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Abstract. Epilepsy is a common neurological disease that 
affects more than 50 million people worldwide. Neuro
inflammation plays an important role in epilepsy. Activation 
of the immune system and an excessive inflammatory 
response can increase the frequency of seizures and increase 
the susceptibility to epilepsy. Therefore, anti-inflammatory 
therapies may have antiepileptic effects. Connexin 43 (Cx43) 
is a major component of astroglial hemichannels and gap 
junctions. Gap junctions are important for the direct exchange 
of substances and information between cells, as well as regu
lating the neuroinflammatory response, changing neuronal 
excitability, neuronal apoptosis, and synaptic remodeling. 
Cx43mediated gap junction pathway can be crucial in 
epilepsyinduced neuroinflammatory cascades. Further, 
pro-inflammatory cytokines may in turn directly affect the 
expression of the Cx43 protein in astrocytes. Therefore, 
examining the association between neuroinflammation and 
epilepsy can be instrumental in uncovering the pathogenesis 
of epilepsy, which can lead to the development of novel and 
more effective antiepileptic drugs.
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1. Introduction

Epilepsy is a common neurological disease that affects 
>50 million people worldwide. Approximately 30% of epileptic 
patients are resistant to various antiepileptic drugs and eventu
ally develop refractory epilepsy (1,2). Although novel treatment 
strategies have been developed over the past few years, certain 
cases of refractory epilepsy cannot be controlled yet (3). In 
addition, most available treatments are focused on decreasing 
seizures by inhibiting the excitability of the nervous system (4). 
Therefore, the development of new antiepileptogenic thera
pies that can resolve seizures is imminent (5). Recent studies 
reported that neuroinflammation plays an important role in the 
development of epilepsy and abnormal neural circuits (6-11). 
Further, anti-inflammatory therapies were reported to have 
possible antiepileptogenic potential (12,13). Therefore, uncov
ering the role of inflammatory reactions in epilepsy can lead to 
the development of more effective and novel antiepileptic drugs 
which can decrease the disability rate and improve the quality 
of life in epileptic patients.

2. Inflammatory reaction in the central nervous system

The central nervous system can be termed as an ‘immunity 
exemption zone’ because the bloodbrain barrier restricts the 
entry of various substances in the blood circulation (14-17). 
However, accumulating evidence indicates that the immune 
exemption of the central nervous system is relative (18,19). 
Engelhardt et al (20) reported that although immature T cells 
cannot pass through the blood-brain barrier, activated T cells 
can directly attach to the surface of the cerebral vascular 
endothelium and pass through the bloodbrain barrier in the 
direction of blood flow. After crossing the blood-brain barrier, 
T cells can mediate inflammation in the central nervous 
system (20).

The central nervous system has a special ‘immune 
defense line’. Cells involved in the brain's inflammatory reac
tion include the microglia, astrocytes and endothelial cells. 
Microglia are the immune sentinels of the central nervous 
system; they can be activated by injury stimuli and induce 
the corresponding inflammatory reaction, which maintains 
homeostasis in the central nervous system (21). The number 
of microglia is relatively small, accounting for ~5% of the 
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glial population (22-24). Following infection or damage to the 
central nervous system, the resting microglia acquire antige
nicity, their shape becomes extended, and they are activated 
into macrophages to participate in the inflammatory reaction 
together with T cells inoculated within the blood circula
tion (25). However, hyperactivated microglia are important 
sources of pro-inflammatory factors as well as oxidative stress, 
and can cause neurotoxicity.

Astrocytes are also important contributors to the inflam
matory reaction in the nervous system (26,27). Astrocytes 
can play a role in neuronal migration movement, maintain the 
potassium concentration in the central nervous system, regu
late neuronal excitability, and present antigens to autoreactive 
T cells.

Microglia are activated leading to the production of inflam
matory factors following trauma or other injuries. Activated 
microglia can release cytotoxic substances and cytokines (28). 
Further, tissue injury could lead to the infiltration of circu
lating immune cells (29). Additionally, brain tissues are also 
exposed to systemic inflammatory response, which further 
aggravates the immune response and leads to secondary 
neuronal damage (30).

3. Role of the inflammatory reaction in the development of 
epilepsy

Activation of the immune system and an excessive inflam
matory response play crucial roles in the development of 
chronic seizures (31-33). Moreover, neuronal inflammation 
associated with inflammatory cytokines signaling pathways 
may trigger epileptogenesis (34). Of note, patients diagnosed 

with relapsing remitting multiple sclerosis with epilepsy 
showed more extensive cortical inflammation compared with 
patients diagnosed with relapsing remitting multiple sclerosis 
without epilepsy (35). Therefore, examining the association 
between neuroinflammation and epilepsy can help uncover 
the pathogenesis. Clinical and animal studies suggested that 
the immune response is triggered during the pathophysiology 
of epilepsy and that the inflammatory reaction within the 
brain may be involved in the development of epilepsy (36,37). 
Further, the dysregulation of immunoinflammatory reactions 
during the pathological course of epilepsy was associated with 
seizure-induced plasticity (10). Rana and Musto (37) reported 
that neuronal inflammation generated by neural death and 
astrocytes proliferation was associated with the microglial 
activation in damaged areas such as the amygdala, piriform and 
hippocampus in a rat model of lithiumpilocarpineinduced 
epilepsy (38). This dysfunction can facilitate the occurrence of 
epileptic seizures or epilepsy-induced neuronal damage (39). 
Indeed, inflammatory reactions were found to increase the 
propensity for seizures, change neuronal excitability, damage 
the bloodbrain barrier, and mediate neuronal apoptosis and 
synaptic remodeling by activating intracellular signaling path
ways (40). Seizures can activate microglia and neurons in the 
brain, and produce a series of inflammatory reactions without 
additional exogenous stimuli (32,33). Consequently, microglia 
and neurons secrete large amounts of pro-inflammatory factors 
and prostaglandins, and activate the complement system, which 
ultimately promotes neuronal death and synapse regeneration, 
leading to chronic spontaneous seizures (10,39).

Noteworthy, adenosine triphosphate (ATP) was shown to 
activate the sterile inflammatory process through interactions 

Figure 1. Proposed role of Cx43 pathway and ATP in inflammatory activation of microglia in epilepsy. Under physiological conditions, Cx43 is phosphorylated 
and the channel is closed. Cx43 is dephosphorylated by a variety of protein kinases or protein phosphorylases in epilepsy. The change in Cx43 conformation 
leads to abnormal opening of the channels. The release of the intracellular ATP mediates the activation and differentiation of microglia into proinflammatory 
phenotypes, and mediates the process of neuroinflammatory response in epilepsy. Cx43, connexin 43; TNF, tumor necrosis factor; IL, interleukin; ATP, 
adenosine triphosphate.
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with purinergic receptors (40). The ATP-gated ionotropic 
P2X7 receptor (P2X7R) can mediate the regulation of 
neuroinflammation and immune reactions in the central 
nervous system (41). Neuronal injury was reported to activate 
microglia and increase the expression of P2X7R (42,43). 
Monif et al (44) reported that the overexpression of P2X7R 
is sufficient to drive microglial activation. Moreover, the Fas 
ligand derived from microglia exacerbates P2X7-mediated 
microglial activation and triggers a vicious cycle of neuronal 
death (45,46). Low concentrations of ATP act as chemotactic 
agents for microglia recognition and migration to guide them 
to the site of injury (47). ATP-stimulated and P2X4R-mediated 
microglial activation might have an initial protective effect. 
Activated microglia can remove potentially necrotic cell 
debris and promote tissue repair, thereby contributing to 
neuroprotection. Further, activated microglia release neuro
trophic factors through activated P2X4Rs and contribute to 
neuronal survival (48). P2X7R-activated microglia in neuron-
microglia coculture protect neurons from glutamate toxicity 
primarily by releasing tumor necrosis factor (TNF)-α. The 
depletion of microglia can lead to an increase in the levels of 
cytokines and chemokines such as interleukin (IL)-1β, TNFα, 
cytokine-induced neutrophil chemoattractant 1 and monocyte 
chemoattractant protein-1 in the brain, which aggravates brain 
damage (49). In later stages of brain injury, ATP can stimulate 
the overexpression of microglia P2X7R, leading to microglia 
activation and proliferation, as well as cell death (50). Over-
activated microglia upregulate the expression of surface 
immunomodulatory proteins and release of neurotoxic proin
flammatory factors such as IL-1β, IL-6, and TNF-α, which can 
promote further activation of microglia. Long-term inflamma
tory reactions result in neuronal death that affects both healthy 
and damaged cells (51,52).

The expression of connexin 43 (Cx43) in astrocytes is 
affected by inflammatory cytokines (53). Treatment with 
IL1β, for 24 h, inhibited the gap junction communication 
between the human embryonic astrocytes and decreased Cx43 
mRNA and protein expression (54). IL-1β had a transient 
inhibitory effect on gap junction communication between 
primary astrocytes, and this inhibitory effect was produced 
through p38-dependent signaling pathway (55). Therefore, 
Cx43mediated gap junction communication in astrocytes is 
closely correlated to the inflammatory response in the central 
nervous system. They regulate inflammation in the brain and 
selectively regulate the opening of gap junction communica
tion by intracranial inflammatory factors (Fig. 1).

4. Regulation of astrocyte glial junction in epilepsy

Cx43 is a major component of astroglial hemichannels and 
gap junctions (56). Gap junctions play an important role in 
neuroinflammatory reactions (52). However, the impact of 
astrocyte Cx43, its hemichannel, and gap junctions on regu
lating the neuroinflammatory response in epilepsy is still 
unclear.

Astrocytes are the largest glial cell population in the 
central nervous system. Cx43 is a gap junction protein that 
is mainly expressed in astrocytes and mediates over 95% 
of the gap junction communication in the brain (57). Under 
physiological conditions, gap junctions allow the exchange of 

small molecules (<1.5 kDa) between cells. ATP mediates the 
migration of activated microglia to the injured area, especially 
in the initial phase of inflammation (41). Further, extracellular 
ATP induces the release of endogenous ATP from microglia 
and attracts distant microglia to the injury site, which leads 
to the promotion of the inflammatory cascade. ATP released 
by astrocyte hemichannels establishes an ATP gradient in the 
extracellular environment that can trigger microglial activa
tion (58,59). Increased extracellular ATP concentration in 
the injury site mediates the activation of microglia around 
the lesion (60). Of note, the local injection of ATP mimicked 
the traumatic brain injury-induced microglial activation 
and the administration of the gap junction channel blocker, 
carbenic acid, significantly inhibited the microglial activa
tion (61,62). Following injury, extracellular ATP is released 
from the open hemichannels and mediates a rapid reaction 
to microglial damage (63). Jesus et al (64) demonstrated that 
targeted knockout of astrocyte Cx43 expression decreased 
proinflammatory cytokine levels in the brain following lipo
polysaccharide injection. In addition, hemichannel modulators 
like Cx43 mimetic peptide and Cx43 antisense oligonucle
otides could inhibit the inflammatory response mediated by 
microglial activation following spinal cord injury (65). Taken 
together, it is plausible that astrocyte gap junction channel 
can act as a ‘switch’ in the inflammatory signaling cascade 
by promoting the release of ATP into the extracellular space. 
The inflammatory response can affect neuronal excitability, 
neuronal apoptosis and synaptic remodeling. These factors can 
lead to the development of abnormal neural excitability, which 
contributes to the pathogenesis of epilepsy. At the same time, 
pro-inflammatory cytokines can directly affect the expression 
of Cx43 protein in astrocytes (Fig. 1).

5. Conclusion

The occurrence, development and maintenance of epileptic 
seizures progress through a complicated process. The neuro
inflammatory reaction can aggravate epilepsy and maintain 
recurrent episodes by increasing neuronal excitability, 
mediating neuronal apoptosis and remodeling the synapses. 
Therefore, controlling the neuroinflammatory reaction can 
mitigate the downstream cascade. The gap junction pathway 
mediated by astrocyte Cx43 can play a crucial role in control
ling the epilepsyinduced neuroinflammatory cascade. 
Therefore, Cx43 can be a potential target for managing 
epileptic inflammatory reactions. Studies that examine the 
correlation between neuroinflammation and gap junctions will 
lead to a better understanding of epilepsy pathogenesis and 
can uncover new treatment targets.
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