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Abstract. Acute kidney injury (AKI) has become a global 
public health problem with high morbidity and mortality rates, 
as well as high healthcare costs. Immune cells, particularly 
macrophages, which regulate tissue development, destroy 
pathogens, control homeostasis and repair wounds, play 
crucial and complex roles in AKI. In various types of AKI, 
numerous rapidly recruited monocytes and tissue‑resident 
macrophages act in a coordinated manner. Thus, elucidating 

the phenotypic and functional characteristics of macrophages 
in AKI is essential for identifying potential therapeutic targets. 
Macrophage‑sensing mediators and macrophage‑derived 
mediators participate in the major macrophage‑related 
signaling pathways in AKI, which regulate macrophage 
polarization and determine disease progression. In conclusion, 
macrophages change their roles and regulatory mechanisms 
during the occurrence and development of AKI. The aim of 
the present review was to contribute to an improved under‑
standing of AKI and to the identification of novel therapeutic 
targets for this condition. 
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1. Introduction

Trauma involves the regulation of immune homeostasis, the 
production and release of various damage‑associated molec‑
ular patterns (DAMPs) and the activation of the innate immune 
system (1). The post‑traumatic biological response is a complex 
physiological phenomenon involving multiple inflammatory 
and thrombotic mediators, including cytokines, chemokines, 
complement receptors, oxygen free radicals, inflammatory 
cells (neutrophils, monocytes and macrophages) and endo‑
thelial cells (2). Macrophages exist in mammalian tissues and 
have essential functions (3). Although its origin continues to 
be controversial, the embryonic origin of the vital tissue that 
resides in macrophages is now understood (4). Macrophages 
residing in the majority of tissues are long‑lived cells derived 
from transient hematopoietic waves of erythro‑myeloid progen‑
itors that emerge in the yolk sac (5). Although macrophages 
were previously known for their properties of host defense 
and scavenging of apoptotic cells, it is increasingly recognized 
that macrophages play a variety of roles in tissue development, 
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homeostasis control and wound repair (6,7). Inflammatory 
monocytes recruited by different mechanisms and activated 
tissue‑resident macrophages are critical regulatory cells of 
tissue repair, regeneration and fibrosis (8). Several of these 
functional features are essential for tissue injury and repair. 
These cells can not only aggravate tissue damage by gener‑
ating reactive oxygen species and other toxic components, but 
also produce various growth factors, including VEGF‑α and 
TGF‑β, to promote cell proliferation and repair (9). In the early 
1990s, a type of selectively activated macrophage (type M2) 
was identified, which was different from the classical activated 
inflammatory macrophage (type M1) (10). M2 macrophages 
are usually described by their anti‑inflammatory and wound 
healing effects (11). Macrophages can affect the metabolic 
tissue and alter the metabolic pathways. This phenotypic 
transformation occurs in glucose and lipid metabolism (12). 
Macrophages are the principal participants of the immune 
response after tissue injury, and their phenotypes vary from 
pro‑inflammatory (M1) to anti‑inflammatory (M2) macro‑
phages, which can promote wound healing and scar repair (13). 
In addition, macrophage polarization is a highly dynamic 
process that is easily modulated by its microenvironment (14). 
Furthermore, the reversibility of macrophage polarization also 
has an important therapeutic value, particularly in diseases 
caused by an M1/M2 imbalance (15).

Acute kidney injury (AKI) has become a global public 
health problem with high morbidity, and mortality rates, as 
well as high healthcare costs (16). AKI is a disease charac‑
terized by acutely decreased renal function, the etiology of 
which can be multifactorial and is associated with complex 
pathophysiological mechanisms (17). AKI has been associ‑
ated with mortality after traumatic war injuries (18). The 
pathogenesis of AKI varies with different types of damage. 
In ischemia/reperfusion (I/R)‑induced AKI (I/R‑AKI), the 
loss of the brush border of renal tubular epithelial cells 
(RTECs) and cell polarization leads to tubular obstruc‑
tion, cell necrosis and apoptosis (19). In cisplatin‑induced 
AKI, cisplatin causes DNA damage and mitochondrial 
damage, leading to inflammation and cell death  (20). In 
contrast‑induced AKI (CI‑AKI), the formation of vacu‑
oles, swelling of cells and oxidative stress lead to acute 
necrosis  (21). In sepsis‑induced AKI, sepsis may lead to 
renal vasodilation caused by inducible nitric oxide synthase 
release (19). Apart from kidney dialysis, there is no treatment 
for AKI that can reliably improve survival, reduce injury 
or accelerate recovery (22). AKI participates in the regula‑
tion of immune system homeostasis, and numerous factors 
are involved, including erythropoietin (EPO), glycoprotein 
non‑metastatic melanoma protein B (Gpnmb), retinoic acid 
(RA), colony stimulating factor‑1, myoglobin, dendritic cells, 
neutrophils and macrophages  (23‑25). A previous study 
demonstrated that macrophages are the principal effectors 
in AKI inflammatory responses (26). The dynamic roles and 
functional properties of macrophages in AKI are important 
for the identification of effective therapeutic targets  (27). 
The activation and functional state of macrophages after 
renal injury are complex and diverse. Macrophages damage 
or repair renal tubules, and their role in interstitial fibrosis 
after renal injury varies with time and is determined by the 
type of renal injury  (28). Due to the functional plasticity 

of macrophages (i.e., their ability to transform between the 
pro‑inflammatory M1 and anti‑inflammatory M2 pheno‑
types), macrophages play a complex role in the occurrence 
and development of AKI (29). Importantly, the polarization 
of macrophages may lead to the development of novel treat‑
ments to promote AKI repair (29). At present, it is considered 
that M2 macrophages and regulatory T cells are critical cells 
controlling inflammation, as well as tissue remodeling and 
repair following AKI (30). Previous studies have shown that 
M2 macrophage therapy can effectively reduce renal injury 
in AKI mice (31,32). The increase in M2 macrophages may 
play a pivotal role in the initial damage of human AKI 
and in the transition from AKI to chronic kidney disease 
(CKD) (33). Notably, animal experiments have shown that 
total or partial macrophage depletion in AKI may be benefi‑
cial to kidney damage (34). For example, M1 depletion has 
been demonstrated to have a universal protective effect on 
AKI; however, the results caused by M2 depletion are contro‑
versial (34). The latest research shows that nattokinase and 
hydrogen‑rich solution produce a therapeutic effect on the 
inflammatory response of AKI by regulating the activity of 
macrophages (35,36). In summary, at present, the multifac‑
eted role of macrophages in the occurrence and development 
of AKI remains open to further investigation.

2. Signal transduction of macrophages in AKI

Phosphatidylinositol‑3 kinase (PI3K) signaling pathway. 
The PI3K pathway is one of the main signaling pathways 
that regulates macrophages, and it controls the critical switch 
between immune activation and inhibition in the process of 
inflammation (37). In addition, its contribution to macro‑
phage polarization has gradually attracted the attention of 
numerous researchers, and been demonstrated to mediate 
the transformation of M2 macrophages  (38,39). Certain 
studies have revealed that PI3Kγ plays a pivotal role in the 
polarization of macrophages and in the development of renal 
disease. Specifically, a lack of PI3Kγ leads to the polarization 
of M1 macrophages, resulting in an inflammatory environ‑
ment (40,41). A previous study raised concerns regarding the 
inhibition of PI3K/AKT/mTOR in the treatment of AKI (41). 
Furthermore, previous studies found that aquaporin 1 
(AQP1) can prevent renal tissue damage in AKI induced by 
bacterial lipopolysaccharide (LPS) by mediating the immune 
response. AQP1 alleviates sepsis‑induced AKI by success‑
fully activating PI3K, eventually leading to macrophages 
polarization to the M2 phenotype (Fig. 1) (42). Therefore, 
targeting PI3K‑dependent M2 macrophage polarization 
may constitute a novel therapeutic approach to reducing 
sepsis‑induced AKI.

Nuclear factor‑κB (NF‑κB) signaling pathway. NF‑κB is a 
key regulator of inherent and adjustable immunity, which 
is closely linked to the pathogenesis of AKI (43). Previous 
studies have shown that pharmacological inhibitors (CLI‑095 
and pyrrolidine dithiocarbamate) of toll‑like receptor 4 
(TLR4)/NF‑κB have a beneficial effect on rhabdomyol‑
ysis‑induced AKI (RI‑AKI) by controlling the production 
of pro‑inflammatory cytokines and by regulating macro‑
phage infiltration (44). Shu et al  (45) found that LPS can 
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upregulate the expression of CD38 in macrophages cultured 
in vitro in a time‑ and dose‑dependent manner. Knocking 
down or blocking the expression of CD38 in macrophages 
inhibits the transduction of NF‑κB signals, thereby reducing 
LPS‑induced M1 polarization (45). It has been shown that 
quercetin may inhibit M1 polarization and NF‑κB signal 
activation in the mouse kidney and spleen macrophages after 
LPS injection in a mouse model of AKI caused by LPS (45). 
Previous studies have reported that quercetin inhibits the 
expression of inflammatory components in macrophages 
both in vitro and in vivo, thus reducing renal injury (46,47). 
The mechanism is primarily associated with inhibition of 
the activity of macrophage‑inducible C‑type lectin (Mincle) 
and its downstream signal molecules Syk and NF‑κB, 
whereby it regulates the polarization of macrophages by 
inhibiting pro‑inflammatory M1 macrophages and activating 
anti‑inflammatory M2 macrophages (48). Tan et al (49) have 
shown that curcumin treatment inhibits M1 macrophages in a 
Mincle‑dependent manner, promoting the phenotypic trans‑
formation of macrophages from the M1 phenotype to the M2 
phenotype and alleviating M1 macrophage‑mediated kidney 
inflammation through a Syk/NF‑κB‑dependent mechanism. 
Hui et al (50) showed that Astragalus propinquus Schischkin 

and Panax notoginseng could control the activation of 
Mincle/Syk/NF‑κB in vivo and in vitro. The mechanism may 
involve the inhibition of Mincle, which can decrease the acti‑
vation of M1 macrophages and increase the activation of M2 
macrophages. Zhou et al (51) demonstrated that recombinant 
human EPO exerts a regulatory effect on macrophages and 
a beneficial effect on the kidney by lowering the produc‑
tion of pro‑inflammatory components via the TLR4/NF‑κB 
signaling pathway in crush syndrome‑induced AKI (Fig. 1). 
Therefore, EPO has a therapeutic potential for improving the 
prognosis of patients with AKI.

Janus kinase (JAK)/signal transducer and activator of tran‑
scription (STAT) signaling pathway. JAK is a non‑receptor 
tyrosine kinase  (52), while STAT molecules are potential 
nuclear transcription factors that are activated after recruit‑
ment of activated receptor complexes (53). The JAK/STAT 
signaling pathway transduces the downstream signals of 
a variety of cytokines, which is important in the pathogen‑
esis of immune‑related diseases (54). Previous studies have 
shown that EPO can assist M2 polarization through the 
JAK2/STAT3/STAT6 signaling pathway, suggesting the 
immunomodulatory ability of EPO in macrophage activation 

Figure 1. Major signaling pathways of macrophages in AKI. Kidney macrophages are derived from erythro‑myeloid progenitors produced in the yolk sac. 
They are produced in the fetal liver of the embryo, and then settle during organ formation. In the occurrence of inflammation, peripheral macrophages are 
recruited from the bone marrow to become circulating monocytes. Macrophages have roles in various signaling pathways that are involved in the occurrence 
and development of AKI, including MAPK, PI3K, RA, JAK/STAT and NF‑κB. The NF‑κB signaling pathway is related to the transformation of macrophages 
to the M1 phenotype. PI3K, RA and JAK/STAT signaling pathways are related to the transformation of macrophages to the M2 phenotype. AKI, acute kidney 
injury; MAPK, mitogen‑activated protein kinase; PI3K, phosphatidylinositol‑3 kinase; RA, retinoic acid; JAK, janus kinase; STAT, signal transducer and 
activator of transcription; NF‑κB, nuclear factor‑κB; RAR, RA receptor; RARE, RA response elements; EPO, erythropoietin; IL‑, interleukin; p‑, phos‑
phorylated; ERK, extracellular signal‑regulated kinase; TLR4, toll‑like receptor 4; PDK1, phosphoinositide‑dependent kinase‑1; PIP3, phosphatidylinositol 
(3,4,5)‑trisphosphate; PIP2, phosphatidylinositol 4,5‑bisphosphate; Mincle, macrophage‑inducible C‑type lectin; ATRA, all‑trans‑retinoic acid; ALDH, 
aldehyde dehydrogenase; RDH, retinol dehydrogenase; RXR, retinoid X receptor; RTK receptor tyrosine kinase.
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(Fig. 1) (23,55). In addition, the cytokines interleukin (IL)‑4 
and IL‑13 can activate the JAK3/STAT6 signaling pathway 
(Fig. 1). Deletion of IL‑4 and IL‑13 will lead to the decrease of 
the M2a phenotypic markers of tissue repair, which indicates 
that IL‑4 and IL‑13 play an essential role in the phenotypic 
polarization of M2a macrophages and are important in 
I/R‑AKI recovery (56). Gpnmb is a transmembrane protein 
that negatively regulates macrophage inflammation (57). It 
has been observed that the IL‑4/STAT6 signaling pathway 
participates in the process of M2 polarization by Gpnmb (24). 
This suggests that Gpnmb can be used as a biomarker to 
protect against AKI by regulating the polarization of macro‑
phages (24).

Mitogen‑activated protein kinase (MAPK) signaling pathway. 
MAPKs are serine‑threonine protein kinases. In mammals, 
MAPKs include c‑Jun N‑terminal kinase, p38 MAPK and 
extracellular signal‑regulated kinase. Each type exists in 
different subtypes of the enzyme and can regulate a variety of 
cellular activities, including proliferation, differentiation and 
apoptosis (Fig. 1) (58). MAPK participates in the process of 
sepsis‑induced AKI (59,60). A previous study demonstrated 
that the expression of kidney injury molecule‑1 (KIM‑1) is 
significantly increased in both AKI and CKD (61). It has been 
reported that the MAPK signaling pathway may play a pivotal 
role in KIM‑1‑mediated macrophage phenotypic transition 
and migration  (62). Li et al  (63) demonstrated that AQP1 
exerts a protective effect in the regulation of AKI and attenu‑
ates macrophage‑mediated inflammation by downregulating 
the activity of p38 MAPK induced by LPS in RAW264.7 
cells. Consequently, pharmacological inhibitors targeting 
the AQP1‑mediated p38 MAPK signaling pathway may be 
potential treatments for AKI.

RA signaling pathway. RA signaling plays an important role 
in numerous biological processes (64). RA is synthesized at 
a specific location, and regulates transcription by interacting 
with the nuclear RA receptor. It then binds to the RA response 
elements near the target gene (Fig. 1) (65). It has been found 
that the RA signaling pathway participates in AKI in mouse 
and zebrafish models of AKI, limiting the extent of damage 
and promoting regular repair (66). RA signaling coordinates 
the dynamic balance of pro‑inflammatory M1 and anti‑inflam‑
matory M2 macrophages  (67). Locally synthesized RA 
inhibits the pro‑inflammatory M1 phenotype, thus reducing 
macrophage‑dependent damage and activating RA signaling 
in the damaged tubular epithelium, which in turn promotes the 
selective activation of M2 macrophages (68). It was previously 
demonstrated that the effect of 4‑(phenylthio) butanoic acid 
(PTBA) on the proliferation of RTECs is dependent on RA 
signaling (69). The therapeutic characteristics of PTBA are not 
limited to the kidney, since PTBA also increases the prolifera‑
tion of cardiomyocytes and reduces fibrosis after heart injury 
in adult zebrafish. This provides a critical insight into the 
mechanism by which PTBA enhances repair in AKI (69). In 
addition, it has also been reported that RA has a beneficial 
effect on CI‑AKI in vivo and in vitro. Specifically, it activates 
autophagy, inhibits apoptosis and reduces renal fibrosis after 
CI‑AKI. This provides a theoretical basis for RA as a potential 
drug for the prophylaxis and treatment of CI‑AKI (25).

3. Macrophage‑derived mediators in AKI

Macrophage migration inhibitory factor (MIF). MIF is a 
crucial effector of the innate immune and inflammatory 
response  (70,71). In contrast to the majority of cytokines, 
MIF is expressed by the epithelial lining of tissues in direct 
contact with the external environment as well as by immune 
and endocrine cells, which can improve the pro‑inflammatory 
function of immune cells (72). MIF promoter polymorphism 
can predict the occurrence of postoperative AKI  (73). A 
previous study demonstrated that MIF is increased in the 
urine of patients with acute pyelonephritis (APN), and that 
the concentration of MIF is associated with the severity of 
renal injury (74). Thus, MIF is considered to be a potential 
biomarker in patients with AKI caused by APN. AKI is the 
most common complication after cardiac surgery (75). It has 
been reported that MIF is a pressure‑regulated cytokine that 
can protect the heart from myocardial I/R injury (76). MIF 
can limit the extent of necrotizing nephropathy and reduce 
oxidative stress effectively by regaining intracellular gluta‑
thione and reducing lipid peroxidation (77). MIF has clinical 
importance as treatment after cardiac surgery, as it may exert 
a potential nephroprotective effect in AKI (77). Thioredoxin‑1 
(TRX‑1) is a MIF‑regulatory protein with redox activity, and 
has a short residence time in blood (78). Long‑acting TRX 
genetically fused with human serum albumin has the potential 
to treat RI‑AKI by regulating oxidative stress and MIF (79). 
Previous studies have found that MIF plays a pathogenic role 
in cisplatin‑induced AKI, and MIF can mediate AKI via a 
CD74/NF‑κB‑dependent mechanism (Figs. 2 and 3) (80,81). 
The MIF inhibitor ribosomal protein S19, which targets MIF, 
may be a potential treatment strategy for AKI (82). Li et al (81) 
showed that high levels of MIF may be a pathogenic factor for 
I/R‑AKI, and the level of MIF in plasma and urine may be 
associated with the progression and remission of AKI. Thus, 
targeting MIF may be a potential treatment for AKI (Table I).

Macrophage CD163. CD163 is a 130 kDa transmembrane 
receptor protein, which is mainly expressed by M2c macro‑
phages (83). Urinary soluble CD163 (sCD163) may be used as a 
biomarker in certain renal inflammatory diseases (Fig. 2) (84). 
Sun et al (85) quantified sCD163 in the urine, and measured 
macrophage subtypes in the urine and renal biopsies (Table I). 
The authors found that urinary M1 is associated with interstitial 
M1 infiltration, while urinary sCD163 level and M2 subtype 
are positively correlated with infiltrating M2 in the glomeruli. 
The study by Sun et al (85) also revealed that urinary sCD163 
has an improved diagnostic ability in distinguishing the disease 
etiology than that of traditional AKI urinary [Lipocalin-2 
(Lcn‑2)/neutropil gelatinase‑associated lipocalin (NGAL) and 
KIM‑1], myeloid cell (CD11b) and pan‑macrophage (CD68) 
markers. Rubio‑Navarro  et  al  (86) developed a targeted 
probe for CD163 by magnetic resonance imaging in vivo, thus 
confirming the presence of CD163‑positive macrophages in 
human RI‑AKI. Myoglobin activates early inflammatory M1 
reaction and partial transformation to the M2 phenotype at 
a later stage, in which the high expression of CD163 is due 
to activation of heme oxygenase 1 and release of IL‑10 (86). 
Furthermore, the aforementioned study developed gold‑coated 
iron oxide nanoparticles with anti‑CD163 antibody as a carrier, 
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which specifically targeted CD163 in the kidneys of mice 
injected with glycerol  (86). Using probes targeting CD163 
macrophages by magnetic resonance imaging could provide 
valuable information on the cellular composition of kidney 
lesions in rhabdomyolysis (86).

Lcn‑2. Lcn‑2/ NGAL, is a member of the lipocalin family, 
which shares a tight tertiary structure, and ligand binding 
and post‑translational modifications in Lcn‑2 leads to diverse 
Lcn‑2 functions (87). Lcn‑2 is considered a therapeutic target 
for AKI, CKD and numerous types of cancer such as breast, 
esophagus and liver cancer (87‑89). Lcn‑2 plays a pivotal role 
in various kidney diseases, such as sepsis and IR (90). After 
renal injury, Lcn‑2 increases rapidly in macrophages, and 
has highly stable iron binding and transport capacity (Fig. 2). 
A study by Urbschat et al (91) showed that mouse tubular 
epithelial cells (TECs) promoted the proliferation of epithe‑
lial cells by taking macrophage‑derived iron‑loaded Lcn‑2. 
Mertens et al (92) concluded that the cellular source of Lcn‑2 
(TECs or macrophages) and its iron loading determine the 
biological function of Lcn‑2 in cecal ligation and puncture 
(CLP)‑induced kidney injury. At 24 h after CLP‑induced 
kidney injury, elevated levels of iron‑free Lcn‑2 in TECs are 
primarily considered as markers of kidney injury, whereas 
elevated levels of iron‑loaded Lcn‑2 from macrophage 

sources are associated with markers of recovery (92) (Fig. 2; 
Table I). In summary, Lcn‑2 is involved in renal injury and 
renal function recovery.

Macrophage extracellular traps (METs). ETs were first iden‑
tified and described at neutrophils in 2004 (93). Neutrophil 
ETs (NETs) are generated by neutrophils after releasing 
granulin and chromatin, which together form extracellular 
fibers that bind gram‑positive and negative bacteria. Similar 
to NETs, it has been found that a variety of pathogens and 
chemical stimulants can induce macrophages to produce 
METs, including gram‑positive and ‑negative bacteria, 
acid‑resistant bacteria, parasites, fungi, and chemical 
inducers and inhibitors (94). NETs and METs are the main 
drivers of the self‑amplification circuit of necrotizing inflam‑
mation (Fig. 2) (95). A recent study reported the mechanism 
of muscle damage leading to renal dysfunction, and identified 
the formation of METs as a novel type of pathogenic driver 
and a potential therapeutic target  (96). A previous study 
also found that macrophages participate in the pathological 
process of AKI caused by rhabdomyolysis (23). Macrophages 
release METs containing DNA fibers and granular proteins in 
a mouse model of rhabdomyolysis. During rhabdomyolysis, 
platelets activated by heme released by necrotizing muscle 
cells increased MET production by increasing intracellular 

Figure 2. Macrophage‑derived mediators and macrophage‑sensing mediators in AKI. MIF is expressed in the epithelial lining of tissues, as well as in immune 
and endocrine cells, and is involved in the mechanisms of NF‑κB signaling. CD163 is a surface marker for M2 macrophages. METs are activated by heme and 
platelets to release DNA fibers and granular proteins. Trib1 and biglycan are able to adjust the proportion of M1 and M2 macrophages. Exosomal miR‑19b‑3p 
from tubular epithelial cells promote the activation of M1 macrophages during AKI. Both CXCL14 and periostin alleviate AKI by increasing the number of 
M2 macrophages. AKI, acute kidney injury; MIF, macrophage migration inhibitory factor; METs, macrophage extracellular traps; NF‑κB, nuclear factor‑κB; 
Trib1, tribbles homolog 1; EVs, extracellular vesicles; miR, microRNA; CXCL14, C‑X‑C motif chemokine ligand 14; CXCR, CXC chemokine receptors; Lcn‑2, 
lipocalin‑2; IL‑, interleukin; ROS, reactive oxygen species; TEC, tubular epithelial cell; CCL4, C‑C motif chemokine 4; TLR4, toll‑like receptor 4; CCR5, 
chemokine receptor 5; PAD4, peptidyl‑arginine deiminase 4.
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reactive oxygen species production and histone citrullination. 
It was the first study to demonstrate that METs and platelets 
act as sensors for myoglobin‑derived heme in RI‑AKI (97) 
(Fig. 3; Table I). The study reported that the mechanism of 
METs participating in AKI is useful for the pathological 
study of the disease, and may provide novel ideas for the 
treatment of AKI (98).

Tribbles homolog (TRIB) family proteins. TRIB family 
members are pseudokinase proteins that are conserved among 
species and are associated with various human diseases such 
as leukemia and metabolic disorders (99). Members of the 
TRIB family are basic regulators of the cell cycle, prolif‑
eration, differentiation, metabolism and cellular stress (100). 
Among them, TRIB1 can control the differentiation of M2 
macrophages  (101), and its deficiency results in a marked 
reduction of M2 macrophages not only in the bone marrow, 
but also in adipose, lung and spleen tissue (102). TRIB1 may 
widely control the polarization of M1/M2 macrophages via 
the JAK/STAT signaling pathway (Figs. 2 and 3) (103). It was 
previously demonstrated that, during the period of moderate 
AKI adaptive recovery induced by I/R, TRIB1 regulates the 
proliferation of renal tubular cells by affecting the polariza‑
tion of macrophages, thus playing a role in renal recovery 
and regeneration (104) (Table I). Therefore, TRIB1 may be a 
promising target for improving adaptive renal repair after I/R 
injury.

4. Macrophage‑sensing mediators in AKI

Chemokines. Chemokines are a large family of small, secreted 
proteins that play a fundamental role in the development and 
dynamic balance of the immune system. Chemokine signals 
are sent through cell surface G‑protein coupled heptahelical 
chemokine receptors  (105). Chemokines play a long‑term 
role in physiological and pathological regulation by inducing 
macrophage differentiation and polarization  (106). C‑X‑C 
motif chemokine ligand 14 (CXCL14) is a relatively new 
CXC type of chemokine, which is constitutively expressed in 
breast, kidney and other epithelial tissues (107). A previous 
study indicated that its overexpression inhibits M1 polariza‑
tion and increases M2 polarization. This suggested that the 
overexpression of CXCL14 may reduce AKI caused by sepsis 
by downregulating the production of macrophage‑derived 
cytokines (Fig. 2) (108). Chemokine receptor 5 (CCR5) is a 
pivotal regulator of the inflammatory cascade response of 
macrophages in the kidney, and its deficiency contributes to the 
activation of M2 macrophages (Fig. 2; Table I) (109). Therefore, 
blocking CCR5 may be helpful in the treatment of I/R‑AKI. It 
has been observed that the deficiency of C‑C motif CCR2 can 
prevent the migration of Ly6C+ macrophages from the bone 
marrow to the injured site, thus reducing ischemic‑AKI in 
mice (110). In the activation of the renin‑angiotensin system, 
C‑C motif chemokine ligand 5 (CCL5) paradoxically limits 
the accumulation of macrophages in the injured kidney by 
inhibiting the pro‑inflammatory effect of CCL2 (111).

Extracellular matrix proteins. Periostin is a type of 
cellular‑matrix protein of 90 kDa in size, which is highly 
expressed in bone and tooth tissues (112). As a recently identi‑
fied biomarker of renal disease, periostin is mainly associated 
with CKD (113). However, Kormann et al (114) demonstrated 
that periostin can increase the production of M2 macrophages 
in the stage of AKI repair, as well as assist the repair of RTECs 
by promoting the proliferation of macrophages and the secre‑
tion of regenerating factors in the kidney (Table I).

Biglycan is a small proteoglycan, abundant in leucine, 
which acts as a danger signal derived from the extracellular 
matrix in a soluble form, and it is a high‑affinity ligand of 
CD14 in macrophages  (115). The lack of CD14 prevents 
biglycan‑mediated cytokine expression, macrophage recruit‑
ment and polarization to M1 macrophages. It also leads to a 
decrease in the activation of the biglycan‑TLR2/4 signaling 
pathway, thus improving renal function (Figs. 2 and 3) (116). 
Poluzzi et al  (117) showed that CD44 is a novel biglycan 
signal coreceptor, and its interaction with biglycan is neces‑
sary for TLR4/CD44‑dependent autophagy in macrophages. 
Interfering with the interaction between biglycan and specific 
TLR coreceptors may constitute a novel therapeutic interven‑
tion to reduce renal inflammation and injury. Specifically, 
the role of biglycan in inflammation exceeds its function as a 
typical danger signal, and it is the first ligand, among numerous 
types of DAMPs, that has been reported to promote the polar‑
ization of M1 and M2 macrophages simultaneously through 
the transduction of different coreceptor signals (118) (Table I). 
Biglycan binds to CD14 to promote tissue inflammation, while 
it binds to CD44 to induce autophagy in M1 macrophages and 
then promote tissue remodeling (119).

Figure 3. Relationship between macrophage‑related mediators and down‑
stream signaling pathways after AKI. When AKI occurs, macrophages 
migrate to the injured site and activate downstream signal pathways through 
the production of macrophage‑related mediators to regulate the phenotype 
transformation of macrophages and exert their physiological functions. 
Macrophage‑related mediators include macrophage‑derived mediators and 
macrophage‑sensing mediators, which activate signaling pathways related to 
M1/M2 macrophages, regulate the polarization of macrophages, and affect 
the development of AKI. AKI, acute kidney injury; MIF, macrophage migra‑
tion inhibitory factor; Lcn‑2, lipocalin‑2; METs, macrophage extracellular 
traps; TRIBS, tribbles homolog; MAPK, mitogen‑activated protein kinase; 
PI3K, phosphatidylinositol‑3 kinase; RA, retinoic acid; JAK, janus kinase; 
STAT, signal transducer and activator of transcription; NF‑κB, nuclear 
factor‑κB.
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Extracellular vesicles (EVs) refer to the membrane struc‑
tures released by all types of cells through different biogenic 
pathways  (120). EVs are intercellular messengers that are 
involved in a wide range of physiological and pathological 
processes (121). EVs have the advantages of exhibiting stable 
physical and chemical properties (122). Therefore, EVs have 
been used as natural carriers in drug delivery systems in recent 
years (123). It was previously shown that macrophage‑derived 
EVs have a pro‑inflammatory effect  (124). By contrast, 
Tang et al (125) demonstrated that macrophages secrete IL‑10+ 

EVs under dexamethasone stimulation, which can promote the 
transformation of macrophages into the M2 phenotype (Fig. 2; 
Table I).

Exosomes are nanoscale EVs that play a key role in 
intercellular communication and signal transduction. They 
also play a pivotal role in the processes of inflammation and 
immune response (126). In recent years, a growing body of 
evidence has found that exosomes participate in the patho‑
genesis of renal disease (127,128). Among them, exosomal 
microRNA (miR)‑19b‑3p may be a promising therapeutic 
target for renal disease (129). Tubulointerstitial inflammation 
is an important pathological feature of AKI. Lv et al (130) 
found that exosomal miR‑19b‑3p mediates the interaction 
between injured RTECs and macrophages, which leads to 
the activation of M1 macrophages and indicates that the 
exosome/miR‑19b‑3p/suppressor of the cytokine signaling 
axis plays a pivotal role in the development of renal tubu‑
lointerstitial inflammation (Fig. 2; Table  I). Furthermore, 
previous studies have demonstrated that the release of 
hypoxia‑inducible factor‑1α‑dependent miR‑23a‑enriched 
exosomes from hypoxic TECs can activate macrophages and 
promote tubulointerstitial inflammation (131) (Table I). In 
addition, blocking the exosome‑mediated transfer of miR‑23a 
between RTECs and macrophages may be an innovative 
method for enhancing renal tubulointerstitial inflammation. 
In summary, exosomes are involved in adjusting the routine 
function of the kidney, as well as in promoting and inhibiting 
various pathophysiological reactions (121).

5. Conclusions

AKI may be caused by a variety of factors and injuries, with a 
high incidence among critically ill patients (132). When AKI 
occurs, macrophages, as one of the most significant types of 
immune cells, are recruited to the injury site to perform their 
physiological functions. M1 macrophages can aggravate the 
inflammatory response in order to eliminate potential patho‑
gens. However, excessive inflammatory response aggravates 
cell and tissue damage. M2 macrophages promote immune 
suppression and tissue regeneration (28,133). Therefore, the 
application of M2 macrophages and macrophage‑modulating 
agents is a current research hotspot in the treatment of 
AKI (11,23). It was previously demonstrated that M2 macro‑
phages can cause the transition from AKI to CKD, which 
increases the risk of CKD among AKI survivors (34). Recent 
studies on the role of macrophages in the pathogenesis of AKI 
suggest the complication and diversity of macrophage activa‑
tion and the functional status after renal injury (134,135). The 
multifaceted role of macrophages in AKI is mainly mediated 
by PI3K, JAK/STAT, RA, NF‑κB, MAPK and other signaling 

pathways (Fig. 1), which may regulate macrophage polariza‑
tion or oxidative stress (42,44,56,59,68). Among them, the RA 
signaling pathway is considered to be the current research 
hotspot, because it not only has an immunosuppressive effect, 
but also participates in the inflammatory response. Elucidating 
the mechanism of the RA signaling pathway in AKI and its 
association with macrophages has great clinical application 
prospects  (136). Macrophage‑derived and ‑sensing media‑
tors such as MIF, CD163, Lcn‑2, METs, TRIB, and biglycan 
(Fig. 2; Table I) also play an essential role in AKI. Fig. 3 shows 
the association between macrophage‑associated mediators 
and downstream signaling pathways after AKI. However, the 
signaling pathway that macrophage mediators participate in 
may be a complex network, and further research is needed 
to verify whether there is interaction between different 
pathways. A thorough understanding of the biological role of 
macrophages in the process of injury and repair is a necessary 
condition for understanding the limitations and further appli‑
cability of macrophages in therapy. Therefore, future studies 
should elucidate the mechanism and timing of macrophage 
polarization, as well as the precise regulatory mechanisms 
of macrophages in the occurrence and development of AKI, 
which will contribute to the understanding and identification 
of novel therapeutic targets for AKI.
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