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Abstract. Hepatocellular carcinoma (HCC) is one of the most 
common types of cancer, which is associated with a poor prog‑
nosis. It is necessary to identify novel prognostic biomarkers 
and therapeutic targets to improve the survival of patients 
with HCC. In the present study, a seven‑gene signature asso‑
ciated with HCC progression was identified using weighted 
gene co‑expression network analysis and least absolute 
shrinkage and selection operator, and its prognostic predic‑
tion value was confirmed in The Cancer Genome Atlas‑liver 
HCC and International Cancer Genome Consortium liver 
cancer‑RIKEN, Japan cohorts. Subsequently, a rarely reported 
gene, epoxide hydrolase 2 (EPHX2), was selected for further 
validation. Downregulation of EPHX2 in HCC was revealed 
using multiple expression datasets. Furthermore, reduced 
expression of EPHX2 was confirmed in HCC tissue samples 
and cell lines using reverse transcription‑quantitative poly‑
merase chain reaction and western blotting. Additionally, 
Kaplan‑Meier survival curves indicated that patients with 
higher EPHX2 expression exhibited better prognosis, and 
clinicopathological analysis also revealed elevated EPHX2 
levels in patients with early‑stage HCC. Notably, EPHX2 was 
identified as an independent prognostic biomarker for overall 
survival of patients with HCC. Gene Ontology analysis, Kyoto 
Encyclopedia of Genes and Genomes analysis and gene set 

enrichment analysis were performed to elucidate the functions 
of EPHX2. The results suggested that EPHX2 expression was 
closely associated with metabolic reprogramming. Finally, 
the prognostic value of EPHX2 was evaluated using HCC 
tissue microarrays. In conclusion, downregulation of EPHX2 
was significantly associated with the development of HCC; 
therefore, EPHX2 may be considered a putative therapeutic 
candidate for the targeted treatment of HCC.

Introduction

Hepatocellular carcinoma (HCC) is a common type of primary 
liver cancer, the 5‑year survival rate of which is poor (1‑3). 
Due to the high incidence and mortality associated with HCC, 
it is necessary to explore novel prognostic biomarkers and 
therapeutic targets for patients with HCC. With the ongoing 
development of microarray and gene sequencing technolo‑
gies, bioinformatics approaches have been widely applied in 
numerous research fields, including tumorigenesis and cancer 
progression (4). Moreover, gene expression profiles have been 
used to identify differentially expressed genes (DEGs) associ‑
ated with the prognosis of patients with HCC, and these genes 
may be potential candidates for targeted treatment (5).

Weighted gene co‑expression network analysis (WGCNA) 
is a widely used data mining method used especially for 
studying biological networks based on high‑throughput gene 
expression profiles (6). In the present study, DEGs were identi‑
fied in The Cancer Genome Atlas‑liver HCC (TCGA‑LIHC) 
and International Cancer Genome Consortium liver 
cancer‑RIKEN, Japan (ICGC LIRI‑JP) cohorts. Subsequently, 
WGCNA was used to screen meaningful modules and identify 
novel prognostic biomarkers using least absolute shrinkage and 
selection operator (LASSO) Cox regression. Furthermore, the 
prognostic prediction value of the biomarkers was validated 
in patients with HCC. Finally, a rarely reported gene, epoxide 
hydrolase 2 (EPHX2), was selected for further investigation.

EPHX2 encodes for soluble epoxide hydrolase (sEH) (7), 
an important enzyme in endogenous lipid epoxide degrada‑
tion, particularly the inactivation of epoxyeicosatrienoic 
acids (EETs) (8). Cytochrome P450 (CYP) epoxygenases convert 
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arachidonic acid to EETs (9). Dysregulation of EPHX2 is asso‑
ciated with the pathogenesis of various diseases, such as renal 
and hepatic malignant neoplasms (10), hypertension (11) and 
hypercholesterolemia (12). The Gene Ontology (GO) annotation 
of EPHX2 involves xenobiotic metabolism, especially the hydro‑
lysis of trans‑substituted epoxides (13); however, the detailed 
functions of EPHX2 in the progression of HCC remain unclear. 
In the present study, EPHX2 was identified as an independent 
prognostic biomarker based on gene expression data. The 
mRNA expression levels of EPHX2 were also evaluated in vitro. 
Furthermore, the functions of EPHX2 were investigated using GO 
analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis and gene set enrichment analysis (GSEA). The results 
suggested that downregulation of EPHX2 was associated with 
tumor progression and poor prognosis of HCC.

Materials and methods

Data collection and preprocessing. Gene expression profiles 
were obtained from TCGA (https://portal.gdc.cancer.gov/reposi‑
tory/), ICGC (https://dcc.icgc.org/releases/release_28/) (14) and 
Gene Expression Omnibus (GEO) databases (https://www.ncbi.
nlm.nih.gov/geo/) (15). For TCGA‑LIHC cohort, gene expression 
profiles produced by the Illumina HiSeq RNA‑Seq platform were 
downloaded from TCGA database and normalized using the 
variance stabilizing transformation (VST) function in ‘DESeq2’ 
R package (R Core Team; https://www.r‑project.org) (16). Clinical 
data were extracted from TCGA database and MSI scores were 
downloaded from cBioPortal database (http://www.cbioportal.
org/). For the ICGC LIRI‑JP cohort, gene expression profiles 
and clinical information were downloaded from the ICGC 
database (17) and normalized using VST. Clinical information 
about the tumor grade was available for only 212 patients. For the 
GSE14520 cohort, gene expression profiles were downloaded from 
the GEO database and normalized using the limma package (18). 
The gene expression profiles of TCGA Pan‑Cancer were down‑
loaded from the UCSC database (http://xena.ucsc.edu/) (19) and 
Student's t‑test was used to analyze EPHX2 expression between 
tumor and normal tissues in different types of cancer.

Identification and validation of the prognostic gene signature. 
‘Deseq2’ R package was used to screen the DEGs between HCC 
and paired normal samples in TCGA‑LIHC and ICGC LIRI‑JP 
cohorts (16). Adjusted P<0.05 and |log2fold change (FC)| >1 
were set as the cut‑off thresholds. The results were presented in a 
volcano map using ‘ggplot2’ R package. The TCGA‑LIHC cohort 
was set as the training cohort, and the ICGC LIRI‑JP cohort as 
the validation cohort. The co‑expression network of DEGs in 
TCGA‑LIHC and ICGC LIRI‑JP cohorts was constructed based 
on TCGA‑LIHC cohort using the R package ‘WGCNA’ (6). The 
soft‑thresholding power with a slope close to 1 and a scale‑free 
R2 close to 0.9 was selected to transform the adjacency matrix to a 
topological overlap matrix. The soft‑thresholding power was set as 
7 (scale‑free R2=0.91, slope=‑1.49). Cut height was set as 0.25 and 
the minimal module size was set as 30 for network construction 
and module detection. The module with the highest correlation 
with HCC was considered as the key module. Univariate Cox 
proportional hazard regression analysis of those genes whose 
gene significance (GS) >0.2 and module membership (MM) >0.6 
was conducted to screen overall survival (OS)‑associated genes. 

Identified genes were further used to produce the prognostic 
multiple‑gene signature using the LASSO Cox regression with 
the ‘glmnet’ package in R (20,21). The following risk score 
formula was used: Risk score (mRNA‑based classifier) = sum of 
coefficients x expression levels of mRNA. The median risk score 
was used as a cut‑off value to divide the patients into high‑ and 
low‑risk groups for the prognostic prediction. The prognostic 
gene signature was validated in the ICGC LIRI‑JP cohort using 
the aforementioned formula.

Oncomine database. The Oncomine database (https://www.
oncomine.org) is an integrated online cancer microarray 
database for DNA or RNA sequence analysis  (22). In the 
present study, transcriptional expression of EPHX2 between 
cancer and matched normal samples was obtained from the 
Oncomine database. EPHX2 levels in various cancer types 
were compared using Student's t‑test. The cut‑off P‑value and 
FC were as follows: P‑value, 0.05; FC, 1.5; gene rank, 10%; 
data type, mRNA. EPHX2 expression in HCC was compared 
among the five datasets (15,23‑25) by Oncomine meta‑analysis.

Kaplan‑Meier plotter database analysis. The Kaplan‑Meier 
plotter database (http://kmplot.com/analysis/) is an online tool 
containing gene expression and clinical data, which is commonly 
used to evaluate the prognostic value of different genes among 
21 types of cancer (26). The sources of this database are GEO, 
TCGA and European Genome Phenome Archive. The prognostic 
value of EPHX2 mRNA expression in pan‑cancer (n=7,489) 
including 21 different types of cancer was evaluated using 
the Kaplan‑Meier plotter database (http://kmplot.com/anal‑
ysis/index.php?p=service&cancer=pancancer_rnaseq). Patient 
samples were split into two groups by auto select best cut‑off. 
The log‑rank P‑value and hazard ratio (HR) with 95% confi‑
dence intervals (CIs) were obtained.

GO and KEGG analyses. Spearman correlation analysis (R soft‑
ware 3.6.3) was carried out to identify 500 genes closely correlated 
with EPHX2. Functions of EPHX2 and 500 EPHX2‑associated 
genes were investigated using GO and KEGG analyses with the 
‘clusterProfiler’ R package (26). Adjusted P<0.05 was considered 
as significant. GO terms and KEGG pathways were presented 
using the R package ‘GOplot’ (27). GO analysis was based on 
three factors, including biological process (BP), cellular compo‑
nent (CC) and molecular function (MF), which could predict the 
functional roles of EPHX2 and the 500 related genes. KEGG 
analysis was used to identify the pathways associated with 
EPHX2 and the 500 related genes.

GSEA. GSEA v4.0.3 (http://www.broad.mit.edu/gsea/) was used 
to analyze the association between EPHX2 expression and biolog‑
ical pathways (28). Pre‑defined gene sets (c2.cp.kegg.v7.0.symbols.
gmt) were obtained from the Molecular Signatures Database 
(MsigDB; http://software.broadinstitute.org/gsea/msigdb). The 
patients in the TCGA‑LIHC or ICGC LIRI‑JP cohort were sorted 
into high‑ and low‑EPHX2 expression groups using median 
mRNA expression levels of EPHX2. False discovery rate <0.25 
and nominal P<0.05 were set as the cut‑off thresholds.

Patients and specimens. Two independent cohorts of patients 
with HCC were used in the present study. For cohort one, tissue 
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microarrays (TMAs) containing 90 pairs of HCC and matched 
adjacent non‑cancerous tissue samples with complete clinical 
and follow‑up data were purchased from Shanghai Liao Ding 
Biotechnology Co., Ltd. For cohort two, a total of 12 paired HCC 
and matched adjacent non‑cancerous tissue samples (distance 
from tumor margin, ≤3 cm; cirrhosis tissue was excluded) were 
obtained from patients (age range, 40‑69 years; five male patients 
and seven female patients) who were diagnosed with HCC at the 
Second Affiliated Hospital of Chongqing Medical University 
(Chongqing, China) between January 2018 and December 2019. 
All patients did not undergo chemotherapy or radiotherapy before 
surgery. After performing surgical resection, tissue samples 
were immediately frozen and stored in liquid nitrogen until 
further use. All cases were histologically confirmed. The study 
protocol was approved by the Ethics Committee of the Second 
Affiliated Hospital of Chongqing Medical University (approval 
no. 2020‑186). All patients provided written informed consent.

Cell culture. Normal human hepatocytes MIHA and liver 
cancer cell lines Huh7, HepG2, MHCC‑97H and MHCC‑97L 
were purchased from the American Type Culture Collection. 
All cell lines were authenticated by STR profiling. Cells 
were cultured using Dulbecco's modified Eagle medium 
(Gibco; Thermo Fisher Scientific, Inc.) supplemented with 
10% heat‑inactivated fetal bovine serum (Gibco; Thermo 
Fisher Scientific, Inc.), penicillin (100 U/ml) and streptomycin 
(100 µg/ml; Beyotime Institute of Biotechnology) and main‑
tained at 37˚C in a humidified incubator containing 5% CO2.

Reverse transcription‑ quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted from specimens in 
cohort two or cells using TRIzol® reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.), and 1 µg RNA was reverse transcribed 
into cDNA using PrimeScript RT Reagent kit with gDNA 
Eraser (Takara Bio, Inc.) according to the manufacturer's intro‑
ductions. Subsequently, qPCR was carried out using SYBR 
Green PCR Master Mix (Takara Bio, Inc.) according to the 
manufacturer's protocols. PCR amplification was performed as 
follows: Initial denaturation at 95˚C for 10 min, followed by 
35 cycles of a two‑step PCR at 95˚C for 14 sec and 60˚C for 1 
min. The reaction volume was 10 µl. Relative gene expression 
was normalized to GAPDH and calculated using the 2‑ΔΔCq 
method (29). The following primer pairs were used: EPHX2, 
forward, 5'‑CCTTCATACCAGCAAATCCCAACA‑3' and 
reverse, 5'‑TTCAGCCTCAGCCACTCCT‑3'; GAPDH, 
forward, 5'‑GATCATCAGCAATGCCTCCT‑3' and reverse, 
5'‑GAGTCCTTCCACGATACCAA‑3'.

Western blotting. Total protein was extracted from tissue samples 
in cohort two or cultured cells using ice‑cold radioimmunopre‑
cipitation assay buffer (Beyotime Institute of Biotechnology) 
supplemented with protease and phosphatase inhibitor cocktails 
(Roche Diagnostics). Cell lysates were boiled at 100˚C for 
10 min. Protein concentration was determined using the bicin‑
choninic acid Protein Assay kit (Thermo Fisher Scientific, Inc.). 
Equal amounts (40 µg) of protein samples were separated by 
10% sodium dodecyl sulfate‑polyacrylamide gel electrophoresis, 
and further transferred to polyvinylidene difluoride membranes 
(MilliporeSigma). Membranes were then blocked with 5% nonfat 
milk in Tris‑buffered saline‑0.1% Tween at room temperature 

for 2 h and incubated with primary antibodies against EPHX2 
(1:1,000; cat. no. 10833‑1‑AP; Proteintech Group, Inc.) and 
β‑actin (1:5,000; cat. no. 66009‑1‑lg; Proteintech Group, Inc.) at 
4˚C overnight. Subsequently, the membrane was incubated with 
a horseradish peroxidase‑conjugated goat anti‑rabbit (1:2,000; 
cat. no. SA00001‑2; Proteintech Group, Inc.) or goat anti‑mouse 
(1:2,000; cat. no. SA00001‑1; Proteintech Group, Inc.) secondary 
antibodies at room temperature for 1 h. Protein bands were visu‑
alized using an enhanced chemiluminescence (ECL) detection 
kit (EMD Millipore). An ECL Western blot analysis system 
(Bio‑Rad Laboratories, Inc.) was used to evaluate the bands. 
The intensity of protein bands was semi‑quantified using Image 
Lab software (Version 6.0.1; Bio‑Rad Laboratories, Inc.) and 
normalized to β‑actin.

Immunohistochemistry (IHC). The tissue sections on the TMAs 
(thickness, 4 µm) were deparaffinized using xylene and rehy‑
drated using alcohol. Samples were then subjected to heat‑induced 
antigen retrieval using citrate buffer (0.01 M; pH 6.4) in a pressure 
cooker for 5 min, and cooled to room temperature. Subsequently, 
the sections were treated with 3% hydrogen peroxide for 10 min 
at room temperature to block endogenous peroxidase activity, 
and incubated with goat serum (Beijing Dingguo Changsheng 
Biotechnology Co., Ltd.) for 1 h at room temperature to block 
nonspecific antibody binding and incubated with an EPHX2 
antibody (1:100; cat. no. 10833‑1‑AP; Proteintech Group, Inc.) 
overnight at 4˚C in a humidified chamber. After incubation 
with the secondary goat anti‑rabbit IgG (horseradish peroxi‑
dase) antibody (1:200; cat. no. ab150077; Abcam) for 30 min 
at room temperature, coloration with 3,3‑diaminobenzidin was 
performed for 10 min at room temperature. Subsequently, the 
samples were counterstained with hematoxylin for 2 min at 
room temperature, dehydrated in a gradient series of ethanol, 
and then mounted with neutral gum. The stained tissue slices 
were analyzed by two different pathologists blinded to patients' 
clinical characteristics with a light microscope (BX53; Olympus 
Corporation). The intensity of IHC staining was semi‑quantified 
using ImageJ software (Version 1.50i; National Institutes of 
Health). IHC scores were calculated using the following formula: 
IHC score = intensity score x percentage score of stained cells. 
Staining intensity was scored from 0 to 3 (0, negative; 1, weak; 
2, moderate; 3, strong). The percentage of positively stained cells 
was scored from 0 to 100. Therefore, the IHC score ranged from 
0 to 300. The median IHC score was defined as the cut‑off value 
for low and high expression.

Statistical analyses. Data were presented as the means ± stan‑
dard deviation and statistical analyses were performed 
using R software (Version 3.6.3; https://www.r‑project.org). 
Wilcoxon matched‑pairs test or Student's t‑test was performed 
to compare differences between two groups, and One‑way 
ANOVA followed by Bonferroni post‑hoc test was used to 
compare differences between multiple groups. The χ2 test or 
Fisher's exact test was performed to determine the association 
between EPHX2 expression and the clinical characteristics. 
Kaplan‑Meier survival analysis was carried out to evaluate 
the prognostic value of gene signature and EPHX2, and the 
log‑rank test was performed to analyze significance. When 
the survival curves crossed, the two‑stage procedure was used 
for significance analysis (30,31). Univariate and multivariate 
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Cox proportional hazard regression analyses were also carried 
out to investigate the association between EPHX2 expression 
and OS. Spearman correlation test was performed to identify 
EPHX2‑associated genes and assess the correlation between 
EPHX2 expression and microsatellite instability  (MSI). 
Receiver operating characteristic (ROC) analysis was used to 
determine the sensitivity and specificity of survival prediction 
using the gene signature risk score. The area under the curve 
(AUC) served as an indicator of prognostic accuracy. All the 
experiments were performed at least three times. P<0.05 was 
used to indicate a statistically significant difference.

Results

WGCNA and key module identification. Overall, 4,453 and 
4,257 DEGs were identified in TCGA‑LIHC and ICGC LIRI‑JP 
cohorts as presented in the volcano plots (Fig. S1A and B). A 
total of 2,589 DEGs in both cohorts were selected for subse‑
quent analyses and presented in a Venn diagram (Fig. S1C). 
Expression data of these 2,589 DEGs from TCGA‑LIHC 
cohort were used for WGCNA  (Fig.  1). Eight clustering 
modules (Fig. 1C and D) were used to set the soft‑threshold 
power as 7 (scale‑free R2=0.91, slope=‑1.49; Figs. 1B and S2) 

Figure 1. Key module correlated with hepatocellular carcinoma was identified using weighted gene co‑expression network analysis. (A) Sample clustering 
for the detection of outliers. (B) Scale‑free topology model fit (left) and mean connectivity (right) for the determination of soft threshold power. The power 
selected was seven. (C) Cluster dendrogram of genes. (D) Eigengene adjacency heatmap. (E) Module‑trait relationships heatmap shows the connections 
between different modules and clinical traits.
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and cut height as 0.25. The turquoise module was closely 
associated with clinical traits, especially tumor grade (correla‑
tion coefficient=0.38, P=2x10‑13; Fig. 1E) and was considered 
as the key module. Moreover, 251 associated genes from the 
turquoise module were selected as novel candidates for further 
analyses (GS>0.2 and MM>0.6). Subsequently, these genes 
were subjected to univariate Cox regression analysis, and 
239 genes were closely correlated with the OS (Table SI).

The aforementioned genes were further applied to the 
LASSO Cox regression analysis and the regression coefficient 
of each gene was calculated. The prognostic gene signature 
produced the best performance when seven genes (DNASE1L3, 
EPHX2, ADH4, G6PD, CDCA8, KPNA2 and KIAA1841) 
were included (Fig. 2A). Regression coefficients of these genes 
were presented in Fig. 2B. Three genes (DNASE1L3, EPHX2 
and ADH4) with a HR<1 were considered as protective genes, 
whereas four genes (G6PD, CDCA8, KPNA2 and KIAA1841) 
with a HR>1 were considered as risk factors (Fig. 2C). Risk score 
was calculated for each patient using the following formula: 
Risk score = (‑0.0011 x DNASE1L3 expression) + (‑0.0029 x 
EPHX2 expression) + (‑0.0281 x ADH4 expression) + (0.1459 x 
G6PD expression) + (0.0509 x CDCA8 expression) + (0.1594 x 
KPNA2 expression) + (0.0623 x KIAA1841 expression).

Validation of the prognostic gene signature. The prognostic 
prediction value of this seven‑gene signature was further vali‑
dated. Kaplan‑Meier survival analysis indicated that patients 
with low‑risk scores exhibited better survival in the training 
(P<0.0001) and validation cohorts (P<0.0001) (Fig. 3A and B). 
ROC curve analysis was also conducted to evaluate the 
predictive ability of the signature. Time‑dependent ROC for 
OS at different time points indicated that AUC values for 1‑, 
3‑ and 5‑year OS were 0.778, 0.705 and 0.657 in the training 
cohort (Fig. 3C), and the values were 0.730, 0.774 and 0.644 in 
the validation cohort (Fig. 3D).

Further ROC curve analysis for OS within different groups 
revealed that a combination of TNM stage and risk score 
could improve the prognostic prediction ability in the training 
cohort (Fig. 3E). However, the predictive ability of risk score 
alone was much higher in the validation cohort (Fig. 3F). In 
addition, the distribution of risk scores, survival time and 
therapeutic outcomes in the training and validation cohorts 
are presented in Fig. 4. The heat map revealed upregulation of 
the four risk factors and downregulation of the three protective 
genes in the high‑risk group. In conclusion, combination of this 
novel prognostic model with conventional TNM staging might 
increase prognostic prediction ability in HCC. Among these 

Figure 2. Development of the prognostic gene signature using LASSO regression analysis. (A) A coefficient profile plot was generated to select the optimal 
lambda in the LASSO model for TCGA‑LIHC. (B) LASSO coefficient profiles of the genes in TCGA‑LIHC. (C) Forest plot of the seven genes associated with 
TCGA‑LIHC survival. LASSO, least absolute shrinkage and selection operator; TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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seven genes, EPHX2 was rarely reported in HCC. Therefore, 
EPHX2 was selected for further validation.

mRNA expression levels of EPHX2 in different types of 
cancer. The mRNA expression levels of EPHX2 in tumor and 
normal tissues were compared in different types of cancer 
using Oncomine and TCGA databases. In the Oncomine 

database, EPHX2 expression was decreased in numerous 
types of cancer, including leukemia, melanoma, sarcoma, and 
esophageal, breast, kidney, liver, colorectal, bladder, ovarian, 
cervical. brain and central nervous system, head and neck, 
and pancreatic cancer (Fig. 5A). Moreover, EPHX2 expression 
in cancer and normal specimens was compared using TCGA 
database (Fig. 5B). Similarly, the expression levels of EPHX2 

Figure 3. Prognostic prediction ability of the gene signature in hepatocellular carcinoma cohorts. Kaplan‑Meier plot of OS in (A) TCGA‑LIHC and (B) ICGC 
LIRI‑JP cohorts. Time‑dependent ROC analysis for OS at different time points based on the gene signature in (C) TCGA‑LIHC and (D) ICGC LIRI‑JP cohorts. 
ROC analysis of the sensitivity and specificity of TNM stage and risk score on OS in (E) TCGA‑LIHC and (F) ICGC LIRI‑JP cohorts. AUC, area under the 
curve; ICGC LIRI‑JP, International Cancer Genome Consortium liver cancer‑RIKEN, Japan; OS, overall survival; ROC, receiver operating characteristic; 
TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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were significantly reduced in tumor samples, such as urothe‑
lial bladder carcinoma (BLCA), invasive breast carcinoma, 
cholangiocarcinoma, colon adenocarcinoma, head and neck 
squamous carcinoma (HNSC), kidney chromophobe, kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KIRP), LIHC, lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), pheochromocytoma and 
paraganglioma, prostate adenocarcinoma, rectum adenocar‑
cinoma, sarcoma, stomach adenocarcinoma (STAD), thyroid 
carcinoma (THCA) and uterine corpus endometrial carcinoma 
(UCEC). These results revealed downregulation of EPHX2 in 
various types of cancer, which could be associated with tumor 
progression.

Downregulation of EPHX2 in HCC. A comparison of 
EPHX2 expression levels in HCC from various studies in 
the Oncomine database revealed downregulation of EPHX2 
expression in HCC tissues compared with those in adjacent 
normal samples (Fig. 5C). Furthermore, EPHX2 expression 
was reduced in HCC specimens in TCGA‑LIHC, ICGC 
LIRI‑JP and GSE14520 cohorts  (Fig. 5D‑F). Furthermore, 
RT‑qPCR and western blotting were performed to evaluate the 
mRNA and protein expression levels of EPHX2 in 12 paired 
HCC and normal samples. The expression levels of EPHX2 
were significantly decreased in HCC tissues compared with 
those in adjacent non‑cancerous tissues (Fig. 6A). As presented 
in Fig. 6C, the protein expression levels of EPHX2 were also 
markedly reduced in HCC samples. Furthermore, EPHX2 
expression was detected in normal hepatocytes and HCC cells. 
The mRNA and protein expression levels of EPHX2 were 

markedly decreased in HCC cells compared with those in 
normal hepatocytes (Fig. 6B and D). These findings revealed 
the downregulation of EPHX2 in HCC.

Association of EPHX2 and clinicopathological traits in HCC. 
The association between EPHX2 expression and clinicopatho‑
logical traits in patients with HCC was further determined. 
The mRNA expression levels of EPHX2 were evaluated in 
different subgroups in TCGA‑LIHC cohort, including with 
or without TP53 mutations, various tumor grades and patho‑
logical/TNM stages (Fig. 7A‑D). EPHX2 expression was also 
examined in subgroups in the ICGC LIRI‑JP cohort, including 
various tumor grades and TNM stages (Fig. 7E and F). In 
TCGA LIHC cohort, the lowest mRNA expression levels 
of EPHX2 were detected in patients with TP53 mutations, 
grade 4 and TNM stage III, whereas in the ICGC LIRI‑JP 
cohort, the lowest expression levels were found in grade 3 
and TNM stage IV (Fig. 7). Due to the limited number of 
stage IV patients (only four HCC patients were at stage IV), no 
significant difference was observed between EPHX2 expres‑
sion in stage IV and any other stages in TCGA‑LIHC cohort. 
However, the mRNA expression of EPHX2 in pathological 
stage III was significantly lower than that in stage I and II. 
These results indicated that patients with HCC with TP53 
mutations and at advanced tumor grade and pathological/TNM 
stage exhibited lower EPHX2 expression. The present study 
also assessed the correlation between EPHX2 expression and 
microsatellite instability (MSI); the results demonstrated that 
increased EPHX2 expression was associated with decreased 
MSI in LIHC (R=‑0.12; P=0.027;  Fig.  S3). Furthermore, 

Figure 4. Characteristics of gene signature. Distribution of risk scores, survival time and survival status, and heatmap of the signature gene profiles in 
(A) TCGA‑LIHC and (B) ICGC LIRI‑JP cohorts. The dotted line indicated the optimum cut‑off dividing patients into low‑ and high‑risk groups. ICGC 
LIRI‑JP, International Cancer Genome Consortium liver cancer‑RIKEN, Japan; TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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clinicopathological analysis suggested that downregulation 
of EPHX2 was associated with advanced tumor grade and 
female sex in TCGA‑LIHC cohort, while in the ICGC LIRI‑JP 
cohort, this was associated with higher TNM stage and 

tumor grade (Table SII). These results indicated that higher 
EPHX2 expression was detected in patients with early‑stage 
HCC, whereas patients at the advanced stages exhibited lower 
EPHX2 levels.

Figure 5. Transcriptional expression of EPHX2 in different types of cancer. (A) EPHX2 mRNA expression levels were compared in normal and cancerous tis‑
sues using Oncomine database. Blue indicates downregulation of EPHX2 in cancer and red indicates elevation of EPHX2 in cancer. (B) EPHX2 expression in 
different types of cancer in TCGA database. (C) EPHX2 mRNA expression levels in HCC in five datasets in the Oncomine analysis. Differential expression of 
EPHX2 in primary HCC tissues compared with in normal samples in (D) TCGA‑LIHC, (E) ICGC LIRI‑JP and (F) GSE14520 cohorts. ****P<0.0001. EPHX2, 
epoxide hydrolase 2; HCC, hepatocellular carcinoma; ICGC LIRI‑JP, International Cancer Genome Consortium liver cancer‑RIKEN, Japan; TCGA‑LIHC, 
The Cancer Genome Atlas‑liver HCC.
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EPHX2 is a potential tumor suppressor gene. Kaplan‑Meier 
plotter database was used to identify the cancer types 
whose prognostic values were related to EPHX2 expres‑
sion in OS and recurrence‑free survival (RFS). The results 
indicated that patients with higher EPHX2 levels exhib‑
ited better OS prognosis in eight types of cancer: LIHC 
(HR=0.57; 95% CI=0.4‑0.81; P=0.0013), LUAD (HR=0.59; 
95% CI=0.41‑0.84; P=0.0034), cervical squamous cell carci‑
noma (CESC; HR=0.42; 95%  CI=0.26‑0.68; P=2.5x10‑4), 
HNSC (HR=0.61; 95%  CI=0436‑0.86; P=0.0048), KIRC 
(HR=0.44; 95% CI=0.31‑0.63; P=4.5x10‑6), KIRP (HR=0.42; 
95% CI=0.23‑0.76; P=0.003), pancreatic ductal adenocarci‑
noma (PDAC; HR=0.53; 95% CI= 0.34‑0.82; P=0.0041) and 
UCEC (HR=1.71; 95%  CI=1.03‑2.84; P=0.036)  (Fig.  S4). 
Moreover, eight types of cancer exhibited improved RFS prog‑
nosis when EPHX2 was highly expressed; the results indicated 
that patients with higher EPHX2 levels exhibited lower recur‑
rence rates in BLCA, KIRP, LUAD, LUSC, PDAC, STAD 
and THCA (Fig. S5). These findings indicated that EPHX2 
expression could be associated with the prognosis of different 
types of cancer, and it may be a putative survival predictor for 
patients with HCC.

EPHX2 is an independent prognostic biomarker in HCC. 
The prognostic value of EPHX2 in HCC was further evalu‑
ated. Kaplan‑Meier survival curves indicated that patients 
with higher EPHX2 levels exhibited better prognosis in 
TCGA‑LIHC (P=1.5x10‑4) and ICGC LIRI‑JP (P=0.017) 
cohorts (Fig. 8A and B). Furthermore, Kaplan‑Meier analysis 
of OS was performed in patients with HCC according to 
age, tumor grade, TNM stage and pathologic stage in the 
TCGA‑LIHC cohort, and age and TNM stage in the ICGC 
LIRI‑JP cohort, respectively. In TCGA‑LIHC cohort, EPHX2 
expression affected OS rates in the different age, tumor grade, 
pathological stage and TNM stage III/IV subgroups (P<0.05), 
but not in the TNM stage I/II subgroup (P=0.06) (Fig. 8C‑F). 
In the ICGC LIRI‑JP cohort, patients with higher EPHX2 
expression exhibited better OS in the age >60 years (P=0.027) 
and TNM stage III /IV (P=0.0058) subgroups, but not in 
the age <60 years (P=0.32) and TNM stage I /II (P=0.31) 
subgroups (Fig. 8G and H).

The independent prognostic value of EPHX2 expression 
with regard to OS was determined in TCGA‑LIHC and ICGC 
LIRI‑JP cohorts. In the univariate analysis, patients with HCC 
with higher pathological stage, TNM stage and lower EPHX2 

Figure 6. EPHX2 expression in HCC tissues and cells. (A) mRNA expression levels of EPHX2 in 12 HCC and matched normal samples. (B) mRNA expression 
levels of EPHX2 innormal hepatocytes and HCC cell lines. (C) Protein expression levels of EPHX2 in 12 paired HCC and non-cancerous tissues. (D) Protein 
expression levels of EPHX2 in normal hepatocytes and four HCC cell lines. **P<0.01 and ***P<0.001 vs. MIHA. EPHX2, epoxide hydrolase 2; HCC, hepatocellular 
carcinoma
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levels exhibited poorer OS in TCGA‑LIHC cohort, and patients 
with lower EPHX2 expression also exhibited poorer OS in the 
ICGC LIRI‑JP cohort (Table SIII). In the multivariate analysis, 
improved OS was detected in patients with HCC with higher 
EPHX2 levels in TCGA‑LIHC cohort (Table SII; HR=0.8433, 
95% CI=0.7442‑0.9555, P=0.0075); whereas, no significant 
value was identified in ICGC LIRI‑JP cohort. Taken together, 
the mRNA expression levels of EPHX2 were associated with 
prognosis in HCC, and EPHX2 expression may be a promising 
survival predictor for patients with HCC.

Functional enrichment analysis for EPHX2 in HCC. To 
explore the detailed functions of EPHX2, GO analysis, 
KEGG analysis and GSEA were carried out. Firstly, A total 

of 500  genes significantly correlated with EPHX2 were 
screened by Spearman correlation test. Then, functions of 
EPHX2 and the 500 associated genes were analyzed using 
GO and KEGG analyses in TCGA‑LIHC and ICGC LIRI‑JP 
cohorts. As presented in Fig. 9A and C, commonly enriched 
BPs in both cohorts were involved in metabolic reprogram‑
ming, such as ‘organic acid catabolic process’, ‘small molecule 
catabolic process’, ‘fatty acid metabolic process’, ‘carboxylic 
acid catabolic process’, ‘alpha‑amino acid metabolic process’ 
and ‘cellular amino acid metabolic process’; CCs, such as 
‘peroxisome’, ‘mitochondrial matrix’, ‘microbody part’, 
‘microbody’, ‘peroxisomal matrix’ and ‘peroxisomal part’. 
MFs, such as ‘oxidoreductase activity, acting on CH‑OH 
group of donors’, ‘coenzyme binding’, ‘iron ion binding’, 

Figure 7. Relationship between EPHX2 mRNA expression levels and clinical characteristics of patients with hepatocellular carcinoma. (A‑D) mRNA expres‑
sion levels of EPHX2 were associated with TP53 mutant status, tumor grade and pathological/TNM stage in TCGA‑LIHC cohort. (E and F) Expression of 
EPHX2 was closely associated with tumor grade and TNM stage in the ICGC LIRI‑JP cohort. *P<0.05, **P<0.01, ***P<0.001. EPHX2, epoxide hydrolase 2; 
ICGC LIRI‑JP, International Cancer Genome Consortium liver cancer‑RIKEN, Japan; TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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‘vitamin binding’ and ‘oxidoreductase activity and acting 
on paired donors’. In KEGG analysis, enriched pathways, 
including 'peroxisome’, ‘carbon metabolism’, ‘complement 
and coagulation cascades’, ‘valine, leucine and isoleucine 
degradation’ and ‘propanoate metabolism’, were associated 
with the functions of EPHX2 and the 500 associated genes 
in HCC (Fig. 9B and D).

To identify the biological pathways associated with 
EPHX2, GSEA was further performed to compare the high‑ 
and low‑EPHX2 expression groups in TCGA‑LIHC and ICGC 
LIRI‑JP cohorts. In general, 33 and 33 KEGG pathways were 
enriched in the high‑EPHX2 group in TCGA‑LIHC and ICGC 
LIRI‑JP cohorts, respectively; whereas, only one significantly 
enriched pathway was identified in the low‑EPHX2 group 
in TCGA‑LIHC cohort (Table SIV). Elevated EPHX2 levels 
were significantly associated with numerous metabolic 

pathways in both cohorts, such as ‘PPAR signaling pathway’, 
‘tyrosine metabolism, ‘propanoate metabolism’, 'histidine 
metabolism’, 'valine, leucine and isoleucine degradation’, 
‘retinal metabolism', ‘primary bile acid biosynthesis’, and 
‘fatty acid metabolism’ (Fig. 9E). Furthermore, low EPHX2 
expression was negatively associated with ‘olfactory trans‑
duction pathway’. These results indicated that EPHX2 was 
involved in catabolic processes and peroxisome metabolism 
in HCC, and it might be associated with metabolic repro‑
gramming in HCC.

Validation of clinical and prognostic value of EPHX2 in 
TMAs. Finally, clinical and prognostic value of EPHX2 was 
validated in TMAs with complete clinical and follow‑up 
data. Those eight patients whose missing area of tissue 
section was >50% were excluded. Protein expression levels 

Figure 8. Prognostic value of EPHX2 in HCC cohorts. Kaplan‑Meier plot of OS in (A) TCGA‑LIHC and (B) ICGC LIRI‑JP cohorts. (C‑F) Kaplan‑Meier 
plots of OS in the different age, tumor grade, TNM stage and pathological stage subgroups in TCGA‑LIHC cohort. (G and H) Kaplan‑Meier plots of OS in the 
different age and TNM stage subgroups in ICGC LIRI‑JP cohort. EPHX2, epoxide hydrolase 2; ICGC LIRI‑JP, International Cancer Genome Consortium liver 
cancer‑RIKEN, Japan; OS, overall survival; TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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of EPHX2 were determined in TMAs using IHC, and the 
results revealed downregulation of EPHX2 in HCC tissues 
(Figs. S6 and 10A). Kaplan‑Meier survival analysis suggested 
that the high EPHX2 group exhibited better OS (P=0.0046; 
Fig. 10B) and lower recurrence (P=0.025; Fig. 10C). Further 
clinicopathological analysis in the TMAs cohort indicated that 
EPHX2 expression was associated with tumor encapsulation, 
tumor multiplicity, vascular invasion and TNM stage (Table I). 
In addition, univariate Cox regression analysis revealed 
that lower EPHX2 levels were associated with poorer OS 
(HR=1.367; 95% CI=1.046‑2.185; P<0.01; Fig. 10D) and higher 
recurrence (HR=1.101; 95% CI=1.042‑1.365; P=0.01; Fig. S7). 
In addition, multivariate Cox regression analysis suggested 
that EPHX2 was an independent prediction indicator for OS 
(HR=1.415; 95% CI =1.325‑2.049; P<0.01; Fig. 10D). These 

results revealed the clinical and prognostic value of EPHX2 
in HCC and suggested that EPHX2 could be an independent 
prognostic biomarker for HCC.

Discussion

HCC is a common type of cancer associated with high 
morbidity and mortality, and the therapeutic outcome is poor for 
patients at advanced or metastatic stages. The pathogenesis of 
HCC involves genomic mutation, environmental intervention, 
modulation of molecular pathways involved in hepatocarcino‑
genesis and tumor progression (32). Targeted therapies have 
been used to improve the survival of patients with advanced 
HCC (33‑36); however, it is still necessary to improve the OS of 
patients with HCC, thus novel biomarkers should be identified. 

Table I. Association between EPHX2 expression and clinicopathological features.

	E PHX2
	---------------------------------------------------------------------------------------------------------
	A ll cases	L ow expression	 High expression	 Fisher's exact test
Variables	 (n=82)	 (n=41)	 (n=41)	 or χ2 P-value

Age, years, n (%)				    1.000
  ≤50	 48 (58.5)	 24 (58.5)	 24 (58.5)
  >50	 34 (41.5)	 17 (41.5)	 17 (41.5)
Sex, n (%)				    1.000
  Female	 8 (9.8)	 4 (9.8)	 4 (9.8)
  Male	 74 (90.2)	 37 (90.2)	 37 (90.2)
Cirrhosis, n (%)				    0.822
  No	 49 (59.8)	 24 (58.5)	 25 (61.0)
  Yes	 33 (40.2)	 17 (41.5)	 16 (39.0)
HBV, n (%)				    1.000
  Negative	 4 (4.9)	 2 (4.9)	 2 (4.9)
  Positive	 78 (95.1)	 39 (95.1)	 39 (95.1)
Tumor multiplicity, n (%)				    0.021
  Single	 62 (75.6)	 26 (63.4)	 36 (87.8)
  Multiple	 20 (24.4)	 15 (36.6)	 5 (12.2)
α-fetoprotein (ng/ml), n (%)				    0.809
  ≤20	 24 (29.3)	 13 (31.7)	 11 (26.8)
  >20	 58 (70.7)	 28 (68.3)	 30 (73.2)
Tumor size (cm), n (%)				    0.770
  ≤5	 68 (82.9)	 33 (80.5)	 35 (85.4)
  >5	 14 (17.1)	 8 (19.5)	 6 (14.6)
Tumor encapsulation, n (%)				    0.006
  Complete	 29 (35.4)	 8 (19.5)	 21 (51.2)
  None	 53 (64.6)	 33 (80.5)	 20 (48.8)
Vascular invasion, n (%)				    0.021
  No	 53 (64.6)	 21 (51.2)	 32 (78.0)
  Yes	 29 (35.4)	 20 (48.8)	 9 (22.0)
TNM stage, n (%)				    0.015
  III-IV	 44 (53.7)	 28 (68.3)	 16 (39.0)
  I-II	 38 (46.3)	 13 (31.7)	 25 (61.0)

EPHX2, epoxide hydrolase 2.
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In the present study, notable modules correlated with clinical 
traits were identified using WGCNA, and a gene signature 
associated with OS was developed by LASSO. Furthermore, 
its performance for prognostic prediction was validated in 

TCGA‑LIHC and ICGC LIRI‑JP cohorts. In consistence with 
the present findings, Zhang et al (37) revealed that EPHX2, 
together with five other genes, was associated with OS in 
patients with HCC based on TCGA data (37). In the present 

Figure 9. Functional enrichment analysis of EPHX2 in HCC cohorts. GO functional enrichment and KEGG pathway analyses on EPHX2 and 500 associated 
genes in (A and B) TCGA‑LIHC and (C and D) ICGC LIRI‑JP cohorts. (E) Gene set enrichment analysis plots of commonly enriched KEGG pathways in 
TCGA‑LIHC cohort. EPHX2, epoxide hydrolase 2; ICGC LIRI‑JP, International Cancer Genome Consortium liver cancer‑RIKEN, Japan; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; OS, overall survival; TCGA‑LIHC, The Cancer Genome Atlas‑liver hepatocellular carcinoma.
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study, the seven genes in the signature were EPHX2, KPNA2, 
KIAA1841, G6PD, CDCA8, ADH4 and DNASE1L3. Among 
these genes, EPHX2 was dysregulated in numerous types of 
cancer, including HCC, and was associated with cancer prog‑
nosis based on bioinformatics analysis, suggesting that it might 
serve an essential role in tumor progression. Since EPHX2 has 
rarely been reported in HCC, to the best of our knowledge, it 
was selected for further validation in the present study.

EPHX2 encodes sEH, which is expressed in various human 
malignant neoplasms, including HCC (10). Downregulation of 
EPHX2 was confirmed in HCC tissues and cells in the present 
study, and its downregulation was associated with shorter OS 
and RFS. Furthermore, EPHX2 was identified as an inde‑
pendent prognostic biomarker for OS in patients with HCC. 
Moreover, clinicopathological analysis suggested that down‑
regulation of EPHX2 was associated with advanced tumor 
grade/TNM stage and poor prognosis in patients with HCC, 
suggesting that patients with early‑stage HCC could exhibit 
higher EPHX2 expression. Finally, the clinical and prognostic 

value of EPHX2 was evaluated in TMAs with complete clinical 
and follow‑up data. Functional analysis revealed that EPHX2 
was closely associated with ‘complement/coagulation cascade’, 
‘peroxisome/carbon metabolism’, ‘CYP’, ‘catabolic processes 
of carboxylic acids’, ‘small molecules’, ‘fatty acids’, ‘organic 
acids’ and other metabolic pathways, suggesting that EPHX2 
was closely associated with metabolic reprogramming in HCC.

It has been reported that CYP2J2 expression may be 
increased in HCC tissues compared with that in normal 
controls (38). EPHX2 protein catalyzes the hydrolysis of EETs, 
which are the major products synthesized from arachidonic 
acids by CYP (9). Further studies have also indicated that the 
addition of EETs or overexpression of CYP2J2 could promote 
cell proliferation in human malignant neoplasms, including 
HCC (39,40). CYP epoxygenases and the epoxide metabolites 
have also been reported to induce proliferation/metastasis 
and trigger angiogenesis in various types of cancer  (40). 
Conversely, inhibitors of CYP2J2 could suppress the growth 
of tumor cells with high CYP2J2 levels, such as HCC, 

Figure 10. Validation of clinical and prognostic value of EPHX2 in TMAs. (A) Expression levels of EPHX2 in 82 paired HCC and normal tissues. Kaplan‑Meier 
plot of (B) OS and (C) recurrence‑free survival in the TMA cohort. (D) Univariate and multivariate analyses of factors associated with OS of patients with 
HCC in the TMA cohort. ****P<0.0001.AFP, α‑fetoprotein; CI, confidence interval; EPHX2, epoxide hydrolase 2; HR, hazard ratio; OS, overall survival; TMA, 
tissue microarray.
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breast and lung cancer cells (41). The studies of sEH in solid 
tumors have indicated that dual inhibition of sEH and cyclo‑
oxygenase‑2 may suppress tumor growth in HCC and lung 
cancer (40,41). In addition, inhibition of EPHX2 could result 
in the accumulation of EETs, consequently promoting tumor 
growth and metastasis in patients with HCC (40). These find‑
ings suggested that EPHX2 may be considered a prognostic 
biomarker and therapeutic target in HCC, and it may exert 
important roles in the progression of HCC. Further research, 
including in vitro and in vivo studies, are required to validate 
the anti‑oncogenic role of EPHX2 in HCC and to investigate 
the underlying molecular mechanisms of EPHX2‑modulated 
metabolic reprogramming in HCC.

In summary, a seven‑gene signature was constructed and 
validated, which was correlated with the development of HCC. 
Moreover, a rarely reported gene, EPHX2, was selected and 
downregulation of EPHX2 was confirmed in HCC. In addi‑
tion, higher EPHX2 expression was detected in patients with 
early‑stage HCC. Furthermore, patients with higher EPHX2 
levels exhibited better prognosis, thus EPHX2 could be an 
independent prognostic biomarker for OS of patients with HCC. 
Additionally, functional enrichment analyses revealed that 
EPHX2 expression was associated with metabolic processes 
and peroxisomal components, suggesting that EPHX2 could 
be involved in metabolic reprogramming of HCC. These data 
indicated that downregulation of EPHX2 might be associated 
with the progression and poor prognosis of HCC, and EPHX2 
could be a novel therapeutic approach for targeted treatment of 
patients with HCC.
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