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Abstract. Glioblastomas (GBMs) are the most frequent and 
malignant type of brain tumor. It has been reported that 
progesterone (P4) regulates the progression of GBMs by modi‑
fying the expression of genes that promote cell proliferation, 
migration and invasion; however, it is not fully understood 
how these processes are regulated. It is possible that P4 medi‑
ates some of these effects through changes in the microRNA 
(miRNA) expression profile in GBM cells. The present study 
investigated the effects of P4 on miRNAs expression profile 
in U‑251MG cells derived from a human GBM. U‑251MG 
cells were treated for 6 h with P4, RU486 (an antagonist of the 
intracellular progesterone receptor), the combined treatment 
(P4+RU486) and cyclodextrin (vehicle) and then a miRNA 
microarray analysis conducted. The expression analysis 
revealed a set of 190 miRNAs with differential expression in 
the treatments of P4, RU486 and P4+RU486 in respect to the 
vehicle and P4 in respect to P4+RU486, of which only 16 were 
exclusively regulated by P4. The possible mRNA targets of the 
miRNAs regulated by P4 could participate in the regulation 
of proliferation, cell cycle progression and cell migration of 
GBMs. The present study provided insight for understanding 
epigenetic modifications regulated by sex hormones involved 
in GBM progression, and for identifying potential therapeutic 
strategies for these brain tumors.

Introduction

Glioblastoma multiforme (GBM), a grade IV astrocytoma, 
is the most common and aggressive brain tumor in adults. It 

is characterized by being highly infiltrative, angiogenic and 
resistant to chemotherapy and radiotherapy. The medical 
history of patients with GBM is short as few of them survive 
more than one year (1‑3). GBM is mainly diagnosed in adults 
>50 years old, but it can occur at any age and the incidence is 
higher in men than in women (3:2) (4).

Studies have focused on the identification of new biomarkers 
and therapeutic agents in GBM. Of particular interest are the 
microRNAs (miRNAs), which are single‑stranded, short, 
non‑coding RNA sequences with a length between 18 and 
25 nucleotides that regulate gene expression at the post‑tran‑
scriptional level by silencing their mRNA targets through 
binding to their 3'‑untranslated region (3'‑UTR). Compelling 
evidence continues to accumulate that miRNAs are involved 
in cancer‑related signaling pathways associated with glioma‑
genesis, proliferation, apoptosis, invasion and malignancy of 
GBM (5‑10).

Progesterone  (P4), a sex steroid hormone, can exert 
its effects through a classical mechanism by binding the 
intracellular progesterone receptor (PR), a ligand‑dependent 
transcription factor. Upon activation, PRs are dimerized and 
translocated to the nucleus where they recruit coactivators and 
chromatin‑remodeling complexes to activate transcription of 
progesterone responsive genes (11‑13). The participation of PR 
in P4 actions in GBMs has been documented. In two human 
astrocytoma cell lines (U373, grade III and D54, grade IV), 
González‑Agüero et al (14) studied the effects of progesterone 
and RU486 on cell growth; at a concentration of 10 nM, P4 
increased the number of D54 and U373 cells. Also, it was 
observed that P4 increased S phase of the cell cycle in U373 
cells (14). In scratch‑wound and Transwell assays, P4 increases 
the number of D54 and U‑251MG cells migrating and the 
number of invasive cells, respectively (15). In an in vivo study, 
Germán‑Castelán et al (16), implanted U87 GBM xenografts 
into the cerebral cortex of male rats and observed that P4 
significantly increases GBM tumor area and infiltration length. 
RU486, a PR antagonist and an oligonucleotide antisense 
against PR, blocked the effects of P4.

It has been reported that P4, through PR activation, 
increases proliferation, migration and invasion of cells derived 
from human GBMs by regulating the expression of genes 
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involved in these processes including TGFβ, COF1, EGFR, 
VEGF and cyclin D1 (17‑20). Although the role of P4 over the 
expression of miRNAs in GBMs remains to be elucidated, it 
is known that in breast cancer, P4 regulates the expression of 
miRNAs with tumor suppressor or oncogenic action, via the 
classic PR (21‑30). The present study characterized the expres‑
sion profile of P4‑regulated miRNAs in the U‑251MG cell 
line, derived from a human GBM and the biological processes 
that could be regulated by the differentially expressed (DE) 
miRNAs.

Materials and methods

Cell culture and treatments. The U‑251MG cell line derived 
from a human GBM was acquired from the American Type 
Culture Collection (ATCC). It was maintained in Dulbecco's 
modified Eagle's medium (DMEM; Biowest) with high glucose, 
phenol red, supplemented with 10% fetal bovine serum (FBS; 
Biowest), 1 mM sodium pyruvate (In Vitro S.A.), 0.1 mM of 
non‑essential amino acids (In Vitro S.A.) and 1 mM antibiotic 
(Streptomycin 10 g/l, Penicillin G 6.028 g/l and Amphotericin 
B 0.025 g/l; In Vitro S.A.), at 37˚C in a humid atmosphere with 
5% CO2. The media was replaced 12 h before the treatments 
by DMEM‑no phenol red (cat. no. ME‑019; In Vitro, MEX) 
supplemented with 10% charcoal/dextran treated FBS (cat. 
no. SH30068.03; Thermo Fisher Scientific, Inc.). The treat‑
ments consisted of P4 (10 nM), RU486 (10 µM), P4 (10 nM) 
+ RU486 (10 µM; all from Sigma‑Aldrich; Merck KGaA) and 
vehicle (cyclodextrin, 0.02%) for 6 h at 37˚C.

RNA isolation. Following treatments, total RNA was extracted 
using TRIzol reagent (Thermo Fisher Scientific, Inc.), 
according to the manufacturer's instructions. The concentra‑
tion and purity of the extracted RNA were determined by the 
Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.) and 
the integrity of the RNA was checked by electrophoresis on 
a 1.5% agarose gel. Only the samples with an RNA Integrity 
Number of 9‑10 were used.

Microarrays analysis. For miRNA expression analysis, a stan‑
dard protocol was followed. Briefly, for each sample, 250 ng 
of total RNA were labelled with the FlashTag™ Biotin RNA 
Labeling kit (Affymetrix®; Thermo Fisher Scientific, Inc.). 
The labelled RNA was hybridized with the GeneChip miRNA 
4.0 Array (Affymetrix®; Thermo Fisher Scientific, Inc.) and 
then the miRNA microarray chips were washed twice with 1X 
PBST (0.02% Tween) and stained with FlashTag™ Biotin HSR 
(Affymetrix; Thermo Fisher Scientific, Inc.) for 5 min at 35˚C. 
The image was digitized and the CEL files were generated. 
The fluorescence intensity values in CEL format were loaded 
into Expression Console™ v1.4.1.46 software (Affymetrix; 
Thermo Fisher Scientific, Inc.), where they were pre‑processed 
with Robust Multiarray Analysis and normalized by quartiles. 
The CHP files generated after normalization were loaded 
into the Transcriptomic Analysis Console™ v4.0.1 software 
(Affymetrix; Thermo Fisher Scientific, Inc.) for expression 
analysis through the functions of the limma package  (31) 
and for graphics generation. Heatmaps were generated with 
pheatmap v1.0.12 (CRAN.R‑project.org/package=pheatmap) 
package for R version 3.5.2 (32).

Prediction of target genes of DE‑miRNAs. A search of 
the target genes of DE‑miRNAs was performed in four 
different open access databases: DIANA‑Tarbase v8  (33), 
miRWalk  v2.0  (34), Diana‑microT‑CDS v5.0  (35) and 
TargetScan v7.2 (36). From these databases, DIANA‑Tarbase 
v8 and miRWalk reported validated miRNA‑mRNA interac‑
tions, while Diana‑microT‑CDS v5.0 and TargetScan v7.2 
report only predicted miRNA‑mRNA interactions. False posi‑
tives were avoided by taking the intersections of at least 3 of 
these databases.

Gene Ontology (GO) enrichment analysis and Kyoto Encyclo‑
pedia of Genes and Genomes (KEGG) pathway enrichment 
analysis. The target genes found in at least 3 databases were 
used as input for Enrichr 3.0 platform (https://maayanlab.
cloud/Enrichr/) (37) to perform a GO functional gene annota‑
tion (38) and a KEGG pathway enrichment analysis (39). The 
resulting GO terms with P<0.05 were considered significantly 
enriched.

Analysis of the protein‑protein interaction network (PPI). 
The PPI network was established using the STRING data‑
base (https://string‑db.org/) (40). Hub genes were determined 
with the help of Cytoscape software (v3.7.1) (41). Finally, the 
expression levels of the hub genes were determined in Gene 
Expression Profiling Interactive Analysis (GEPIA; v1.0; 
http://gepia.cancer‑pku.cn/) (42), an interactive web server that 
was developed to perform RNA‑seq expression data analysis 
of 9,736 tumors and 8,587 normal samples of the Cancer 
Genome Atlas and Genotype‑Tissue Expression projects.

Statistical analysis. For the selection of differentially 
expressed miRNAs between treatments in the microarrays, 
ANOVA was performed with the t‑moderated method of 
eBayes. The miRNAs with a fold‑change (FC) ≥±1.5 and a 
P‑value <0.05 were selected as differentially expressed in the 
contrasts of treatments. All data were analyzed and plotted 
by using GraphPad Prism v5.00 for Windows (GraphPad 
Software, Inc.).

Results

Identification of miRNAs with differential expression 
(DE‑miRNAs). Global miRNA expression changes in 
the U‑251MG cells were evaluated after 6  h of treatment 
with vehicle (V), P4, RU486, or P4  +  RU486. A total of 
190 DE‑miRNAs were found after comparing the different 
treatments. DE‑miRNAs were evaluated in the following 
comparisons (Table I): P4 vs. vehicle (Fig. 1A), RU486 vs. 
vehicle (Fig. 1B), P4+RU486 vs. vehicle (Fig. 1C) and P4 vs. 
P4+RU486 (Fig. 1D). The number of upregulated and down‑
regulated DE‑miRNAs in each contrast is shown in Table I. 
The data presented in the present study have been deposited 
in NCBI's Gene Expression Omnibus (43) and are accessible 
through GEO Series accession number GSE144204.

To determine the differences among treatments, a heatmap 
with the DE‑miRNAs was generated (Fig. 2). It was identi‑
fied that P4 treatment decreased the expression of 8 miRNAs; 
these effects were blocked by RU486 since none of these 
miRNAs exhibited a significant differential expression in the 
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comparisons RU486 vs. V or P4 vs. P4+RU486; the present 
study also identified 8 miRNAs upregulated by P4 compared 
with vehicle, however in this case, the effect of P4 was not 
blocked by RU486, which can be seen in the comparison of P4 
vs. P4+RU486.

Prediction of molecular pathways associated with putative 
targets of the DE‑miRNAs. Bioinformatic analysis for the 
identification of putative targets of the DE‑miRNAs was 
performed as described in Materials and methods. A total of 
367 and 434 putative genes were determined for downregu‑
lated and upregulated miRNAs, respectively (Table SI). It was 
identified that target genes of miRNAs downregulated by P4 
participated in cell‑cell adhesion, regulation of histone post‑
translational modifications, cell cycle progression, mRNA 
binding, transcription regulation, nucleosome assembly (Fig. 3). 
By contrast, the miRNAs upregulated by P4 participated in the 
negative regulation of genes involved in transcription, histone 
H3K4 modifications, regulation of TFGβ pathway, chromatin 
structure and cytoskeleton conformation (Fig. 3).

Pathway enrichment analysis showed that the target genes of 
the miRNAs downregulated by P4 regulate signaling pathways 
participating in diseases such as systemic lupus erythematosus 
and alcoholism, but also in long‑term potentiation of synaptic 

Table I. Count of DE‑miRNAs by comparison.

Comparison	 Upregulated	 Downregulated	 Total

P4 vs. vehicle	 16	 10	 26
RU486 vs. vehicle	 27	 77	 104
P4+RU486 vs. vehicle	 38	 47	 85
P4 vs. P4+RU486	 63	 39	 102

DE, differentially expressed; miRNAs, microRNAs; P4, proges‑
terone.

Figure 1. Differential expression analysis of miRNAs in U‑251MG cells. The volcano plots show DE‑miRNAs in (A) P4 vs. vehicle, (B) RU486 vs. vehicle, 
(C) P4+RU486 vs. vehicle and (D) P4 vs. P4+RU486. Blue dots represent the miRNAs downregulated and red dots represent the upregulated miRNAs in each 
comparison (FC <1.5 and P≤0.05). miRNAs, microRNAs; DE, differentially expressed; P4, progesterone; FC, fold‑change; has, human.
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activity, cell cycle and maintenance of stem cells pluripotency 
(Table II). The target genes of the miRNAs upregulated by 
P4 participated in synaptic vesicle cycle, fluid shear stress and 

atherosclerosis, in addition to in TGF‑β and IL‑17 signaling 
pathways (Table III).

Screening of hub Genes and protein‑protein interaction 
network (PPI). The target genes of the miRNAs regulated by 

Figure 2. miRNA expression profile. The heatmap shows the FC of 190 significant miRNAs (FC≥ ±1.5 and P≤0.05) from the analyses of differential expres‑
sion. Each row represents a miRNA and each column a treatment. miRNAs downregulated by P4 are denoted by a blue box, miRNAs upregulated by P4 are 
enclosed in a red box. miRNA, microRNA; P4, progesterone; FC, fold‑change; has, human.

Table II. Pathway enrichment analysis of the target genes of 
miRNAs downregulated by P4.

Term	 Overlap	 P‑value

Systemic lupus erythematous	 14/133	 0.0000001245
Alcoholism	 16/180	 0.0000001687
Viral carcinogenesis	 12/201	 0.000291301
Cushing syndrome	 10/155	 0.000503219
Bladder cancer	 5/41	 0.000798635
Long‑term potentiation	 6/67	 0.001274163
Cell cycle	 8/124	 0.001804709
Mineral absorption	 5/51	 0.002163061
MAPK signaling pathway	 13/295	 0.002737286
Signaling pathways regulating	 8/139	 0.003665340
pluripotency of stem cells

miRNAs, microRNAs; P4, progesterone.

Table III. Pathway enrichment analysis of the target genes of 
miRNAs upregulated by P4.

Term	 Overlap	 P‑value

Synaptic vesicle cycle	 6/78	 0.0028211
Fluid shear stress and atherosclerosis	 8/139	 0.0037271
Tight junction	 8/170	 0.0120564
Colorectal cancer	 5/86	 0.0195424
TGFβ signaling pathway	 5/90	 0.0232857
IL‑17 signaling pathway	 5/93	 0.0263776
Ferroptosis	 3/40	 0.0349887
Renal cell carcinoma	 4/69	 0.0357799
Adherent junction	 4/72	 0.0408592
Bacterial invasion of epithelial cells	 4/74	 0.0444609

miRNAs, microRNAs; P4, progesterone.
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P4 were mapped in the STRING database to obtain a clearer 
idea of their interactions and their global action. The analysis 
of PPI networks in Cytoscape, resulted in 259 and 267 pairs of 
nodes for the target genes of the miRNAs downregulated and 
upregulated by P4, respectively. The genes with a high degree 
of interactions in the PPI network were defined as hub genes 
since they could serve a critical role in the module (Table IV). 
A miRNA‑target interaction network was performed to visu‑
alize the interaction between the calculated hub genes and 
their corresponding miRNA (Figs. 4 and 5). The majority of 
the hub genes of miRNAs downregulated by P4 were histones; 

whereas the principal hub gene of the miRNAs upregulated 
by P4 was HSP90AA1, a gene that encodes an inducible 
molecular chaperone.

The GEPIA database was used to compare the expres‑
sion levels of the hub genes in biopsies of GBM compared 
with normal tissue. The expression of 7  hub genes 
(HIST2H2BE, HIST2H2AC, HIST1H2BJ, HIST1H2BD, 
CDK4, HIST2H2AA3 and HIST2H2AA) modulated by the 
DE‑miRNAs downregulated by P4 was significantly higher in 
GBM compared with normal tissue (Fig. 6), as was expected 
given the negative association between a miRNA and its target 

Figure 3. Functional annotation of miRNA‑target genes regulated by P4. (A) Biological processes, (B) Molecular functions and (C) Cellular components 
enriched by candidate genes of downregulated miRNA (blue bars) and upregulated miRNAs (red bars). Gene Ontology terms with P<0.05 were considered 
significantly enriched. Putative targets of downregulated miRNAs by P4: 367 genes; putative targets of upregulated miRNAs by P4: 434 genes. miRNA, 
microRNA; P4, progesterone.

Figure 4. Regulatory network miRNA‑mRNA for the hub genes of the 
miRNAs downregulated by P4. miRNA, microRNA; P4, progesterone; 
has, human.

Figure 5. Regulatory network miRNA‑mRNA for the hub genes of the 
miRNAs upregulated by P4. miRNA, microRNA; P4, progesterone; 
has, human.
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genes. Notably, the target genes of the upregulated miRNAs, 
JUN, RHOA, SOD2 and AURKA exhibited a significantly 
higher expression compared with normal healthy tissue, 
contrary to the expected result; the remaining target genes did 
not present significant differences (Fig. 7).

Discussion

GBM, a grade IV astrocytoma, is the commonest and most 
aggressive brain tumor in adults  (1‑3). Previous studies 
have suggested that alterations in miRNAs expression are 
involved in GMB progression (5‑10). Changes in the expres‑
sion profile of miRNAs by steroid hormones have been noted 
in hormone‑responsive cancers  (44‑47) but not in GBM. 
Since it has been suggested that sex hormones, such as P4, 
are involved in the several processes that contribute to GBM 
progression (14‑20), the objective of the present study was to 
determine the expression profile of miRNAs regulated by P4 
in GBM cells and identify the pathways regulated by them. 
The effect of P4 on increased cell proliferation of GBMs 
was observed at a concentration of 10 nM  (14), the same 
concentration that increases migration and invasion (15). In all 
previous cases, 10 µM of RU486 was determined to be the 

concentration that significantly blocked the effects of P4 on 
GBM malignancy (14,15).

In the present study, the expression of 190 new miRNAs 
was altered by P4, RU486 and P4+RU486 in U‑251MG 
cells. Of the 190 miRNAs, only 16 were regulated by P4 
and this effect was blocked by RU486 (an antagonist of PR). 
However, some miRNAs exhibited changes in their expression 
upon treatment with of RU486 compared with the vehicle, 
suggesting that RU486 alone should exert an effect on miRNA 
expression, probably due to the affinity that RU486 also has 
for the glucocorticoid receptor (48,49). It was also found that 
P4+RU486 treatment had several DE‑miRNAs respect to the 
vehicle, which suggests that RU486 does not entirely block 
P4 actions, and that P4 and RU486 may exert their effects via 
different mechanisms.

Of the 16 miRNAs reported in the present study, only the 
human (has)‑miR‑485‑3p miRNA, downregulated by P4, has 
been previously evaluated in GBM cells. Agreeing with the 
present study, Zhang et al (50) found that the expression of 
hsa‑miR‑485‑3p is downregulated in biopsies from patients 
with compared with healthy brain tissue; these authors deter‑
mined that its target gene is the ring finger protein 35 (RNF135). 
By silencing RNF135, the hsa‑miR‑485‑3p inactivated the 
MAPK/ERK1/2 pathway in GBM cells, while functional 
assays showed that hsa‑miR‑485‑3p inhibited proliferation and 
migration of GBM cells, which was reversed by the overex‑
pression of RNF135; all suggesting that the hsa‑miR‑485‑3p 
miRNA has a tumor suppressor function in GBMs (50).

To evaluate the possible targets of the DE‑miRNAs, the 
present study conducted functional annotation and pathway 
analysis. A set of target genes for the miRNAs downregulated 
by P4 and another set for the ones upregulated were defined. 
The functional annotation demonstrated that the target 
genes of the downregulated miRNAs could be involved in 
post‑transcriptional histone modification, chromatin assembly, 
nucleosome assembly, cell cycle progression, RNA binding 
and regulation of transcription. The pathway analysis revealed 
that these genes could participate in some pathways not 
related to cancer (Systemic lupus erythematosus and alco‑
holism) as well as with pathways that are well characterized 
in cancer and specifically in GBM, including cell cycle (51), 
MAPK signaling pathway (52,53) and regulation of stem cells 
pluripotency (54‑56).

Regarding the target genes of the upregulated miRNAs, 
the results of the functional notation matched the results of 
the pathway analysis as the regulation of transcription, modi‑
fications of histone H3K4, regulation of the TGFβ pathway, 
chromatin structure and conformation of the cytoskeleton are 
related to the pathways of synaptic vesicles formation, mainte‑
nance of tight junctions, TGFβ and the IL signaling pathways. 
Particularly in GBMs, the secretion of VEGF by cancer cells 
inhibits the formation of tight junctions (57,58) and notably, P4 
increases the expression of VEGF in cell lines derived from 
GBMs (20). Based on these data, it could be hypothesized that 
P4 increases the malignancy of GBMs through the regula‑
tion of miRNAs that affect the availability of VEGF and the 
maintenance of tight junctions. Regarding the TGFβ pathway, 
it is known that TGFβ expression is directly upregulated 
by P4 through PR  (17). This suggests that the increase of 
TGFβ expression should be due to the silencing of repressors 

Table IV. Hub genes of the miRNAs regulated by P4.

Target genes of the miRNAs downregulated by P4

miRNA	 Gene	 Degree

hsa‑miR‑1239	 HIST2H2BE	 34
hsa‑miR‑1239	 HIST2H2AC	 32
hsa‑miR‑1281	 HIST1H2BJ	 24
hsa‑miR‑1306‑3p	 HIST1H2BD	 24
hsa‑miR‑1306‑3p	 CDK4	 20
hsa‑miR‑1239	 HIST2H2AA3	 20
hsa‑miR‑1239	 HIST3H3	 20
hsa‑miR‑1239	 HIST2H2AA	 20
hsa‑miR‑452‑5p	 BMI1	 20
hsa‑miR‑1239	 HIST2H3C	 17

Target genes of the miRNAs upregulated by P4

hsa‑miR‑1244	 HSP90AA1	 30
hsa‑miR‑1244	 MAPK1	 29
hsa‑miR‑3178	 JUN	 27
hsa‑miR‑4721	 RHOA	 25
hsa‑miR‑6735‑5p	 SRSF1	 15
hsa‑miR‑4721	 ANAPC1	 15
hsa‑miR‑3679‑3p	 HUWE1	 14
hsa‑miR‑3679‑3p	 XIAP	 14
hsa‑miR‑6735‑5p	 SOD2	 14
hsa‑miR‑4721	 AURKA	 13

miRNAs, microRNAs; P4, progesterone; has, human.
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Figure 6. Expression levels of the 10 hub genes of the downregulated miRNAs by P4 in 163 tumors (blue) and 207 normal tissues (gray) obtained from The 
Cancer Genome Atlas and Genotype‑Tissue Expression in Gene Expression Profiling Interactive Analysis database (*P<0.05 vs. normal tissue). miRNA, 
microRNA; P4, progesterone.

Figure 7. Expression levels of the 10 hub genes of the upregulated miRNAs by P4 in 163 tumors (red) and 207 normal tissues (gray) obtained from The Cancer 
Genome Atlas and Genotype‑Tissue Expression in Gene Expression Profiling Interactive Analysis database (*P<0.05 vs. Normal tissue). miRNA, microRNA; 
P4, progesterone.
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pathways, due to the action of miRNAs upregulated by P4. 
Finally, when looking for an association between the IL‑17 
pathway and GBMs, it was noted that IL‑17 expression has 
been positively related to the survival rates of patients with 
GBM (59); in this case, it is possible that P4 decreases the 
expression of IL‑17 by the upregulation of miRNAs directed 
to activators of this pathway.

Analysis of the protein‑protein interaction network, 
carried out with the target genes of those miRNAs regulated 
by P4, determined a list of hub genes that could be important 
in the regulation of the malignancy of GBMs. The results 
indicated that eight of the 10 hub target genes of miRNAs 
downregulated by P4 correspond to histones; therefore, these 
histones would be expected to be upregulated in GBMs. One 
way to confirm this deduction was through the analysis of 
the expression data from the GEPIA database. Based on 
the analysis of these data, 7 of the 8 histones matched their 
miRNA regulators; markedly, only the expression of histone 
HIST2H2BE has been observed in GBMs under the treatment 
of OTX015, an inhibitor of bromodomain and extraterminal 
bromodomain proteins (60). In addition to histones, BMI1 
and CDK4 were chosen as hub genes in the present study's 
analysis of the target genes for the miRNAs downregulated 
by P4 and, according to the results of their expression in 
GEPIA, only CDK4 was significantly upregulated in GBMs 
biopsies; however, according to literature (56,61‑63), BMI1 is 
also highly expressed in GBM. There is evidence that CDK4 
and BMI1 are oncogenes involved in the regulation of the 
cell cycle and the increase in proliferation and invasion of 
GBMs cells (56,61‑63). In addition, the function of these hub 
genes coincided with the results of functional gene notation 
and pathway enrichment analysis.

In the case of the expression of hub genes of the miRNAs 
upregulated by P4, genes are involved in the cell cycle, 
proliferation, invasion, migration and inhibition of apoptosis 
and genes that participate in antioxidant defence. To date, the 
expression of these genes has not been evaluated after P4 treat‑
ment, however, when verifying their expression in the GEPIA 
database and in published papers, the present study noted that 
these genes are key for GBM biology and characterized as 
oncogenes. As aforementioned, P4 promotes the malignancy 
of GBMs and according to the results of the present study, it 
upregulated miRNAs whose targets are these oncogenes. This 
was unexpected and therefore further research in this field is 
required.

The JUN gene encodes the transcription factor AP‑1, which 
is constitutively activated in gliomas, contributing to their 
malignancy (64‑66) and RHOA has been implicated in invasion 
and migration of human GBM cells through its signalization 
with YAP, MRTF‑A, Daam1 and Wnt5a, also contributing 
to the malignancy of GBM (67,68). In the case of SOD2, its 
expression has been observed to be that significantly increased, 
at the mRNA and protein levels, in LN‑239 and U87 cell lines 
(both derived from GBMs) exposed to oxidative stress (69‑71). 
Although JUN, RHOA and SOD2 have been described as 
oncogenes, their regulation by some type of non‑coding RNA 
has not been studied, in contrast to what has been observed in 
AUKRA. It can be hypothesized that the regulatory miRNAs 
of these hub genes, could have another level of regulation 
by including circular (circ)RNAs  (69) or long non‑coding 

RNAs, which also have response elements to miRNAs (70) 
For example AUKRA is a target gene of circMMP9 and 
hsa‑miR‑124 axis (72).

Finally, the interaction network between hub genes and 
their miRNAs allows the visualization of the complexity of 
the gene regulation by miRNAs; the value of the network 
is the demonstration of the interaction between miRNAs 
regulated by P4 and their target genes, which could aid in 
understanding the epigenetic alterations induced by P4 in 
GBM.

The present study described the global changes in 
the expression profile of miRNAs induced by P4 in cells 
derived from human GBM. Microarray expression analysis 
identified 8 miRNAs downregulated by P4 and 8 miRNAs 
upregulated by P4. As a result of bioinformatic analyses, it was 
found that P4 could regulate processes such as proliferation, 
cell cycle progression and cell migration of GBMs through the 
regulation of a network of miRNAs‑mRNAs.
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