summa‑
rized the current knowledge of the potential role of WNK3 in 
the nervous system. The present review aimed to enhance the 
present knowledge by reviewing and summarizing the under‑
lying neurological mechanism of WNK3, which may provide 
an intervention target for neurological diseases, and thus 
provide novel possibilities and directions for clinical treatment.

2. Role of WNK3 in neurological diseases

At present, to the best of our knowledge, there are few 
published studies investigating WNK3 signaling in the 
nervous system; however, its dysfunction in the brain has 
been associated with the occurrence of several neurological 
diseases, including epilepsy  (29), ischemic brain injury, 
intracerebral hemorrhage  (27), autism  (30), glioma  (31), 
schizophrenia and autonomic nerve pain (Table I) (32). It has 
been suggested that WNK3 signaling may play distinct roles 
in different brain diseases, which are further discussed in 
more detail in the following sections.

Role of WNK3 signaling in autism. Autism comprises a 
heterogeneous range of neurodevelopmental conditions 
characterized by symptoms such as communication/language 
deficits, repetitive/restricted patterns of behavior and inad‑
equate social interactions (33,34). Individuals with autism 
have difficulty with social communication and interac‑
tions, increased rates of restricted/repetitive patterns of 
behavior and increased sensory sensitivities (35). Autism is 
also accompanied by several other complications, such as 
insomnia, intellectual disabilities, epilepsy, self‑injurious 
behavior, aggression, anxiety, attention‑deficit hyperactivity 
disorder and depression (33,36). WNK3 is known to regulate 
the activity of the neuronal splicing factor, RNA binding 
Fox‑1 homolog 1 (FOX‑1). FOX‑1 is a neuron‑specific splicing 
factor which has been predicted to regulate neuronal splicing 
networks that are clinically implicated in neurodevelop‑
mental diseases, including autism spectrum disorder (37,38). 
Comparative profiling of splicing in brains from patients with 
autism spectrum disorder and normal brains revealed that 
FOX‑1 expression was strongly associated with autism (39). 
FOX‑1 regulated the excitability of neurons by specific 
splicing (40). Previous studies have shown that WNK3 regu‑
lated FOX‑1‑mediated alternative splicing and subsequently 
affected autism (39,41,42). FOX‑1 and WNK3 has several 
intersections, which are strongly related to the control of 
neuronal excitability (43). FOX‑1 has been shown to regulate 
alternative splicing of neuronal transcripts by binding the 
sequence (U) GCAUG in introns flanking alternative exons 
and is responsible for generating proper alternative splicing 
variants required for normal neuronal excitability and 
synaptic transmission (40). WNK3 was discovered to affect 
the splicing activity of FOX‑1 by affecting the subcellular 
localization of FOX‑1 and neuronal transcripts cannot be 
spliced normally, leading to reduced neuronal excitability, 
which has an important influence on the pathogenesis of 
autism  (43). In addition, FOX‑1‑mediated exon inclusion 
bodies were significantly downregulated after co‑expression 
with wild‑type WNK3, while inactive WNK3 only exerted 
a marginal effect (39,44,45). Due to the role of WNK3 and 
FOX‑1 in disorders of neuronal development, WNK3 may 
represent a target for treatment of FOX‑1‑induced autism 
(Fig. 2) (43,46). 

Role of WNK3 signaling in epilepsy. Epilepsy consists of a 
group of recurrent episodes of abnormal neuronal firing caused 
by temporary central nervous system dysfunction (47). The 
typical clinical manifestations of epilepsy comprise sudden 
loss of consciousness, muscle spasms, rigidity and convul‑
sions; it can also be accompanied by urinary incontinence, 
asphyxia or other symptoms (48,49). Epilepsy is second only 
to stroke in the number of years of potential life lost due to 
a neurological disease. The prevalence of epilepsy is 6.4 per 
1,000 individuals and the annual incidence is 67.8  cases 
per 100,000 person‑years (50), which poses a major public 
health burden (51‑53). A previous study observed that WNK3 
immunoreactivity was increased in dispersed granule neurons 
in patients with epilepsy, suggesting that WNK3 may play a 
role in neuronal hyperexcitability (54). Furthermore, WNK3 
phosphorylated the Na+‑K+‑Cl‑ cotransporter (NKCC) and 
inhibited the K+‑Cl‑ cotransporter (KCC) to regulate neuronal 
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excitability (55). NKCC1 expression levels were upregulated 
in dispersed granule cells within postmortem tissues from 
patients with epilepsy (56). In addition, previous studies have 
demonstrated that restoration of KCC2 function and control‑
ling the regulation of NKCC1 have potential as antiepileptic 
therapies (57‑59). These findings suggested that the sustained 
activation of WNK3, which is upstream of NKCC1 and KCC2, 
may contribute to the induction of neuronal hyperexcit‑
ability and result in the development of abnormal electrical 
activity within the hippocampus. Thus, WNK3 expression 
may be a novel therapeutic target for mitigating epileptogen‑
esis (Fig. 3) (54). 

Role of WNK3 signaling in ischemic brain injury. Ischemic 
brain damage, also known as stroke, is a sudden cessation 
in cerebral blood flow. Clinical manifestations include 
sudden fainting, unconsciousness, sudden mouth/eye skew‑
ness, hemiplegia and intellectual disability (60). Moreover, 
ischemic brain injury is one of the most common causes 
of mortality and disability worldwide, affecting 30 million 
people (61,62). A previous study in mouse models revealed 
that inhibition of WNK3 modulation of SPAK/OSR1 and 
NKCC1 signaling in the brain ameliorated both gray‑ and 
white‑matter damage and promoted neurological recovery 
following ischemic stroke (54). In addition, after cerebral 
ischemic injury, the WNK3/SPAK/OSR1/NKCC1 signaling 
cascade was found to be activated, WNK3 expression levels 
were upregulated, and SPAK and OSR1 were phosphory‑
lated, which resulted in the increased phosphorylation of 
downstream NKCC1 (63). NKCC1 was also discovered to 
play an important role in the pathophysiology of ischemia, 
where it regulated cellular volume by regulating the entry of 
Na+, K+ and Cl‑ into cells (64). Under ischemic conditions, 
NKCC1 induced excessive amounts of Na+, K+ and Cl‑ to 
enter into cells, leading to intracellular ionic overload that 
damaged the endoplasmic reticulum and mitochondria, 
and led to necrosis and apoptosis  (65,66). Hence, it was 
suggested that WNK3 may upregulate NKCC1 to promote 
ischemic brain damage  (67‑69). A previous study using 
stroke model mice demonstrated that WNK3‑knockout 
mice had a reduced infarct volume, cerebral edema and 
axonal demyelination following a stroke episode compared 
with wild‑type mice  (29). These findings suggested that 
cerebral ischemia may aggravate ischemic brain injury 
by increasing the phosphorylation of NKCC1 through the 
WNK3/SPAK/OSR1 signaling pathway. Furthermore, the 
knockdown of WNK3 significantly inhibited the activity of 
NKCC1, suggesting that the knockdown of WNK3 expres‑
sion may protect nerve cells by regulating ion and water 
transport  (26). WNK3/SPAK inhibition also prevented 

acute cellular swelling in response to osmotic stress and 
ameliorated brain swelling by simultaneously increasing 
the stimulatory phosphorylation of NKCC1 and inhibiting 
KCC phosphorylation  (70). Notably, in another previous 
study, following WNK3/SPAK inhibition, the damage 
caused by cerebral ischemia was alleviated; however, 
the mechanisms by which cerebral ischemia activated the 
WNK3/SPAK/OSR1/NKCC1 signaling pathway remain 
unclear (Fig. 3) (63).

Role of WNK3 signaling in intracerebral hemorrhage. 
Intracerebral hemorrhage is a common type of stroke, which 
is accompanied by a mortality rate of ~50%, and ~2/3 of 
patients have a poor prognosis and are unable to live indepen‑
dently (17,71). An intracerebral hemorrhage forms a hematoma, 
which squeezes the brain tissue to cause intracranial hyper‑
tension and pathophysiological changes in the brain, which 
can lead to secondary brain injury (72). At present, reducing 
intracranial pressure and blood pressure is one of the emer‑
gency treatment methods for intracerebral hemorrhage (73,74). 
Therefore, determining endogenous intervention measures 
is one of the treatment approaches to improve secondary 
brain injury following intracerebral hemorrhage  (75,76). 
Brain edema caused by blood brain barrier (BBB) damage 
is a common secondary brain injury following intracerebral 
hemorrhage  (77). After intracerebral hemorrhage, WNK3 
expression levels were found to be upregulated in brain tissue, 
which activated NKCC1 in microglia cells by phosphorylating 
SPAK (27). The activation of the microglia and release of the 
inflammatory factors, TNF‑α and IL‑1β (78), leads to brain 
inflammation, which further aggravates brain damage (79,80). 
The overexpression of WNK3 could also increase the 
phosphorylation of NKCC1, and phosphorylated NKCC1 stim‑
ulated the microglia to secrete inflammatory factors, which 
simultaneously expanded the cell volume, destroyed the tight 
connection of cells, accelerated the diffusion of inflammatory 
factors, destroyed the BBB, led to neuronal apoptosis and 
aggravated brain edema (27). Conversely, knocking out WNK3 
expression had the opposite effects. These findings indicated 
that inhibiting the WNK3 signaling pathway may play a role 
in brain protection, and WNK3 may improve secondary brain 
injury caused by intracerebral hemorrhage (Fig. 3) (27).

Role of WNK3 signaling in glioma. Brain tumors origi‑
nate from glial cells, and gliomas are among the most 
problematic primary cancers to treat  (81). Furthermore, 
gliomas are the most common type of tumor of the central 
nervous system (82). Gliomas invade by diffusing into the 
surrounding brain parenchyma, thereby making surgical 
resection difficult (83). Glioma cells change in morphology 

Figure 1. Schematic of the structure of WNK3. WNK3 is composed of 1,800 amino acid residues (numbers in the figure represent amino acids). The WNK3 
gene is made up of a highly conserved serine/threonine kinase domain, an autoinhibitory domain and two‑coiled coil domains. WNK3, with‑no‑lysine kinase 3.
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and volume to migrate to adjacent brain parenchyma, 
and the transport of Na+, Cl‑ and water was discovered to 
play a crucial role in this process (84,85). Compared with 
those in the normal brain, the expression levels of WNK 
and SPAK/OSR1 were found to be upregulated in the brain 
tissues of patients with glioma  (31). In addition, WNK3 
was discovered to be involved in the regulation of cellular 
volume, which is an important parameter for the migration 
of glioma  (31). Previous studies have shown that WNK3 
facilitates intracellular entry of Cl‑ and water, resulting in 
changed cell volume; cell volume serves a significant role 
in tumor migration (86). Changes in cellular volume have 
also been increasingly recognized as an important require‑
ment for cancer cell invasion and metastasis (87). During the 
migration of tumor cells, ions must accumulate in cells to 
allow them to flow along an electrochemical gradient (88). 
NKCC1 was demonstrated to regulate the entry of ions 
into cells and played an indispensable role in regulating 
intracellular pressure and tumor cell migration (89). In addi‑
tion, a previous study revealed that NKCC1 co‑transported 
water and ions, making it ideally suited to transporting 
salt and water across the plasma membrane during cyto‑
plasmic cell‑volume regulation  (90,91). A previous study 
by Haas et al (31) showed that the knockdown of WNK3 
with small interfering RNA promoted loss of NKCC1 func‑
tion, which alleviated cell‑volume changes associated with 
cellular invasion. These findings suggested that WNK3 
may influence glioma migration through its regulation of 
NKCC1. Thus, it has been hypothesized that SPAK/OSR1 
may participate in the regulation of WNK3 over NKCC1 
to inhibit the signaling pathway, which may help reduce 
intracellular ionic influx and prevent cellular volumes from 
being too large to inhibit the metastasis and invasion of 
gliomas (31,86). Therefore, understanding the role of WNK3 
in facilitating glioma migration and invasion may provide 
evidence to suggest the potential of WNK3 as a therapeutic 
target for glioma (Fig. 3) (28,30).

Role of WNK3 signaling in schizophrenia. At the begin‑
ning of the 20th century, psychiatrists considered blunted 
affect and emotional withdrawal as key symptoms of 
schizophrenia (92,93). The main clinical manifestations of 
patients with schizophrenia comprise anhedonia, loneliness, 
avolition, emotional immaturity and asociality (94). These 

emotional and cognitive deficits are caused by neural‑network 
dysfunctions, which may, at least partly, be due to abnormal 
neurotransmission of γ‑aminobutyric acid (GABA) in the 
dorsolateral prefrontal cortex (95,96). According to previous 
studies, the upregulated expression levels of WNK3 and 
oxidative stress responsive kinase 1 (OXSR1) modulated 
the activity of Cl‑ transporters, which led to a change in the 
concentration of Cl‑ ions inside and outside of neurons that 
affected GABAergic neurotransmission in patients with 
schizophrenia (55,97). WNK3 was also found to effectively 
activate NKCC1, which is co‑expressed in neurons, and was 
found to have a OXSR1/STK39 binding motif (97). These find‑
ings suggested that WNK3 may regulate NKCC1 expression 
through OXSR1, thereby regulating the flow of Cl‑ ions and 
increasing intracellular Cl‑ concentrations to inhibit GABA 
receptors, which ultimately reduces the excitability and hyper‑
polarization of GABA (98). Upregulated expression levels of 
WNK3 were found to be accompanied by upregulated OXSR1 
expression levels and enhanced NKCC1 activity, which 
promoted the flow of Cl‑ ions and led to abnormal GABAergic 
transmission (99,100). Previous studies have also reported 
that WNK signaling not only affected downstream NKCC1, 
but it also influenced the flow of Cl‑ ions inside and outside 
the cell by regulating the expression of members of the KCC 
family (101,102). It is well established that WNK3 is highly 
expressed in the brain. Several previous studies investigating 
the WNK kinase family have reported that WNK3 could simul‑
taneously activate NKCC1 and inhibit KCC2 (55, 97,103). The 
regulatory effect of WNK3 on NKCC1 and KCC2 altered the 
flow of Cl‑ ions, facilitating Cl‑ accumulation in cells to produce 
higher concentrations of intracellular Cl‑, thus affecting the 
excitability of GABA receptors (97). In addition, the expres‑
sion levels and kinase activities of WNK3 and OXSR1 were 
upregulated in patients with schizophrenia, which further 
increased the activity of NKCC1 and reduced the activity of 
KCC2, resulting in a high concentration of intracellular Cl‑ and 
increased depolarization of the postsynaptic membrane; these 
effects ultimately altered the function of the GABA recep‑
tors (97,104). A small clinical trial involving 42 patients with 
schizophrenia and 42 matched healthy subjects revealed that 
OXSR1 and WNK3 expression levels were markedly upregu‑
lated in patients with schizophrenia compared with healthy 
subjects  (1,97). In schizophrenia, upregulated WNK3 and 
OXSR1 expression levels led to increased phosphorylation and 

Figure 2. Underlying mechanism of the WNK3 signaling pathway in autism. When the expression levels of WNK3 are upregulated in the brain, FOX‑1 
neuron‑specific splicing is inhibited, thus affecting the development and function of neurons and promoting the occurrence of autism. WNK3, with‑no‑lysine 
kinase 3; FOX‑1, RNA binding Fox‑1 homolog 1.
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consequently increased NKCC1 activity and decreased KCC2 
activity, thereby increasing the intracellular Cl‑ concentra‑
tion (97). Thus, when GABA receptors are activated, Cl‑ influx 
is reduced and the GABAergic neurotransmission is altered. 
At present, although there are relatively few studies reporting 
the association between WNK3 and schizophrenia, WNK3 is 
expected to represent a promising target for alleviating and/or 
treating schizophrenia (Fig. 3).

3. Conclusion

WNK3 expression levels have been reported to be upregulated 
in the brain, and among the members of the WNK family, the 
expression levels of WNK3 are the highest in the brain (105). 
This distribution pattern suggests that WNK3 may play an 
important role in brain diseases. The present review summa‑
rized the current roles and applications of WNK3 in the nervous 
system, and discovered that the WNK3 signaling pathway 
may be involved in the regulation of a number of neurological 
diseases. Thus, WNK3 is suggested to play an important role 
in nervous system diseases both physiological and pathological 
processes. Briefly, the aforementioned studies indicated that 
WNK3 may increase the activity of proapoptotic pathways in 

central nervous system diseases, partially accelerate the progres‑
sion of numerous diseases, and worsen the poor prognosis of 
nervous system diseases and secondary brain damage (27,31). 

The mechanism through which the WNK3 signaling 
pathway may regulate the pathology of brain diseases remains 
complex and at present, the understanding of the role of WNK3 
in nervous system diseases is not complete. WNK3 has been 
shown to play different roles in the pathological processes 
of nervous system diseases by regulating multiple different 
signaling pathways. The most common mechanism identified 
to date is that WNK3 may regulate downstream ionic transport 
by phosphorylating SPAK/OSR1 (27). Increases in intracel‑
lular ionic concentrations via NKCC1 inhibit KCC activity, 
which regulates ion influx/efflux across the plasma membrane, 
increases the number of ions and water molecules inside 
the cell, alters the cellular structure/volume, and destroys 
cytoskeletal structures within glia and endothelial cells (97). 
These processes were discovered to contribute to brain 
edema and trigger apoptosis, which compromises the normal 
physiological functioning of the brain. The regulation of this 
signaling pathway was demonstrated to serve an important 
role in glioma, intracerebral hemorrhage and ischemic brain 
injury (29,31,63). In addition, WNK3 is involved in regulating 

Figure 3. Mechanisms through which WNK3 signaling regulates ion channels and neural excitability in neurological diseases. WNK3 can phosphorylate 
downstream NKCC1 and inhibit the activity of KCC2 to regulate neuronal excitability by phosphorylating SPAK/OSR1, which contributes to the induction 
of neuronal hyperexcitability and results in the development of abnormal electrical activity within the hippocampus, which can lead to epilepsy. Upregulated 
WNK3 expression levels can also regulate ion channels such that increased concentrations of Na+, K+ and Cl‑ enter the cell, while KCC2 regulates K+ and 
Cl‑ outflow, thereby regulating cell size and facilitating the translocation of glioma cells. In addition, WNK3 can facilitate NKCC1 regulates the entry of ions 
and water into cells, resulting in excessive cell edema and apoptosis, which further contributes to brain edema that aggravates ischemia. WNK3/SPAK/NKCC1 
signaling can also promote the release of the inflammatory cytokines, TNF‑α and IL‑1β, leading to neuroinflammation and affecting intracerebral hemorrhage. 
WNK3 in its kinase‑active state can increase Cl‑ inflow, decrease Cl‑ outflow and increase intracellular Cl‑ concentration, so GABA receptors are inhibited and 
GABA excitability is reduced, which affects normal nerve transmission and leads to schizophrenia. On the contrary, downregulation of WNK3 inhibited these 
signaling pathways. WNK3, with‑no‑lysine kinase 3; SPAK, serine/threonine kinase 39; OSR1, odd‑skipped related transcription factor 1; P, phosphorylated; 
GABA, γ‑aminobutyric acid; NKCC1, Na+‑K+‑Cl‑ cotransporter 1; BBB, blood brain barrier; KCC2, K+‑Cl‑ cotransporter 2.
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the flow of Cl‑ ions and promoting the accumulation of Cl‑ in 
cells, thereby affecting the excitability of GABA receptors, 
which may be related to schizophrenia (97). WNK3 was also 
reported to lead to the increase in intracellular Cl‑ concen‑
trations by regulating NKCC1 and KCC expression, which 
promoted abnormal electrical activity in the hippocampus and 
thereby induced epilepsy (55). In addition, WNK3 was found 
to be closely associated with autism by inhibiting the shearing 
activity of FOX‑1, which ultimately affected neural develop‑
ment (43). Previous studies have also shown that WNK3 was 
associated with neuropathic pain (104), spasticity (1) and other 
related diseases of the nervous system. However, to the best of 
our knowledge, currently, the underlying mechanisms of how 
nervous system diseases may induce WNK3 activation remain 
unclear. 

Although the potential of WNK3 as a novel therapeutic 
target for brain diseases has been discussed in the present study, 
whether therapeutic strategies that target WNK3 signaling 
will be successful in the clinic remains unknown. However, 
since compounds that inhibit WNK3 have been discovered 
or developed, such as WNK463 (106), WNK3 inhibitors may 
represent promising novel targets for the treatment of nervous 
system diseases.
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